Notre Dame Journal of Formal Logic Volume XX, Number 2, April 1979 NDJFAM

A DEDUCTION THEOREM FOR REJECTION THESES IN ŁUKASIEWICZ'S SYSTEM OF MODAL LOGIC

STANLEY J. KROLIKOSKI

In this paper* I shall present a proof of a deduction theorem for rejection theses of Jan Łukasiewicz's system of modal logic. By "rejection thesis" I mean the last line of any valid deduction in Łukasiewicz's system of the form $\neg \Delta$. There are several such theses already proved by Łukasiewicz, e.g., theses 115-122, but surely there are many more which are able to be proved. The theorem

$$\neg A_1, \ldots, \neg A_{m-1}, \neg A_m + \neg B \Rightarrow \neg A_1, \ldots, \neg A_{m-1} + \neg NCBA_m$$

is designed to facilitate the deduction of these latter theses, much as the standard deduction theorem facilitates the deduction of theses of classical logical systems.

My strategy to be used in proving this theorem will be similar to that used in proving the standard deduction theorem. I shall assume that the antecedent of the theorem is true, i.e., that there is a finite sequence of wffs which constitutes a demonstration of $\dashv \mathbf{B}$ from the premises $\dashv \mathbf{A}_1, \ldots, \dashv \mathbf{A}_m$, and then indicate how one may construct, from this initial sequence, a second sequence which will constitute a demonstration of $\ulcorner \dashv KN\mathbf{A}_m\mathbf{B} \urcorner$ from the premises $\dashv \mathbf{A}_1, \ldots, \dashv \mathbf{A}_{m-1}$. I shall then show how, once one has obtained this second sequence, one can add several steps to it and further deduce $\ulcorner \dashv NC\mathbf{B}\mathbf{A}_m \urcorner$. Before giving the details of my proof, I shall first introduce some conventions:

 R_1 = Rule of substitution for assertions: from $\vdash A$ one may infer the result of substituting a wff **B** for a sentential variable c throughout **A**.

 R_2 = Rule of detachment for assertions: from $\vdash A$ and $\vdash \vdash CAB$ one may infer B.

 R_3 = Rule of substitution for rejections: from $\dashv A$, where A is a substitution instance of B, one may infer $\dashv B$.

^{*}I wish to express my appreciation to Mr. Robert Wengert for his comments on the first version of this paper.

 R_4 = Rule of detachment for rejections: from $\vdash CAB \urcorner$ and $\dashv B$ one may infer $\dashv A$.

Theorem
$$1 \dashv A_1, \ldots, \dashv A_{m-1}, \dashv A_m \not\models \dashv B \Longrightarrow \dashv A_1, \ldots, \dashv A_{m-1} \not\models \vdash \dashv KNA_mB^{\dashv}.$$

Proof: Assume $\dashv \mathbf{A}_1, \ldots, \dashv \mathbf{A}_{m-1}, \dashv \mathbf{A}_m \mathbf{q} \dashv \mathbf{B}$ and let $\Sigma_1, \ldots, \Sigma_i, \ldots, \Sigma_k$ denote its demonstration. Construct the sequence which for every Σ_i of the form $\vdash \Gamma$ has a Σ_i^* which is the same as Σ_i and which for every Σ_i of the form $\dashv \Delta$ has a Σ_i^* of the form $\dashv \dashv KN\mathbf{A}_m\Delta^{\dashv}$. We now show how to use this latter sequence to construct a demonstration of $\dashv \mathbf{A}_1, \ldots, \dashv \mathbf{A}_{m-1} \mathbf{q}_{m-1} \dashv KN\mathbf{A}_m \mathbf{B}^{\dashv}$. Consider the following cases:

Case 1: $\vdash \Sigma_i$ is an assertion axiom (i.e., an axiom of the form $\vdash \Gamma$) or a variant of such an axiom. Use the following proof to demonstrate $\vdash \Sigma_i$:

$$\begin{array}{ll} \textbf{1.} \vdash \Sigma_i \\ \textbf{2.} \vdash \Sigma_i \end{array} \qquad \qquad \textbf{1; immediate inference}$$

Case 2: $\vdash \Sigma_i$ is generated by the use of R_2 and two earlier steps in the sequence, $\vdash \Sigma_a$ and $\vdash \vdash C\Sigma_a\Sigma_i$. Use the following proof to demonstrate $\vdash \Sigma_i$:

- $1. \vdash \Sigma_a$
- 2. $\vdash C\Sigma_a\Sigma_i$

$$\mathbf{3}. \vdash \Sigma_i$$
 $\mathbf{1}; \mathbf{2}; \mathbf{R}_2$

Case 3: $\exists \Sigma_i$ is a rejection axiom or $\exists A_j \ (1 \le j \le m - 1)$. Use the following proof to demonstrate $\ulcorner \exists KNA_m\Sigma_i\urcorner$:

- 1. $\vdash CKpqq$ PC⁵
- 2. $\vdash CKNA_m\Sigma_i\Sigma_i$ 1; R_1 , p/NA_m , q/Σ_i
- $3. \exists \Sigma_i$

$$4. \exists KNA_m \Sigma_i$$
 2, 3; R_4

Case 4: Σ_a is a substitution instance of Σ_i , and $\exists \Sigma_a$ is either a rejection axiom or $\exists A_j \ (1 \le j \le m - 1)$. Use the following proof to demonstrate $\Gamma \exists KNA_m\Sigma_i$:

1. *⊢CKbaa* **PC**

2. $\vdash CKNA_m \Sigma_i \Sigma_i$ 1; $R_1, p/NA_m, q/\Sigma_i$

3. $\exists \Sigma_a$

 $\mathbf{4}. \ \exists \Sigma_i$ 3; \mathbf{R}_3

5. $\dashv KNA_m\Sigma_i$ 2; 4; R_A

Case 5: $\exists \Sigma_i$ is $\exists A_m$. Use the following proof to demonstrate $\exists KNA_m\Sigma_i$:

1. ⊢CKNppq PC

2. $\vdash CKNA_mA_m\Delta p$ 1; R_1 , p/A_m , $q/\Delta p^6$

3. $\exists \Delta p$ axiom 4 in Łukasiewicz's system⁷ 4. $\exists KNA_mA_m$ 2; 3; R_4

 $5. \exists KNA_m \Sigma_i$ 4; R₃

Case 6: Σ_a is a substitution instance of Σ_i and $\exists \Sigma_a$ is $\exists A_m$. Use the following proof to demonstrate $\exists KNA_m\Sigma_i$:

1.
$$\vdash CKNppq$$
 PC
2. $\vdash CKNA_mA_m\Delta p$ 1; R_1 , p/A_m , $q/\Delta p$
3. $\dashv \Delta p$ axiom 4 in Łukasiewicz's system
4. $\dashv KNA_mA_m$ 3; 4; R_4
5. $\dashv KNA_m\Sigma_a$ 4; R_3

Case 7: $\exists \Sigma_i$ is obtained from Σ_i 's of the form $\vdash C\Sigma_i\Gamma$ and $\exists \Gamma$ by use of R_4 . Use the following steps to obtain $\vdash \exists KNA_m\Sigma_i \urcorner$:

We shall thus be able to construct a new sequence the last line of which is $\neg HKNA_mB^{\neg}$. This sequence constitutes a demonstration of this last line from the premises $\neg A_1, \ldots, \neg A_{m-1}$.

Theorem 2
$$\dashv A_1, \ldots, \dashv A_{m-1}, \dashv A_m \not\models \dashv B \Longrightarrow \dashv A_1, \ldots, \dashv A_{m-1} \not\models \vdash \dashv NCBA_m \vdash$$

Proof: By Theorem 1 we know that, given $\neg A_1, \ldots, \neg A_{m-1}, \neg A_m \not\models \neg B$, we can construct a demonstration of $\neg KNAA_mB^{\neg}$ from the premises $\neg A_1, \ldots, \neg A_{m-1}$. We shall begin with the last line of that demonstration and from it demonstrate $\neg NCB A_m^{\neg}$.

```
\begin{array}{llll} \Sigma_{k} & \dashv KN\mathbf{A}_{m}\mathbf{B} \\ \Sigma_{k+1} & \vdash CKpqKqp & \mathbf{PC} \\ \Sigma_{k+2} & \vdash CK\mathbf{B}N\mathbf{A}_{m}KN\mathbf{A}_{m}\mathbf{B} & \Sigma_{k+1}; \ \mathbf{R}_{1}, \ p/\mathbf{B}, \ q/N\mathbf{A}_{m} \\ \Sigma_{k+3} & \dashv K\mathbf{B}N\mathbf{A}_{m} & \Sigma_{k}; \ \Sigma_{k+2}; \ \mathbf{R}_{4} \\ \Sigma_{k+4} & \vdash CNCpqKpNq & \mathbf{PC} \\ \Sigma_{k+5} & \vdash CNC\mathbf{B}\mathbf{A}_{m}K\mathbf{B}N\mathbf{A}_{m} & \Sigma_{k+4}; \ \mathbf{R}_{1}, \ p/\mathbf{B}, \ q/\mathbf{A}_{m} \\ \Sigma_{k+6} & \dashv NC\mathbf{B}\mathbf{A}_{m} & \Sigma_{k+5}; \ \Sigma_{k+3}; \ \mathbf{R}_{4} \end{array}
```

NOTES

- 1. I refer to the system developed by Łukasiewicz in [1].
- 2. Ibid., p. 145.
- 3. Ibid., p. 114.
- 4. Ibid.
- 5. I use 'PC' to stand for 'propositional calculus'. I feel free to make use of theses of the propositional calculus, since all of the axioms, and a fortiori all of the theses, of that calculus are demonstrable in Łukasiewicz's system. (cf. page 124 in [1])

- 6. 'Δ' is Łukasiewicz's possibility functor.
- 7. Łukasiewicz, [1], p. 137.

REFERENCE

[1] Łukasiewicz, J., "A system of modal logic," The Journal of Computing Systems, vol. 1 (1953), pp. 111-149.

University of Illinois Urbana, Illinois