
Citation: Alharbi, F.R.; Csala, D. A

Seasonal Autoregressive Integrated

Moving Average with Exogenous

Factors (SARIMAX) Forecasting

Model-Based Time Series Approach.

Inventions 2022, 7, 94. https://

doi.org/10.3390/inventions7040094

Academic Editor: Luigi Fortuna

Received: 30 July 2022

Accepted: 8 October 2022

Published: 16 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

inventions

Article

A Seasonal Autoregressive Integrated Moving Average with
Exogenous Factors (SARIMAX) Forecasting Model-Based Time
Series Approach
Fahad Radhi Alharbi * and Denes Csala

School of Engineering, Lancaster University, Lancaster LA1 4YR, UK
* Correspondence: f.alharbi@lancaster.ac.uk

Abstract: Time series modeling is an effective approach for studying and analyzing the future
performance of the power sector based on historical data. This study proposes a forecasting frame-
work that applies a seasonal autoregressive integrated moving average with exogenous factors
(SARIMAX) model to forecast the long-term performance of the electricity sector (electricity con-
sumption, generation, peak load, and installed capacity). In this study, the model was used to
forecast the aforementioned factors in Saudi Arabia for 30 years from 2021 to 2050. The historical
data that were inputted into the model were collected from Saudi Arabia at quarterly intervals
across a 40-year period (1980−2020). The SARIMAX technique applies a time series approach with
seasonal and exogenous influencing factors, which helps reduce the error values and improve the
overall model accuracy, even in the case of close input and output dataset lengths. The experimental
findings indicated that the SARIMAX model has promising performance in terms of categorization
and consideration, as it has significantly improved forecasting accuracy compared with the simpler
autoregressive integrated moving average-based techniques. Furthermore, the model is capable of
coping with different-sized sequential datasets. Finally, the model aims to help address the issue of
a lack of future planning and analyses of power performance and intermittency, and it provides a
reliable forecasting technique, which is a prerequisite for modern energy systems.

Keywords: forecasting; time series approach; historical data; electricity peak load; electricity con-
sumption; electricity generation; SARIMAX model

1. Introduction

There are several forecasting approaches that can be used to predict energy behavior,
but few of them use long-term analysis and meteorological variables to provide accurate
data, and their performance, quality, and accuracy need to be evaluated. Moreover, utilizing
numerous forecasting approaches and algorithms simultaneously can improve forecast
accuracy. According to Alsharif et al. [1,2], there are three main forecasting approaches:
(i) qualitative approaches, (ii) quantitative approaches, and (iii) artificial neural networks
(ANNs). Qualitative approaches rely on the assessment of available resources and on the
knowledge and expertise of the assessor [1,2]. Quantitative approaches are dependent on
mathematical algorithms, which can be classified as time series or deterministic approaches
that establish correlations between the dependent and independent variables [1,2]. ANN
approaches are designed to reflect how the human nervous system analyzes and manages
increasingly complex non-linear data for optimization and pattern recognition [1,2].

The two main types of deep learning approaches used in forecasting models are
recurrent neural networks [3,4] and convolutional neural networks [5,6]. ANN approaches
are the foundation of artificial intelligence because they tackle issues that are hard to address
using computational criteria. However, ANNs are suitable for short-term forecasting
applications [7], while the non-deep-learning sphere-of-influence approaches, such as
multiple linear regression (MLR) [5,8,9], support vector regression (SVR) [10,11], and
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autoregressive integrated moving average (ARIMA) models [12,13], provide significant
advantages for long-term forecasting.

Globally, rising energy consumption and a lack of long-term energy planning have
led to energy resource wastage and to climate change issues that have affected several
countries. In addition, electricity oversupply and shortages caused by mismanagement
are significant risks to the power system [14]. Efficient energy forecasting is a cornerstone
of energy management, as it contributes to the safety of the energy infrastructure and the
steadiness of the energy markets. Moreover, energy companies are increasingly facing
more competition in the global energy market, and many companies are attempting to
leverage cutting-edge technologies such forecasting. With this rapid development in the
economy of energy markets, the markets determine their needs based on many factors
and data that need very careful analysis to prevent them having an impact on economic
development [15]. The development trend of the global energy market is a vivid example.

Forecasting techniques are essential for estimating the future performance of the power
sector and can improve long-term power generation and distribution facilities [12,16]. In
addition, advanced and accurate forecasting models can have several advantages in both
the short and long term, and they are critical requirements for planning for, managing,
and controlling the optimal modern power system [12]. They play a role in efficient
power system operations, power plant maintenance scheduling, security analysis, and task
scheduling [12], and they can improve the economic operation quality, reduce the costs of
the energy system, and maximize consumer utility [17].

ARIMA is a statistical model commonly used for time series analysis and forecasting
applications developed by Box and Jenkins in 1976 [12,18]. The ARIMA with exogenous
input (ARIMAX) model is an advanced variant of the ARIMA model that uses multi-
variate time series to predict the dependent variable and uses multiple time series given
as exogenous variables. Unlike supervised learning models, the ARIMAX model is de-
signed for time series modeling, where the sequence of inputs is essential [19]. In addition,
the ARIMAX model captures temporal dependence more accurately than MLR and has
superior interpretability compared with SVR and ANN [19].

The seasonal autoregressive integrated moving average with exogenous factors (SARIMAX)
forecasting model is the most advanced version of the ARIMA model. The SARIMAX model
assumes linearity, although the actual temporal connection and covariance are generally non-
linear [19]. The regression approaches assume that both the input and output variables follow
a Gaussian distribution and that the high level of uncertainty included in the time series data
may significantly affect the performance of certain forecasting models [19]. The SARIMAX
model has the ability to minimize the error values and enhance the overall accuracy even
when the lengths of the input and output dataset are very close to each other and are in similar
directions. In the case of non-stationary datasets, the model differentiates and separates both
the response and exogenous time series before estimating the model’s results [20].

Long-term energy forecasting is one of the most important strategic processes used
by decision-makers for long-term plans regarding the energy sector’s resources. However,
most previous studies and the forecasting models they developed have focused on short
forecasting periods. This study introduces the SARIMAX forecasting model-based time
series approach for analyzing the long-term future behavior of the power system. Moreover,
the main aim of this study was to develop a dynamic regression forecasting model to
provide a reliable technique for long-term forecasting. Saudi Arabia was selected as a case
study. Historical data were collected from Saudi Arabia at quarterly intervals for the period
1980−2020 to predict the electricity consumption, generation, peak load, and installed
capacity over a 30-year period (2021–2050).

This article is organized as follows: Section 2 discusses the related studies. Section 3
contains the materials and methods of the SARIMAX concept, along with the hypothe-
ses, selected area study, a description of the historical data, and the model’s setup and
configuration. Section 4 presents the results and discussion. Finally, Section 5 outlines
the conclusions.
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2. Overview of Related Studies

In this section, several previous studies that are relevant to this study are reviewed.
Stylianos et al. [20] conducted an objective assessment of four unique forecasting mod-
els: ANN, SARIMAX, seasonal ARIMA (SARIMA), and the modified SARIMA model for
short-term solar photovoltaic generation. The ANN, SARIMAX, and modified SARIMA
models were found to have better performance than the SARIMA model in terms of next-
day forecasting. Their analysis revealed discrepancies in precision among these models.
Sheng and Jia [21] developed a SARIMAX long-short-term memory (LSTM)-based load
time series forecasting model that could enhance the accuracy of short-term load fore-
casting. In this hybrid model, the SARIMAX model showed a good fit, obtained the
fitting residual, and then predicted the results. LSTM was used to predict the forecasting
error of the SARIMAX model and modified the model’s final forecasting results. The
experiments demonstrated that the model is well suited for short-term load forecasting.
According to Alasali et al. [22], the forecasting accuracy and precision of the rolled stochas-
tic ARIMAX model for electricity demand and load forecasting exceeded those of the
benchmark models (e.g., ANN). The developed forecasting model enhanced the forecast-
ing performance by providing probabilistic demand scenarios to capture non-smooth
demand. Sutthichaimethee and Ariyasajjakorn [23] proposed an ARIMAX long-term en-
ergy consumption forecasting model for generating three scenarios in Thailand: the next
10 years, the next 20 years, and the next 30 years. The results of the model indicated
that it has good performance, but the model could be improved to generate scenarios in
one step. In addition, the outcomes of Sutthichaimethee and Ariyasajjakorn’s long-term
forecasting study must be considered in decision making to reach the maximum benefit
of sustainable development. Sutthichaimethee and Naluang [24] developed a long-term
forecasting model based on the structural equation modeling–vector autoregressive with
exogeneous variables (SEM-VARIMAX) model for predicting energy consumption for a
17-year period (2020–2036). This approach is efficient for analyzing causal relationships
and optimizing predictions. Moreover, the SEM-VARIMAX model is more appropriate for
long-term forecasting than the ARIMA, MLR, back-propagation neural network, ANN,
and gray models. Elamin and Fukushige [25] used a short-term SARIMAX forecasting
model to forecast load demand. This model significantly outperformed the MLR models
with interactions. However, the model needs to reduce the error metrics values. Lee and
Cho [26] conducted a study to forecast Korea’s electricity peak load using several fore-
casting models, such as SARIMAX, ANN, SVR, LSTM, SARIMAX-ANN, SARIMAX-SVR,
and SARIMAX-LSTM. The findings showed the significantly better performance of the
hybrid SARIMAX models and the single LSTM model compared with the other models.
However, the study did not demonstrate that these models are accurate in countries with
meteorological variations such as low average temperatures. Tarsitano and Amerise [27]
developed a forecasting system based on the SARIMAX model to predict the electricity
load in six Italian macroregions. This model uses a backward stepwise regression to
estimate the regression coefficients to generate the residual sequence. In addition, the
model’s performance in 1- and 9-day forecasting demonstrated good integration of the
linear regression-based time series into a unique method that could make reliable forecasts
of electricity demands. Bennett et al. [28] proposed an ARIMAX–neural network hybrid
model for forecasting next-day energy consumption and next-day peak demand, which
could be used to schedule battery system charging and discharging. The two models
making up the hybrid model had specific advantages: the ARIMAX model was better at
accounting for large demand spikes, and the neural network model was better at dealing
with small variations. The results of these two models were somewhat reasonable. In
addition, Liu et al. [14] compared the ANN and ARIMAX models in terms of next-week
temperature-driven electricity load forecasting. The results showed that despite the ANN
model’s better fit to the temperature data, the SARIMAX model’s forecasts had higher
accuracy. The ANN model performed better than the SARIMAX model in the estimation
stage but performed worse than the SARIMAX model in the forecasting stage. Furthermore,
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the pre-whitening approach used to assess temperature’s delayed effect on the electrical
energy consumption. Soares and Medeiros [29] compared the SARIMA model with the
ANN model for electrical load forecasting in southeast Brazil. These types of models can
be used for estimating power demand in tropical regions. However, they observed that
while the ANN model could deal with non-linearities in the dataset, the results did not sig-
nificantly improve. Moreover, Mohamed et al. [30] developed double SARIMA models to
improve the short-term load estimates in Malaysia. The models consistently outperformed
the single SARIMA forecasting model. In addition, using more complicated non-linear
models did not improve the effectiveness of prediction. Kim [31] developed a seasonal
autoregressive moving average model for forecasting electricity demand in Korea based on
a multiplicative mechanism process to identify the double seasonal cycles, intraday effects,
and intraweek effects. The double SARMA mechanism has the ability to detect the intraday
and intraweek autocorrelations of daily and weekly fluctuations in the power demand.
The experimental findings showed that the proposed model outperformed comparable
models. Alharbi and Csala [32] developed a forecasting model using Monte Carlo simula-
tion and Brownian motion approaches to forecast the long-term performance of solar and
wind energy as well as temperature based on 69 years of daily data. These approaches
were differentiated by the simultaneous development of a multiple of complex scenarios;
as a consequence, they are ideally suited for long-term forecasting. Fan et al. [15] pro-
posed a novel short-term load forecasting model that combined support vector regression
(SVR), gray catastrophe (GC), and random forest (RF) approaches. The proposed approach
achieved very successful outcomes in terms of short-term forecasting; nevertheless, this
model needs further development to perform long-term forecasting adequately. Moreover,
Yu and Xu [33] improved an enhanced prediction model based on optimized genetic al-
gorithm and improved back propagation (BP) neural network to predict short-term gas
consumption. Applying this approach had the potential to boost both the effectiveness
of the learning speed and the functionality of the forecasting model. The performance of
the proposed method of genetic algorithms is important due to the inherent parallelism of
genetic algorithms and the need to reduce computation time [34]. Alharbi and Csala [35]
conducted a study to forecast the long-term power performance for Saudi Arabia using a
Group Method of Data Handling (GMDH)-based neural network. Although these methods
are widely used, these models lack high accuracy and evaluation methods. Chen et al. [36]
and Zhang et al. [37] suggested short-term electrical load forecasting hybrid models that
integrated SVR, enhanced empirical mode decomposition (IEMD), ARIMA, and a wavelet
neural network (WNN) optimized using the fruit fly optimization algorithm (FOA). The
drawbacks of the forecasting models, such as the complicated optimization procedure and
the sluggish convergence rate, were overcome by the hybridization models, which were
used to solve these inadequacies. The hybrid methods have the potential to successfully in-
crease forecasting accuracy and complement each other and the shortcomings of previously
presented models. Two additional predictive methods were developed by Bucolo et al. [38]
to predict and monitor the corrosion phenomena in a pulp and paper plant. They used a
classical multi-layer perceptron and the neuro-fuzzy approach. The prediction accuracy
was significantly improved by using neural networks and the neuro-fuzzy approach.

3. Materials and Methods

The ARIMA model is a statistical tool that provides complementary approaches for
predicting future values in time series to obtain meaningful insights with random errors.
Although exponential smoothing approaches are constructed for the trend and seasonality
captured in the data, the ARIMA model describes autoregressive moving average linear
model types in statistical predictions [39,40]. However, there is a significant stumbling
block in the adoption of the ARIMA prediction model: the order selection procedure is often
considered subjective and is difficult to implement [41]. The performance with seasonal
series data renders the use of the standard ARIMA model ineffective [42]. The model has
the disadvantage of not being able to handle seasonal data, which is frustrating. Thus, the
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ARIMA model was upgraded to the SARIMA model [43] to maintain the time series when
it uses both seasonal and non-seasonal data for processing univariate time series data [42].

The main components of the ARIMA model are autoregression (AR), integration (I),
and the moving average (MA), and the model defines the data as stationary, non-stationary,
and seasonal processes with the order (p, d, q), where p refers to the autoregressive lag
observations included in the model, d is the difference order or the number of times
that the raw observations are differenced, and q is the MA lag or the size of the MA
window [44]. The seasonal ARIMA (p, d, q) ∗ (P, D, Q)s are the non-negative integers for
handling seasonality, Xt is the observed value at time t, and s is the number of periods per
season. Equation (1) represents the general form of the SARIMA prediction model [45].

ϕp(G)ϕp(Gs) (1− G)d (1− Gs)D Xt = γq(G) wQ(Gs) et (1)

where the coefficients ϕp(G) and γq(G) are the orders of the non-seasonal AR and non-
seasonal MA components’ characteristic polynomials, and the polynomials ϕp(Gs) and
wQ(Gs) are the seasonal autoregressive (SAR) and seasonal moving average (SMA) poly-
nomials, respectively [45]. The non-seasonal and seasonal time series are (1− G) and
(1− Gs), respectively, which are the differencing components. In addition, d and D are
the non-seasonal ARIMA model’s ordinary differenced terms and the SARIMA model’s
seasonal differenced terms, respectively; et is the prediction error; s is the duration of the
seasonal pattern (e.g., s = 12 monthly series); and G is the backshift operator coefficient.
Equations (2)–(5) represent the SARIMA prediction model.

RA : ϕp(G) = 1− ϕ1G− ϕ2G2 − ϕ3G3 − . . .− ϕpGp (2)

MA : γq(G) = 1− γ1G− γ2G2 − γ3G3 − . . .− γqGq (3)

SRA : ϕp(Gs) = 1− ϕ1Gs − ϕ2G2s − ϕ3G3s − . . .− ϕpGps (4)

SMA : wQ(Gs) = 1− w1Gs − w2G2s − w3G3s − . . .− wQGQs (5)

3.1. Autoregressive Integrated Moving Average with Exogenous Factors (ARIMAX)

The ARIMAX prediction model is another version of the ARIMA model, which utilizes
historical univariate time series data to analyze and predict trends and future values. The
ARIMAX model has additional independent factors or explanatory variables compared
with the ARIMA model, which were introduced to address the univariate time series issue.
The ARIMAX model is a multiple regression model consisting of one or more AR terms
and one or more MA terms. In addition, this model is suitable for any type of data pattern,
such as stationary or non-stationary data and univariate data with trends. The model can
be mathematically presented as shown in Equation (7) [46], where ϕ(G) refers to the AR
parameters and γ(G) refers to the MA parameters. In addition, the regression error is et, at
denotes a zero average and the time series error term, li refers to the lag degree, and yt is
the output.

et =
γ(G)

ϕ(G)
at (6)

yt = α + ∑m
i=1

γi(G)

ϕi(G)
GliXt + et (7)

3.2. Seasonal Autoregressive Integrated Moving Average with Exogenous Factors Model

The SARIMAX model is an improved version of the SARIMA model, with exogenous
factors (X) as external feature parameters for enhancing the model’s performance, reducing
the prediction errors, overcoming the autocorrelation issues, and improving the prediction
results [45]. The SARIMAX model consists of both seasonal effects and exogenous factors
that can be used as SARIMAX (p, d, q) ∗ (P, D, Q), while the exogenous factors are optional
parameters. The exogenous factors can be external parallel time series data such as wind
speed or temperature values that have the same correlation with the original data which
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need to be predicted. The exogenous factors are used to support the prediction model
and to provide it with more details. The SARIMAX model can be presented as shown in
Equation (8) [45], where yk,t refers to the number of external exogenous factors at time t
and αk is the correlation coefficient value of the external exogenous input factors.

ϕp(G)ϕp(Gs) (1− G)d (1− Gs)D Xt = αkyk,t + γq(G) wQ(Gs) et (8)

3.3. Autocorrelation (ACF) and Partial Autocorrelation (PACF)

The autocorrelation function (ACF) and the partial autocorrelation function (PACF)
are fundamental tools for analyzing linear time series and are utilized to select the p and
q values for the ARIMA model. Graphically, a correlogram shows how linearly related
two pairs of observations are at different time lags, demonstrating how such pairs of
observations are related to each other. In addition, the ACF and PACF can be used to
identify models; fit autoregressive models; find periodicities, outliers, and category time
series; and forecast future values [47]. When the ACF has values close to −1, the outliers
will have the greatest influence or effect. When it has large positive values, a few successive
outliers can enhance the prediction by offsetting and overcoming the small sample bias.
However, some transformations can eliminate the impact of outliers on the ACF, although
their biases persist asymptotically [47]. The PACF, on the other hand, provides an attractive
vantage point for observing the structure of time series and also provides adequate criteria
for a sequence of real numbers to describe weak stationary time series [48].

3.4. The Augmented Dickey–Fuller (ADF) Test and the Null Hypothesis

The augmented Dickey–Fuller (ADF) test can be used to determine whether a set of
data is stationary or non-stationary [44,49]. In the case of non-stationary data, high-order
differencing can be applied to make the data stationary [44]. ADF results are evaluated
on the basis of two types of values: the statistic value and the p-value. A large negative
statistic value leads to strong rejection of the unit root hypothesis, indicating that the time
series has no unit root and thus is stationary. If the ADF test statistic result is positive, the
null hypothesis of a unit root is not rejected, indicating that the time series has a unit root
and thus is non-stationary. In addition, the ADF test generally involves the implementation
of the null hypothesis to evaluate the data as stationary or non-stationary by denoting these
as H1 or H0 [44]. H1 refers to a time series that does not have a unit root; in this case, the
null hypothesis is rejected, and the data are considered to be stationary [44]. H0, on the
other hand, refers to a time series that has a unit root; in this case, the null hypothesis is
not rejected and the data are considered to be non-stationary. The p-values that are used to
decide between H1 and H0 are shown below.

• If p ≤ 0.05, the mean time series does not contain a unit root, the null hypothesis is
rejected, and the data are stationary [6,11].

• If p > 0.05, the mean time series contains a unit root, the null hypothesis is not rejected,
and the data are non-stationary [6,11].

Mathematically, the ADF test can be presented as shown in Equation (9), where α is a
constant, β is a time trend parameter, γ and δ are coefficients, p is the AR process’s lag order,
γ is the null hypothesis, yt is the dependent variable, and ∆ yt is the first-difference operator.

∆ yt = α + βt + γ yt−1 + δ1∆ yt−1 + . . . + δp−1∆ yt−p+1 + et (9)

3.5. Study Area and Data Collection

In this study, Saudi Arabia was selected as a case study. This country is located in
western Asia and lies between latitudes 16◦ and 33◦ N and longitudes 34◦ and 56◦ E.
Its historical energy data were collected from the King Abdullah Petroleum Studies and
Research Center, the Saudi Water and Electricity Regulatory Authority, and U.S. Energy
Information Administration [50,51]. They consisted of electricity generation, consumption,
peak load, and installed capacity data, as presented in Figures 1–4. The actual historical
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data pertained to quarterly intervals over a 40-year period (1981–2020) and were used to
evaluate and predict the behavior of the power sector over a 30-year period (2021–2050).
Furthermore, the quality of the historical data could provide details that could increase the
SARIMAX model’s forecasting accuracy. The historical data were evaluated, validated, and
cleaned to ensure that there were no missing or duplicate values. The Dickey–Fuller test
revealed that the data were stationary, with p < 0.05.
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3.6. Error Indices

Various indices were identified as common error indicators to comprehensively eval-
uate the proposed SARIMAX forecasting model’s efficiency. Moreover, modeling error
indicators (mean square error (MSE), root mean square error (RMSE), mean absolute per-
centage error (MAPE), and mean absolute error (MAE)) were used to assess the model’s
reliability and correctness, as mathematically shown in Equations (10)–(13), where the
variable yj is the actual value, ŷj refers to the forecasted observations, and (n) refers to
the sample numbers used in the observation. Furthermore, the standard deviation of the
regressions (the forecast error) is indicated by the term “RMSE”, which is the square root of
the mean square errors and is recognized as an effective general-purpose error indicator for
numerical predictions due to its low sensitivity to noise. In addition, the squared correlation
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coefficient (R2) indicates how much of a dependent variable’s fluctuation can be described
by exogenous factors and how strong of a linear relationship there is between each two
variables. In Equation (14), SSres is the sum of squared residuals and SSTot is the absolute
square number.

MSE =
1
n ∑n

j=1(yj − ŷj)2 (10)

RMSE =

√
1
n ∑n

j=1

(
yj − ŷj

)2

n
(11)

MAPE =
1
n ∑n

j=1 |
yj − ŷj

yj
| ∗100 (12)

MAE =
1
n ∑n

j=1 | yj − ŷj | (13)

R2 = 1− SSres

SSTot
(14)

3.7. Model Setup and Configuration

Using Python programming, we developed a SARIMAX forecasting model based on
the time series concepts, principles, and computational approaches presented in Equations
(1)–(9). Python programming has a vast amount of memory, is capable of handling massive
amounts of data, and has a wide range of prebuilt libraries. The datasets were prepared
and cleaned in preparation for processing. Furthermore, due to the size and nature of the
datasets, various parameter settings were necessary for each type of data to improve the
model fit. To this end, we developed a method that automatically splits the training and
testing data to match the model’s specifications. The total dataset length was 164 steps,
and the data were divided into training and testing data, which accounted for 30% and
70% of all data, respectively. Furthermore, we developed a robust and effective code that
monitors the performance of the model, generates an automatic report to identify any weak
points in the code, defines the parameters (p, d, q) and (P, D, Q), and then automatically
sets the values for the variables (p, d, q) to (1, 0, 6) and the orders (P, D, Q) to (3, 1, 1).
In addition, the exogenous factors were set as 0. Many developers split the training and
testing data manually and define the parameters of the variables randomly, which might
result in incorrect values and negatively impact the model’s performance. Any unknown
variables that might produce data fluctuations will make it impossible to predict them
unless there is a known variable that explains the variations.

The flowchart of the proposed SARIMAX forecasting model is presented in Figure 5.
In addition, Figure 5 summarizes the research process, which started with defining the
problem, followed by data collection, data testing, and analysis. The process also included
selecting the approach, developing the forecasting model, evaluating the forecasting model,
and testing the final forecasting results.
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4. Results and Discussion

The SARIMAX model was developed to forecast the future electricity generation,
consumption, peak load, and installed capacity values in Saudi Arabia for a 30-year period
(2021–2050) based on historical data collected over the previous 40 years. In addition, as
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energy demand rises, new dynamic energy markets emerge, which lead to an imbalance
in energy prices and have a direct influence on the energy security of the world. These
forecasting technologies present new opportunities for the energy market such as mar-
ket developments, energy market performance, energy prices control, cost savings, and
optimization that can solve obstacles for the businesses operating in this industry. Fur-
thermore, help determine which energy markets provide the most opportunities for the
power generation profile of the organization, minimizing the likelihood of grid congestion
while simultaneously improving electricity flow. Moreover, the forecasting technologies are
critical to ensure the stability of the energy system, since the efficiency of the energy markets
is dependent on the availability of a dependable supply, flexible bidding, system assistance,
predictive maintenance, and enhanced power quality. Forecasting is a challenging task
because several confounding factors must be considered, such as the links between the
regressors that have major effects on the power sector, as well as the intermittency and
fluctuations, which cause apparent effects resulting from multiple errors. The developed
model was used to forecast the future performance of the power sector in Saudi Arabia, as
presented in Figures 6–9. The estimates and findings showed that the SARIMAX model
was able to properly handle the four types of electricity data as a multimodal dataset. The
main and cross effects were evaluated by repeatedly plotting, analyzing, and testing the
data. The electricity generation (Figure 6a), electricity consumption (Figure 7a), electricity
peak load (Figure 8a), and installed power capacity (Figure 9a) data did not exhibit any
significant overfitting between the experimental and forecasted values, indicating that the
SARIMAX model has a promising performance with this type of historical data. Moreover,
the model produced remarkable error metrics in terms of accuracy indicators, as shown
in Table 1. The error metrics of electricity generation were as follows: RMSE = 1.2 TWh,
MAE = 0.6 TWh, MSE = 1.5 TWh, and MAPE = 0.3%. Furthermore, electricity generation
had an R2 of 99%. A reduction in the consumption RMSE to 1 TWh was achieved, but
the MAE recorded the same value as the generation MAE (0.6 TWh) due to the similarity
between the historical electricity consumption and generation data. The consumption MSE
and MAPE were recorded as 1 TWh and 0.3%, respectively, with R2 = 99%. The MAPE
values were influenced by the small values in the historical data. The peak load error
indicators dropped, with RMSE = 0.3 GW, MAE = 0.1 GW, MSE = 0.1 GW, MAPE = 0.4%,
and R2 = 99%. The error metric values for installed capacity were significantly smaller
than the error values for electricity generation, consumption, and peak load. The error
metrics for installed capacity showed significant improvements, with RMSE = 0.2 GW,
MAE = 0.1 GW, MAPE = 0.3%, and R2 = 99%, as presented in Table 1. In addition, the
MSE decreased to 0.07 GW. Although the MAPE is the most important measurement for
predicting accuracy in the electrical forecasting literature, the MAE, MSE, and RMSE are
also presented in this work. Applying different type of forecasting accuracy indicators has
a significant and important role in evaluating the SARIMAX model. However, it is essential
to carry out investigations on the question of whether or not the values of the four error
metrics are consistent with each another.

Table 1. Forecasting accuracy indicators for the proposed SARIMAX model.

No. Metric Generation
(TWh)

Consumption
(TWh)

Electric Peak
Load (GW)

Installed Capacity
(GW)

1 RMSE 1.2 1 0.3 0.2
2 MAE 0.6 0.6 0.1 0.1
3 MSE 1.5 1 0.1 0.07
4 MAPE (%) 0.3 0.3 0.4 0.3
5 p-value (%) 3 × 10−7 2 × 10−8 0 0
6 R2 (%) 99 99 99 99
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Figure 6. (a) Real and forecasted values of electricity generation, which show the good fit and
performance of the SARIMAX model. (b) Forecasted electricity generation values for the 30-year
period from 2021 to 2050.
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Figure 7. (a) Real and forecasted values of electricity consumption, which show the good fit and
performance of the SARIMAX model. (b) Forecasted electricity consumption values for the 30-year
period from 2021 to 2050.
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Figure 8. (a) Real and forecasted values of the electricity peak load, which show the good fit and
performance of the SARIMAX model. (b) Forecasted peak electricity load values for the 30-year
period from 2021 to 2050.
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30-year period from 2021 to 2050.

4.1. Future Performance Analysis for Saudi Arabia’s Electricity Sector

In addition, Figures 6b, 7b, 8b and 9b illustrate the forecasted values of electricity
generation, consumption, peak load, and installed capacity in Saudi Arabia for the 30-year
period from 2021 to 2050. It is evident that among all the types of historical data, the
historical peak load and installed capacity data values showed unique erroneous indicator
values that decreased along with them (except for the MAPE value). This was caused by the
unique nature of the historical electricity peak load and installed capacity data. Significant
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and acceptable correlations between the variables’ fluctuations in the four categories of
historical power data were shown by the R2 values, indicating that the correlations were
considerable and suitable. The statistical analysis of the historical power data and the
SARIMAX forecasting results showed that electricity consumption is likely to continue
growing at a swift rate until 2050, but the estimated electricity generation values were
higher than the estimated electricity consumption values, although they were very close
to each other (see Figures 6b and 7b). The forecasted installed capacity values showed an
increasing trend over the 30-year period from 2021 to 2050, which is reasonable for meeting
the growth in electrical consumption. The electricity peak load did not show continuous
growth because it depends on different factors, such as the weather and season. In general,
the main factors that cause surges in electricity consumption and major variations in the
electricity peak load are greenhouse gas emissions, changes in gross domestic product, and
population growth. This demonstrates how crucial it is to include the cross effects into both
short-term and the long-term forecasting models. In addition, evaluating the other external
factors and their interconnections might further enhance the investigation and accuracy
of forecasts.

According to Figure 6b, electricity generation in Saudi Arabia will be 369 TWh in 2023,
and it was estimated to continue to increase to 409 TWh in 2025. Moreover, electricity
generation will reach 470 TWh in 2030 and 516 TWh in 2035. In 2040, the electricity
generation will be 589 TWh, and it will reach 643 TWh in 2045 and 700 TWh in 2050.

Figure 7b indicates that Saudi Arabia’s electricity consumption will reach 342 TWh in
2023 and will continue to rise to 373 TWh in 2025. In addition, the consumption of electricity
will reach 421 TWh in 2030 and 483 TWh in 2035. In 2040, 524 TWh of electricity will be
consumed, followed by 590 TWh in 2045 and 644 TWh in 2050. The increase in electricity
consumption in Saudi Arabia has always been linked to three main factors, namely the
increase in temperature that requires the use of air conditioners, especially in the summer,
and the scarcity of water sources, which requires the use of seawater desalination plants. In
addition, the large increase in the population as well as economic and urban growth affect
electricity consumption.

The results of analyzing the future and historical data of electricity peak load in Saudi
Arabia showed that the electricity peak load will reach 62 GW in 2023 and 66 GW in 2025,
as presented in Figure 8b. Furthermore, the main reason for the fluctuation in the load
values in Saudi Arabia is the increase in electrical loads at peak times, especially in the
summer and official working hours, and during the month of Ramadan. Furthermore, the
electricity peak load of Saudi Arabia is expected to reach 74 GW in 2030 and 94 GW in 2035.
It is expected that the electricity peak load will be 103 GW in 2040, 104 GW in 2045, and
105 GW in 2050. In particular, the peak load grows in the summer to its highest level before
falling to its lowest level in the winter (see Figure 8).

The installed electricity capacity of Saudi Arabia is continuing to rise to meet the require-
ments of the electrical industry in terms of electricity consumption. According to Figure 9b,
the installed electrical capacity in Saudi Arabia will be 93 GW in 2023, and it is expected to
continue increasing to 97 GW in 2025. In addition, the installed capacity will reach 110 GW in
2030, 124 GW in 2035, 136 GW in 2040, 150 GW in 2045, and 160 GW in 2050.

4.2. SARIMAX Model Evaluation

Eleven external models that predict long-term power consumption were selected
to compare their performance with that of the proposed SARIMAX model based on the
MAPE, RMSE, MAE, and MSE error metrics and R2. However, the authors of the study
from which the forecasting models 5–11 originated used only two error metrics to evaluate
their models (MAPE and RMSE) and did not provide the R2 values. The evaluation metrics
of our proposed model were superior to those of the other external power consumption
models (see Table 2). Moreover, the R2 of our SARIMAX model was 99% for our four types
of historical data, which is higher than the R2 values of the external models. Based on the
comparison in Table 2, machine learning and deep learning forecasting models perform
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worse than univariate time series forecasting. The comparison of the proposed SARIMAX
model with the external models represents an added value to this paper, since it allowed
us to evaluate our work independently and in relation to other works. Therefore, it is
important that future studies use different tools and procedures to evaluate their work and
compare it with published papers. This could be useful for researchers who are making
predictions under similar conditions.

Table 2. Comparison of the performance of the proposed SARIMAX model and external models.

No. Forecasting Model MAPE (%) RMSE (GW) MAE (GW) MSE (GW) R2 (%)

1 SARIMAX [26] 5.42 4298.65 3614.03 18,478.39 79.60
2 LSTM [26] 2.98 3106.64 2027.57 9651.24 86.10
3 ANN [26] 4.97 4109.63 3562.24 16,889.12 81.80
4 SVR [26] 4.16 3615.72 3004.19 13,073.43 82.20
5 MLR model [24] 20.06 22.91 - - -
6 BP model [24] 13.50 16.87 - - -
7 Grey model [24] 12.11 14.48 - - -
8 ANN model [24] 8.65 10.15 - - -
9 ANFIS model [24] 6.42 6.89 - - -
10 ARIMA model [24] 6.29 3.41 - - -
11 SEM-VARIMAX model [24] 1.06 1.19 - - -
12 SARIMAX proposed model 0.30 1 0.60 1 99

In addition, the forecasting performance of the SARIMAX model was checked at
quarterly dataset intervals with different sizes of historical data and four types of historical
data to test its forecasting accuracy under different conditions. Overall, all the SARIMAX
model’s error values for the four types of historical data were minimal compared with those
of the other forecasting models, proving the model’s adaptability to new historical data
observations. Furthermore, the proposed model could easily cope with different types of
historical data and generated promising forecasting results with very low error metrics in
terms of accuracy and interpretability. The model’s performance is particularly impressive
in terms of installed power capacity. The error values also decreased, and the training time
increased. Furthermore, the integration of a substantial quantity of historical data with a
sizable amount of training data further extended the duration of the simulation. However,
because of the interdependence of the succeeding phases, the SARIMAX prediction model
must be treated sequentially. The most difficult tasks are strengthening the generalization
capabilities of the model while simultaneously attaining better outcomes. Generalization
is described as the fluctuation in the recognition rate of the model’s performance when
matching the training data to previously observed datasets, such as the testing data. The
model lacked generalization results because of the significant overfitting of the training
and testing data, but it did not exhibit significant overfitting Figures 6a, 7a, 8a and 9a. The
SARIMAX model incorporates time series to improve its generalization by considering
the effects of the parameters on the expected historical data values for the next step.
When a significant number of sufficient historical data are selected, the SARIMAX model’s
efficiency becomes evident, its long-term forecasting quality improves, and its accuracy
increases. In this study, the most appropriate method and the best approach for long-term
forecasting—a time series—was developed. The method considered trends and seasonal
effects (summer, winter and spring), which provided the SARIMAX model with more details
for understanding the input data and improving performance. Furthermore, the method
considered the null hypothesis requirements for stationary data. Moreover, a code that
automatically divides the training and testing data was developed to meet the requirements
of the model as 30% for training and 70% for testing. However, even after selecting the most
suitable forecasting method, it is essential to monitor forecasting accuracy continuously.

In this study, we used several error metrics to evaluate our proposed model and to
provide other model developers with more options for comparing their work using these
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error metrics. We also aimed to provide future research with guidelines and a roadmap
based on our experimental findings. This study could provide solid alternative procedures
for future research by emphasizing the importance of the time series approach and how to
choose the most appropriate forecasting technique for long-term forecasts, such as for the
next 30 years.

5. Conclusions

This study helped fill the knowledge gaps in long-term electricity sector forecasting
by developing a long-term forecasting model that considers the implications of electricity
generation, consumption, peak load, and installed capacity for future performance analyses
and in planning to address the fluctuation and uncertainty issues that can impact the
stability of the power system and the energy markets. In addition, enhancing the quality of
the power system will have a major effect on the scheduling, operation, and integration of
energy. Moreover, the forecasting model can be used to enhance the efficiency of the energy
markets. Therefore, applying forecasting techniques and paradigms can improve the per-
formance of the energy markets, which is especially useful when there is uncertainty in the
electricity markets. These forecasting models provide robust methodological approaches to
crucial challenges pertaining to unpredictability in the electricity markets and to improving
the microeconomics, energy policies, and evolution of global energy markets.

In this study, the SARIMAX forecasting model was developed and validated using
a variety of selected features, including the time series algorithm and hypotheses regard-
ing the most effective forecasting sequence and processes for the future performance of
the power sector. The present research provides evidence that classical approaches are
superior to the complex methods such as decision trees, multilayer perceptrons (MLP),
LSTM neural network models and other deep learning methods, at least for the challenges
investigated. Our experimental findings strongly encourage the use of classical models,
such as SARIMAX. We emphasize the need for not only carefully using model preparation
strategies but also actively testing several combinations of models and data preparation
schemes for a particular situation to determine which method is the most effective. In
addition, the most important issue and greatest difficulty is improving their accuracy
and maximizing their vast potential. The model was evaluated and validated using four
different types of historical electricity sector data: electricity generation, consumption, peak
load, and installed capacity. The historical data covered 40 years (1980–2020) and were
gathered from Saudi Arabia as quarterly interval data for forecasting the aforementioned
values over the 30-year period from 2021 to 2050.

The SARIMAX forecasting model demonstrated the ability to cope with a variety of
historical data types. The model’s effectiveness was tested using error indices, such as the
RMSE, MAE, MSE, and MAPE values and the R2, as presented in Table 1. The highest
RMSE value for the four types of electricity data was 1.2 TWh for electricity generation,
and the lowest was 0.2 GW for installed capacity. The largest MAE value was 0.6 TWh for
both electricity generation and consumption, and the lowest was 0.1 MW for both peak
load and installed capacity. The MSE values ranged from 1.5 TWh for electricity generation
to 0.07 GW for installed capacity. The MAPE values varied from 0.4% for peak load to 0.3%
for all the other categories, and the R2 value was 99% for all four categories. As shown
in Table 2, the comparison of the proposed SARIMAX model with 11 external prediction
models strengthened our findings and validated the SARIMAX model’s performance,
making a significant contribution to the literature by allowing us to analyze our work
independently and with respect to other research.

The study findings also revealed that the SARIMAX model outperformed its competi-
tors in terms of forecasting accuracy, overfitting, redundancy elimination, training time,
and testing execution time, proving that it has remarkable performance. However, the
model can be further improved, and its error indications can be reduced by improving
the learning performance, optimizing the parameters, using monthly historical interval
datasets, and adjusting the duration of the iterations.
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The Importance of This Work and Future Research

This article discusses the importance of developing a long-term electricity energy
forecasting method, such as the SARIMAX model, based on the time series approach. One
of its contributions is narrowing the gap and addressing the existing deficiencies of time
series methods, thus minimizing potential inconsistencies in energy forecasting. Through
this study, we propose a long-term promising forecasting model and provide guidelines for
future research.

In addition, there is a lack of feasibility studies on solar and wind energy, which are
necessary for implementing renewable energy sources and diversifying the energy mix. In
the future, we plan to improve and extend the SARIMAX model to forecast wind speed
and solar radiation in several regions using historical data from the previous 35 years.
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