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Abstract. We have re-observed the field of M 74 in January 2003 withXMM-Newton, 11 months after the X-ray detection of
SN 2002ap. From a comparison of the twoXMM-Newtonobservations we obtain more accurate values for the X-ray luminosity
and colours of the source five days after the event, and a limit on its decline rate. We compare its X-ray behaviour (prompt soft X-
ray emission, relatively low luminosity) with that of other type Ic SNe, and speculate that SN 2002ap may share some physical
properties (low mass-loss rate and high-velocity stellar wind from the progenitor star) with the candidate hypernova/gamma-
ray-burst progenitor SN 1998bw, but with a lower (non-relativistic) speed of the ejecta. We suggest that the X-ray emission
observed in 2002 is likely to come from the radiatively-cooling reverse shock, at a temperaturekT ≈ 0.8 keV, and that this soft
component was already detected 5 d after the event because the absorbing column density of the cool shell between the forward
and reverse shocks was only∼1020 cm−2, i.e., the shell was optically thin in the soft X-ray band. The newXMM-Newtondata
also allowed us to continue monitoring two bright variable sources in M 74 that had reached peak luminosities>1039 erg s−1

in previousXMM-NewtonandChandraobservations. Finally, we used twoChandraobservations from 2001 to investigate the
luminosity and colour distribution of the X-ray source population of M 74, typical of moderately-active late-type spirals.

Key words. galaxies: individual: M 74 – galaxies: spiral – supernovae: individual: SN 2002ap – X-rays: binaries –
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1. Introduction

To date, only about 20 supernovae (SNe) have been detected
in the X-ray band (see Schlegel 1995; Immler et al. 1998;
Schlegel 1999; Pian et al. 2000; Immler et al. 2001; Pooley
et al. 2002; Schlegel 2001; Immler et al. 2002; and the recent
review by Immler & Lewin 2002). Most studies have been con-
ducted in the soft X-ray band byROSATand more recently
by ChandraandXMM-Newton(Fox et al. 2000; Kulkarni &
Fox 2003; Pooley & Lewin 2002; Schlegel 2002; Zimmermann
& Aschenbach 2003). Information at harder energies is much
more limited: only SNe 1987A, 1993J and 1998bw have been
investigated at energies higher than 13 keV, and only the first
two have been detected (Sunyaev et al. 1987; Inoue et al. 1991;
Leising et al. 1994).

SN 2002ap in M 74 (NGC 628) is one of only four type Ic
SNe detected in the X-rays, the others being the low-mass, nor-
mally energetic SN 1994I (Immler et al. 1998; Immler et al.
2002), the massive and energetic “hypernova” SN 1998bw
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(Galama et al. 1998; Iwamoto et al. 1998; Pian et al. 2000), and
the normal SN 2003L (Boles et al. 2003; Kulkarni & Fox 2003;
Matheson et al. 2003). From its broad optical spectral features
and its high kinetic energy, Mazzali et al. (2002) argued that
SN 2002ap can be classified as a hypernova, a class of SNe
characterised by an energetic, probably asymmetric explosion
and by a large mass of the collapsing star (Paczy´nski 1998;
MacFadyen & Woosley 1999). These physical circumstances
make hypernovae strong candidates to explain the origin of
gamma-ray bursts (GRBs). Indeed, SN 1998bw was observed
in theBeppoSAXerror box of GRB 980425 and showed a good
temporal agreement with it. Hypernovae are also thought to
be progenitors of stellar-mass and possibly intermediate-mass
black holes (BHs). Studying a type Ic event at all wavelengths,
and especially at high energies, is therefore crucial to under-
stand the possible link between GRBs and SNe, and to test the
identification of hypernovae as type Ic SNe.

The host galaxy of SN 2002ap is itself an interesting tar-
get for an X-ray study: it is a face-on (inclination angle<7◦,
Shostak & van der Kruit 1984), late-type spiral (morpholog-
ical type Sc), with star formation along well-defined arms
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(e.g., Kennicutt & Hodge 1980). Its distance remains uncertain:
recent photometric measurements put it at 7.3 Mpc (Sharina
et al. 1996; Sohn & Davidge 1996). Previous estimates, how-
ever, ranged from 2 to 20 Mpc (e.g., Bottinelli et al. 1984;
Sandage & Tammann 1974). A distance of 8.8 Mpc was re-
cently adopted by Huchra et al. (1999) based on its redshift. In
this paper we shall assume a distance of 7.3 Mpc for all flux-
to-luminosity conversions.

2. Data analysis and results

2.1. Log of the observations

The field of SN 2002ap and its host galaxy M 74 were observed
by all instruments on boardXMM-Newtonwith two Target-
of-Opportunity observations: the first on 2002 February 2.03–
2.42 UT (revolution 394, less than 5 days after the SN event);
the second on 2003 January 7.53–7.83 UT (revolution 564).
Both were taken in full frame, thin filter mode. After rejecting
intervals characterised by highly fluctuating background, we
kept a good time interval of 21.5 ks for the 2002 pn observa-
tion, and 20.9 ks for the 2003 one. For the MOS, the good-time
intervals were 23.7 ks in 2002 and 24.4 ks in 2003. We pro-
cessed both datasets, and extracted spectra and lightcurves us-
ing version 5.4 of the XMM-Science Analysis Software (SAS);
we considered only “pattern-0” events in both pn and MOS.
We then used standard tools such asXSPEC(Arnaud 1996) for
further data analysis.

In addition to the 2002 and 2003XMM-Newtonobserva-
tions, M 74 was observed twice byChandraACIS-S: on 2001
June 19 (46.4 ks), and on 2001 October 19 (46.2 ks). On both
occasions, the back-illuminated S3 chip was used. We obtained
the Chandradataset from the public archive and analysed it
with the standardCIAO software. We inspected the background
count rates during the two exposures, and chose to retain both
intervals in full (see also Krauss et al. 2003). We used standard
source-finding routines (wavdetectandcelldetect, which give
similar results) to identify the point sources. To increase the
signal-to-noise ratio of faint sources, we also built a merged
event file from the twoChandraobservations, and used it to
compile a source list and their average count rates in the full en-
ergy band (0.3–8 keV) and in three narrower bands (Table A.1).

2.2. Count rates for SN 2002ap

SN 2002ap is not detected in the 2003 January observation: nei-
ther in the single pn and MOS images, nor in a combined EPIC
image. By comparison with the detection limit of the faintest
sources in the combined image, we estimate a 3 sigma upper
limit to the EPIC pn count rate of≈4× 10−4 cts s−1 in the 0.3–
12 keV band1.

Instead, SN 2002ap is detected as an X-ray source in the
2002 February observation, both in the EPIC pn and in the
EPIC MOS images. A preliminary estimate (Sutaria et al.
2002) yielded an observed flux of 1.07+0.63

−0.31×10−14 erg cm−2 s−1

1 All the count rates listed here and hereafter have already been
corrected for the enclosed energy fraction and the vignetting.

in the 0.3–10.0 keV band. Sutaria et al. (2002) obtained this
value by extracting the events from a 40′′ circle centred on
the optical position of SN 2002ap, then subtracting the con-
tribution from the background and from an unrelated source
(CXOU J013623.5+154458) located≈15′′ from the SN. The
contribution from CXOU J013623.5+154458 was estimated
from the archivalChandraACIS observation of M 74 taken
on 2001 October 19. However, this method may lead to an
inaccurate estimate, given the large uncertainty in the spec-
trum of CXOU J013623.5+154458 (ACIS-S count rate of
5.7 × 10−4 cts s−1, ie, only 26 counts in the 46.2-ksChandra
observation). Moreover, a 40′′ extraction radius includes a sig-
nificant contribution from at least one otherChandrasource
(CXOU J013626.6+154458), located 38′′ from the SN (ACIS-
S count rate of 1.9× 10−4 cts s−1).

We obtained an improved estimate of the X-ray flux
of SN 2002ap in two different ways. Firstly, we used
a much smaller extraction region (12′′ radius), to re-
duce the contamination from CXOU J013623.5+154458 and
CXOU J013626.6+154458. We used the latestSAScalibration
files, to correct for the smaller energy fraction enclosed in this
region (≈60% of the total, for channel energies<∼2 keV). We
used theSAS tasksrmfgen andarfgen to construct accurate
response matrices at the position of the source. The background
was extracted from the same pn chip, in a region that did not
contain any detected sources.

Alternatively, we used the 2003 image as a background to
be subtracted from the 2002 dataset. To make sure we could
do that, we compared the background contribution in the good-
time-intervals of the 2002 and 2003 EPIC datasets. The (low)
background count rate in the 0.3–12 keV range is consis-
tent with being the same in both observations (differences are
<2% for the pn, and<5% for the MOS). The pointing of the
spacecraft was also approximately the same in 2002 and 2003,
hence SN 2002ap is located in the same chip, nearly on-axis
on both occasions. Comparing theXMM-NewtonandChandra
datasets, we could verify that the brighter (and closer) of the
two Chandra sources, CXOU J013623.5+154458, does not
show significant flux variations from 2001 to 2003. Therefore,
we assumed that its state in 2002 was similar to that displayed
in 2001 and 2003. If we assume that other possible faint sources
in the region around SN 2002ap did not vary between 2002
and 2003, we can subtract the flux detected at the position of
SN 2002ap in the 2003 observation from the value measured in
2002. This gives us at least a lower limit on the luminosity of
SN 2002ap in 2002.

Applying the first method (i.e., using the 2002 dataset only,
for source and background), we obtain a pn count rate of
(2.75±0.57)×10−3 cts s−1 in the 0.3–12 keV band. By compar-
ing the count rates in three separate narrow bands (0.3–1 keV,
1–2 keV, 2–12 keV) we notice that the source has a soft spec-
trum. In fact, the count rate in the 2–12 keV band is affected by
some residual contamination from the nearby hard spectrum
source CXOU J013623.5+154458, and should be considered
an upper limit to the hard X-ray emission from SN 2002ap.
For MOS1, the corrected count rate on 2002 February 2 was
(7.0± 2.7)× 10−4 cts s−1; for MOS2, (7.8± 2.9)× 10−4 cts s−1.
The low number of source counts (≈10 counts in each of the
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two detectors) does not allow a significant colour determina-
tion from the MOS’s.

We then applied the second method, analysing the differ-
ence in the emission at the position of SN 2002ap between
2002 and 2003. We used two different source extraction radii:
for a 12′′ radius, we obtain that the pn count rate in 2002 was
higher than in 2003 by (2.6 ± 0.5) × 10−3 cts s−1 in the 0.3–
12 keV band. When a 30′′ circle is used, the differential pn
count rate is (3.0± 0.7)× 10−3 cts s−1 in the same energy band.
Applying the same method to the MOS1 dataset, we obtain
a differential count rate of (8.6 ± 2.8) × 10−4 cts s−1 in the
0.3–12 keV band when we use a 12′′ extraction region, and
(6.9± 3.8)× 10−4 cts s−1 for a 30′′ circle. For MOS2, the count
rates are (7.5±2.9)×10−4 cts s−1 and (7.5±3.8)×10−4 cts s−1,
respectively. These values are consistent with the respective pn
and MOS count rates determined from the 2002 dataset alone
with the previous method, confirming that the contribution of
SN 2002ap in 2003 is negligible.

Taking the average of the three measurements for each de-
tector, we obtain the pn, MOS1 and MOS2 count rates listed
in Table 1. In the same table we have also reported the count
rates in separate energy bands. The errors quoted in Table 1 are
the errors in the mean from the three measurements (Gaussian
propagation).

We point out that the analysis presented in this section su-
persedes the preliminary report on the X-ray colors and lumi-
nosity of SN 2002ap published in Sect. 4.2 of Soria & Kong
(2002). In that paper, we said that the source was very hard: in
fact, this was caused by contamination from the nearby hard
source CXOU J013623.5+154458, which has been properly
subtracted here with the help of the Chandra datasets.

2.3. Flux and luminosity of SN 2002ap

The low signal-to-noise ratio of the pn spectrum does not al-
low a meaningful model fitting inXSPEC. However, we can
at least constrain the spectrum of SN 2002ap by comparing
its soft and hard X-ray colours with the colours expected for
some simple spectral models. The count rates inferred for the
three pn narrow bands on 2002 February 2 (Table 1) are in-
dicative of a soft spectrum. The conversion from count rates
to emitted fluxes is strongly dependent on the absorbing col-
umn density. The foreground Galactic HI column density in
the direction of M 74 has been estimated as 4.8 × 1020 cm−2

(Dickey & Lockman 1990). From the interstellar dust maps of
Schlegel et al. (1998), a reddeningE(B− V) = 0.072± 0.012
is obtained at the position of SN 2002ap. Using the empirical
relation nH = 1.79 × 1021AV = 5.73 × 1021E(B − V) cm−2

(Predehl & Schmitt 1995), whereAV is the extinction in the
V band, a Galactic column densitynH = 4.2+0.6

−0.7 × 1020 cm−2

is derived. To this value, we need to add the intrinsic absorp-
tion due to the circumstellar material. For this component,
optical spectroscopic analysis of the NaI D lines shows that
nH = (1.15± 0.05)× 1020 cm−2 (Takada-Hidai et al. 2002).
Hence, we can take 5× 1020 cm−2 as a lower limit on the total
absorbing column density. However, the X-ray spectrum may
be more absorbed than the optical emission, hence we cannot

Fig. 1. Observed colours of SN 2002ap on 2002 February 2. Here
S is the pn count rate in the 0.3–1 keV band,M is the rate in the
1–2 keV band, andH the rate in the 2–12 keV band (as listed in
Table 1). The curves show the expected colours for some simple one-
and two-temperature Raymond-Smith spectral models, at varying col-
umn densities. Along each curve, we plotted the colours correspond-
ing to nH = (0.5, 1.0,2.0, 5.0,7.5, 10) × 1021 cm−2 (column density
increasing from the bottom to the top along each curve).

obtain an upper limit fornH from the optical observations. We
shall discuss this issue in Sect. 3.1.

We then assumed that the spectrum could be approxi-
mated by one or two optically-thin thermal-plasma components
(Raymond-Smith models inXSPEC, with solar abundance), and
we investigated the range of temperatures and column densi-
ties consistent with the observed colours. We found (Fig. 1)
that the spectrum is inconsistent with single-temperature mod-
els atkT >∼ 1 keV. The observed X-ray colours are consis-
tent for example with a single-temperature model withkT ≈
0.5 keV andnH ≈ 5 × 1021 cm−2; or with kT ≈ 0.75 keV
andnH ≈ 3 × 1021 cm−2. If we take the lowest allowed value
of nH ≈ 5 × 1020 cm−2, the observed colours implykT ≈
0.85 keV. We cannot rule out two-temperature models, for ex-
ample, withkT1 ≈ 0.5 keV,kT2 ≈ 2 keV,nH ≈ 1× 1021 cm−2,
where we have normalized the two components so that each
contributes half of the emitted flux in the 0.3–12 keV band.
However, two-temperature models including a hot component
with kT >∼ 5 keV are inconsistent with the soft colours observed
for this source.

We calculated the fluxes for some representative single-
temperature models consistent with the observed colours
(Table 2). As noted earlier, most of the X-ray flux is detected
below 2 keV. We estimate an emitted luminosity in the 0.3–
2 keV band ranging from a few times 1037 to ≈1038 erg s−1

(depending on the spectral model), and an emitted luminosity
in the 2–12 keV band of≈1.2 × 1036 erg s−1 for all spectral
models. However, given the large uncertainties in the back-
ground subtraction, we can take≈1 × 1037 erg s−1 as a safe
upper limit for the emitted luminosity in the hard band. A dis-
tance of 7.3 Mpc has been assumed.
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Table 1.XMM-Newtoncount rates for SN 2002ap on 2002 February 2, in units of 10−4 cts s−1. The rates have been corrected for the telescope
vignetting and the finite size of the extraction region. The values listed here are the averages of the results obtained with the three measurements
described in Sect. 2.2.

Instrument Count rate Count rate Count rate Count rate
(0.3–12.0) keV (0.3–1) keV (1–2) keV (2–12) keV

EPIC pn 27.8± 3.4 19.5± 2.6 8.2± 1.6 0.3± 2.0
EPIC MOS1 7.5± 1.8
EPIC MOS2 7.6± 1.9

Table 2.Observed and emitted fluxes of SN 2002ap on 2002 February 2, for three different spectral models consistent with the observed X-ray
count rates in the EPIC pn and MOS bands (Table 1). A distance of 7.3 Mpc has been assumed. Fluxes are in units of 10−15 erg cm−2 s−1.

Instrument Flux Flux Flux Flux
(0.3–12.0) keV (0.3–1) keV (1–2) keV (2–12) keV

model:nH = 5× 1021 cm−2; kTrs = 0.50 keV;Z = Z�

pn observed flux 4.9± 0.6 2.8± 0.4 1.9± 0.4 0.2± 1.2
MOS1 observed flux 4.0± 1.0
MOS2 observed flux 4.1± 1.0

pn emitted flux 25.7± 3.1 21.5± 2.9 3.9± 0.8 0.2± 1.2
MOS1 emitted flux 21.1± 5.1
MOS2 emitted flux 21.4± 5.2

model:nH = 3× 1021 cm−2; kTrs = 0.75 keV;Z = Z�

pn observed flux 5.2± 0.6 2.9± 0.4 2.0± 0.4 0.2± 1.2
MOS1 observed flux 4.1± 1.1
MOS2 observed flux 4.2± 1.1

pn emitted flux 12.4± 1.5 9.2± 1.2 3.1± 0.7 0.2± 1.2
MOS1 emitted flux 9.9± 2.4
MOS2 emitted flux 10.0± 2.4

model:nH = 0.5× 1021 cm−2; kTrs = 0.85 keV;Z = Z�

pn observed flux 5.0± 0.6 2.8± 0.4 2.0± 0.4 0.2± 1.2
MOS1 observed flux 4.1± 1.1
MOS2 observed flux 4.2± 1.1

pn emitted flux 5.9± 0.7 3.6± 0.5 2.0± 0.4 0.2± 1.2
MOS1 emitted flux 4.9± 1.3
MOS2 emitted flux 5.0± 1.3

2.4. Two “ultra-luminous” sources?

Two variable X-ray sources were detected byXMM-Newton
with peak emitted luminosities>∼1039 erg s−1. One of them,
XMMU J013636.5+155036, was detected only in the 2002
February EPIC observation (Soria & Kong 2002). It was not
found in the 2003 January co-added EPIC image, from which
we estimate that it was at least 30 times fainter than 11 months

before, in the 0.3–12 keV band. It was also undetected in both
Chandraimages from 2001. We refined the spectral analysis
presented in Soria & Kong (2002) by co-adding the pn and
MOS data (thus increasing the significance of possible line fea-
tures), with a program written by M. Page, and by using up-
dated response matrices and more recent calibration files in the
SAS. The combined EPIC spectrum from 2002 February is well
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fitted (χ2
ν = 30.9/36) by a simple power law withΓ ≈ 1.9, and

total (Galactic plus intrinsic) absorptionnH ≈ 1.8× 1021 cm−2

(Table 3). This corresponds to an emitted luminosity≈1.6 ×
1039 erg s−1 in the 0.3–12 keV band. Adding a blackbody or
multicolor disk-blackbody component atkT ≈ 0.15 keV does
not improve the fit significantly (χ2

ν = 27.8/34). An absorbed
multicolor disk-blackbody model does not provide a good fit
(best-fitkTin = 1.2± 0.2 keV, butχ2

ν = 47.9/36). We also anal-
ysed the lightcurve but found no periodicity in the 1–10 000 s
range. The count rate is consistent with the source being con-
stant over the duration of the 2002XMM-Newtonobservation.
Its emitted luminosity in 2003 must be<5 × 1037 erg s−1 in
the 0.3–12 keV band. The upper limit, at the 3-σ significance
level, was estimated with the assumption of aΓ = 1.9 power-
law spectrum and totalnH = 1.8× 1021 cm−2.

The other bright source in the M 74 field,
CXOU J13651.1+154547, is detected in bothChandra
and both XMM-Newton observations2. In the first three
observations it exhibited strong variability over timescales
of a few thousand seconds, with flux changes as large as an
order of magnitude (Krauss et al. 2003). If we assume that
this source belongs to M 74 and is not a background AGN3,
typical luminosities inferred from the 2001–2002 data were
≈5 × 1038 erg s−1 in the faint state, with peaks of up to
≈8× 1039 during the flares. Variability over shorter timescales
(∼100 s) was also observed. Spectral analysis showed that
the X-ray emission was harder when the source was brighter
(Krauss et al. 2003).

Data analysis for the 2003XMM-Newtonobservation is
complicated by the location of the source on a CCD gap in
the pn. We eliminated the contamination of spurious events
along the chip edge by extracting only “flag-0” & “pattern-0”
events. Fortunately, the source is located sufficiently far away
from any chip gaps in the MOS. Taking into account vignetting
(the source is 5′ off-axis) and the fraction of pn events lost in
the chip gap, we obtained the combined EPIC lightcurve shown
in Fig. 2. The observed count rate appears to be much less vari-
able than in 2001 and 2002, with no signs of strong flares. We
carried out Fourier analysis of the data but found no significant
periodicity in the 1–10 000 s range.

The co-added pn and MOS spectrum can be fitted in the
0.3–12 keV band with a simple power-law withΓ ≈ 2.5± 0.5,
absorbed by a total column densitynH ≈ 1.7×1021 cm−2 (χ2

ν =

1.16 for 18 d.o.f.; Fig. 3 and Table 4). Adding a multicolour
black-body component or using comptonized black-body mod-
els (e.g., comptt, bmc or thcompds inXSPEC) does not sig-
nificantly improve the fit. When the Comptonization model

2 This source was not discussed in Soria & Kong (2002) because
in that paper we focussed only on transient sources newly detected by
XMM

3 Two candidate “ultra-luminous” sources in the field of nearby
galaxies have recently been recognised as background AGN
(Masetti et al. 2003; Foschini et al. 2002). The possibility that
CXOU J13651.1+154547 is a background object was discussed by
Krauss et al. (2003), but considered unlikely in the absence of any
radio or optical counterpart.

Fig. 2. Lightcurve of CXOU J13651.1+154547 for theXMM-Newton
2003 January observation. The data have been binned into 700 s inter-
vals. The count rate plotted here is the total rate that would have been
detected by the three EPIC instruments combined, in the 0.3–12 keV
band, if the source had been observed on-axis.

bmc4 is used, the temperature of the seed thermal component
is constrained to be<∼0.26 keV (90% confidence level). Using
the Comptonization model comptt5, the seed photon temper-
ature is<∼0.23 keV. Finally, we checked that the observed
spectrum is not consistent with an absorbed multicolor disk-
blackbody (χ2

ν = 1.56 for 18 d.o.f.). Using the power-law spec-
tral model, we obtain an emitted flux 1.3× 10−13 erg cm−2 s−1

in the 0.3–12 keV band; for the bmc model, the flux is 1.2 ×
10−13 erg cm−2 s−1. At the assumed distance of M 74, the emit-
ted luminosity is≈8× 1038 erg s−1 for both spectral models.

As an aside, we note that XMMU J013627.2+155005 is
another bright transient source seen in 2002 (when it had a hard
power-law spectrum and a luminosity≈3× 1038 erg s−1, Soria
& Kong 2002) but not in 2003, nor in the previousChandra
observations.

2.5. Colour and luminosity distribution of the other
X-ray sources

In addition to an individual study of SN 2002ap,
XMMU J013636.5+155036 and CXOU J013651.1+154547,
we investigated the color and luminosity distribution of the
discrete source population in M 74, to distinguish different
physical classes of sources and estimate the relative fraction
of X-ray binaries (XRBs) and supernova remnants (SNRs).
The spatial resolution of theXMM-NewtonEPIC cameras is
not sufficient to resolve many faint sources in the inner disk;
therefore, we used the co-added 2001 June+OctoberChandra

4 The bmc model (Shrader & Titarchuk 1999) describes the thermal
or bulk motion Comptonization of a blackbody seed-photon compo-
nent.

5 Comptt (Titarchuk 1994) approximates the seed-photon input
spectrum with the Wien tail of the blackbody spectrum. Thus, it is
simpler but less accurate than the bmc model.
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Fig. 3. Spectrum of CXOU J13651.1+154547 for theXMM-Newton
2003 January observation. The pn and MOS spectral data have been
re-sampled and co-added to produce a combined EPIC spectrum. The
background-subtracted spectrum has then been grouped to achieve a
signal-to-noise ratio>4 for each bin. The fitted model is an absorbed
power-law of indexΓ ≈ 2.5.

Table 3. XSPEC best-fit parameters for the X-ray spectrum of
XMMU J013636.5+155036 in 2002 February, from the combined
XMM-NewtonEPIC dataset. The foreground line-of-sight absorp-
tion column densitynH,Gal has been fixed at 0.5 × 1021 cm−2. See
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec for a full
description of the XSPEC spectral models.

model: wabsGal × wabs× power-law

nH (×1021 cm−2) 1.3+0.6
−0.5

Γ 1.91+0.21
−0.17

Kpl (×10−5) 4.0+0.9
−0.7

χ2
ν (d.o.f.) 0.86 (36)

L0.3−12 (×1039 erg s−1) 1.6+0.1
−0.3

ACIS-S observations for this study, achieving a detection limit
of ≈10−4 ACIS-S cts s−1.

Seventy-four X-ray sources (not including two obvious
foreground stars) are detected withwavdetectat>3.5σ signif-
icance inside theD25 ellipse of M 74, in theChandraACIS-
S image (Appendix A.1). The cumulative count rate distribu-
tion (Fig. 4) is fitted by a simple power-law of indexα ≈
−1.0, for the 46 sources detected with an ACIS count rate
>3 × 10−4 cts s−1, which we take as the completeness limit.
AssumingnH = 1 × 1021 cm−2, and a power-law spectrum
with Γ = 1.7, this corresponds to an emitted luminosity
≈2× 1037 erg s−1. Using the results of theChandra1Ms Deep
Field South exposure (Rosati et al. 2002), we estimate that as
many as 20 of these 46 sources may be background AGN. We
also estimate that 3 to 5 of the 11 sources detected with an

Table 4. XSPEC best-fit parameters for CXOU J13651.1+154547
in 2003 January, from the combinedXMM-NewtonEPIC dataset.
nH,Gal ≡ 0.5× 1021 cm−2 as in Table 3.

model: wabsGal × wabs× power-law

nH (×1021 cm−2) 1.2+0.9
−0.8

Γ 2.46+0.47
−0.41

Kpl (×10−5) 2.5+1.1
−0.7

χ2
ν (d.o.f.) 1.16 (18)

L0.3−12 (×1038 erg s−1) 8.0+2.8
−3.8

model: wabsGal × wabs× bmc

nH (×1021 cm−2) 1.2+4.3
−1.2

Tbb (keV) 0.13+0.13
−0.13

Γ 2.22+0.82
−1.22

Kbmc (×10−7) 9.2+5.0
−5.0

χ2
ν (d.o.f.) 1.25 (16)

L0.3−12 (×1038 erg s−1) 7.7+1.2
−3.0

ACIS count rate>10−3, and at most 1 of the 5 brightest sources
(count rate>3× 10−3) may be from the background. After re-
moving the estimated fraction of AGN at various fluxes, we
obtain that the true slope of the cumulative count rate distri-
bution is α ≈ −0.9 (α ≈ −0.8 for sources more luminous
than≈1038 erg s−1; this is in agreement with the slope found
by Soria & Kong 2002).

A power-law luminosity function is consistent with the dis-
tribution observed in disks of other spiral galaxies with moder-
ately active star formation (e.g.,α ≈ −0.8 in M 101, see Pence
et al. 2001;α ≈ −1.1–−0.9 in the disk of M 31, see Kong et al.
2003). A steeper power-law index (α ≈ −1.7) is generally ob-
served in spiral bulges, which are dominated by old stellar pop-
ulations, while flatter slopes (α ≈ −0.5) are typical of starburst
galaxies (e.g., the Antennae and M 82; see Zezas & Fabbiano
2002 and references therein).

Colour-colour plots (Figs. 4 and 5) are an effective way of
separating the discrete sources into separate physical groups:
soft and hard XRBs, SNRs and supersoft sources. We chose the
colour indices [(H−M)/(H+M+S), (M−S)/(H+M+S)], fol-
lowing Prestwich et al. (2003). The spectral models overplotted
in the diagrams are: power-laws with photon indicesΓ = 1.3,
Γ = 1.7 andΓ = 2.0 (characteristic of XRBs in the hard state);
disk-blackbody with inner-disk temperatureskTin = 0.5 keV
and kTin = 1.0 keV (typical of XRBs in the soft state);
optically-thin, single-temperature thermal plasma atkTrs =

0.5 keV (typical of SNRs); blackbody atkTbb = 0.1 keV (typ-
ical of supersoft sources). Along each model line, the column
density increases from the bottom to the top (models 1 and 2)
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Fig. 4. Cumulative count-rate distribution (“luminosity function”) for
the 74 sources found inside theD25 ellipse in the combinedChandra
observations. For each source, the count rate plotted here is the aver-
age of the 2001 June and October count rates. Two obvious foreground
stars are not included. See Sect. 2.5 for an estimate of the background
AGN contribution.

or clockwise (models 3–7): fromnH = 5× 1020 cm−2 (line-of-
sight foreground absorption for M 74) tonH = 5 × 1021 cm−2

for the blackbody model, tonH = 7.5 × 1021 cm−2 for the
optically-thin thermal plasma model, tonH = 2 × 1022 cm−2

for the disk-blackbody models, and tonH = 5× 1022 cm−2 for
the power-law models. In calculating the expected colours for
each of those spectral models, we took into account the time-
dependent degradation of the ACIS detector at soft channel
energies.

We also plotted in Figs. 5 and 6 the approximate colours
that SN 2002ap would have had if it had been observed with
the ACIS-S detector6. The source colours fall in the region of
the diagam which in star-forming galaxies is usually populated
by thermal SNRs (e.g., Prestwich et al. 2003; Soria & Wu 2003;
Soria & Kong 2003).

3. Discussion

3.1. The X-ray behaviour of SN 2002ap

Type Ib/c SNe are rare occurrences in nearby galaxies, and
they are only rarely observed in the X-rays. It is not clear
whether there is a “typical” X-ray behaviour. In fact, the two
best-monitored previous cases of type Ic X-ray SNe, 1994I
and 1998bw, have substantially different X-ray light curves at
early times (Fig. 7). SN 1998bw exhibited early X-ray emis-
sion (detected byBeppoSAX) in the 0.1–10 keV range, starting

6 The conversion between theXMM-Newtonand Chandracount
rates in the three bands depends of course on the assumed spectral
model and absorption, but these variations are small for the range of
column densities and temperatures considered in Table 2. We con-
verted the colours using the correct response matrices generated by
the CIAO and SAS software, rather than the default (pre-launch) re-
sponses from PIMMS.

Fig. 5.X-ray colour-colour plot of the 46 brightest sources (those with
an average count rate>3 × 10−4 cts s−1) found inside theD25 ellipse
of M 74 in the twoChandraobservations. The three bands are:S =
0.3–1.0 keV; M = 1.0–2.0 keV; H = 2.0–8.0 keV. We overplotted
the expected colours for some basic spectral models, which help us
separate the different physical classes of sources. Along each model
curve, the absorbing column density increases from the bottom to top
(models 1–2) or clockwise (models 3–7). For comparison, we also
plotted the approximate colour that SN 2002ap would have had in
2002 February if it had been observed byChandraACIS-S3.

Fig. 6.X-ray colour-colour plot of all the sources found inside theD25

ellipse of M 74 in the twoChandraobservations, without error bars.
The three energy bands and the spectral models have been chosen like
in Fig. 5.

10 hours after the explosion (Pian et al. 2000). The initial de-
cline was slow: only a factor≈2.5 over the first 6 months. An
XMM-Newtonmeasurement nearly 4 years later shows that the
X-ray decline must have been faster at later epochs (Fig. 7;
Pian et al. 2003). In contrast, SN 1994I was not detected by
ROSATuntil day 82 after the explosion (Immler et al. 1998).
However, its late-epoch temporal behaviour (i.e. after day 82),
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Fig. 7. The lightcurves of type Ic SNe 1998bw, 1994I and 2002ap in
the 0.3–2 keV band. The datapoints for SN 1998bw and SN 1994I are
taken from Pian et al. (2003) and references therein, and from Immler
et al. (2002), respectively.

sampled byChandra(Immler et al. 2002), is consistent with
that of SN 1998bw (Fig. 7).

The temporal behaviour of SN 2002ap is overall more sim-
ilar to that of SN 1998bw, in the sense that both SNe showed
prompt X-ray emission. The 2003 upper limit on the X-ray flux
of SN 2002ap is at least 7 times fainter than the 2002 detection:
this is roughly consistent with the decay rate of SN 1998bw
(Fig. 7). The early X-ray detection of SN 1998bw may suggest
the presence of a jet, in which prompt, non-thermal radiation
can be efficiently produced, similar to GRB afterglow radia-
tion (see Pian et al. 2003). However, the absence of hard X-
ray emission in SN 2002ap (the upper limit on the 2–12 keV
flux implies a luminosity at least a factor∼1000 lower than in
SN 1998bw) argues against the presence of highly relativis-
tic conditions at the forward (circumstellar) shock. This SN
was also less radio-luminous than SN 1998bw (Berger et al.
2002). The lower energy emitted in the X-ray and radio bands
is consistent with the estimate of the total energy of SN 2002ap
(5 × 1051 erg s−1), which is an order of magnitude smaller
than in SN 1998bw (Mazzali et al. 2002). While the consis-
tency of the temporal X-ray behaviour of SN 2002ap with that
of SN 1998bw could support its classification as a hypernova,
suggested on the basis of optical observations (Mazzali et al.
2002; Foley et al. 2003), the lower total energy may be insuffi-
cient for the development of a strongly asymmetric explosion,
as required for the formation of a GRB. Indeed, a search for
gamma-ray signal during the week prior to the SN 2002ap ex-
plosion resulted in no detection (Hurley et al. 2002).

X-ray emission from a SN may originate either from the
forward shock or from the reverse shock (e.g., Immler &
Lewin 2002 and Chevalier & Fransson 2002 for reviews).

Following the self-similar analytical approximation of
Fransson et al. (1996), and of Chevalier & Fransson (1994),
one can parameterise the radial density profileρ of the ejecta
as a function of timet, asρ = Kt−3(r/t)−n, where:r is the radial
distance from the centre of the progenitor; the proportionality
constantK depends on the velocityV of the ejecta at the
reverse shock (maximum velocity of the ejecta at any given
time); the choice of the power-law indexn depends on the type
of progenitor star. The circumstellar wind densityρw can be
parameterised as:

ρw =
Ṁ

4πvwr2
0

( r0

r

)s
(1)

wherer0 is a reference radius corresponding to the mass-loss
rate Ṁ/vw (r0 = 1015 cm in Fransson et al. 1996), and 1.5 <∼
s <∼ 2 (Fransson et al. 1996). The mass-loss rateṀ ≈ 5 ×
10−7 M� yr−1 for the progenitor of SN 2002ap (Berger et al.
2002). The stellar-wind velocityvw is generally of the same
order as the escape velocity from the progenitor star, that is
∼103 km s−1 in the case of type Ic SN progenitors. As noted
earlier, the low radio and hard X-ray luminosities of SN 2002ap
seem to rule out a relativistic speed for the ejecta: it is more
likely thatV ∼ (1−3)× 104 km s−1, as is the case in most core-
collapse SNe (e.g., Matzner & McKee 1999).

In the thin shell approximation, and assuming electron-ion
equipartition, the forward shock has a temperature

kTf ' 196µs

(
n− 3
n− s

)2

V2
4 keV ≈ 150V2

4 keV, (2)

whereV4 ≡ V/(104 km s−1), andµs is the mean mass per parti-
cle.µs is a function of chemical abundance:µs = 0.61 for solar
abundance, and, more generally, 0.5 < µs <∼ 1. We have also
assumedn� 3, n� s (Fransson et al. 1996). The temperature
of the reverse shock is (Fransson et al. 1996):

kTr =

(
3− s
n− 3

)2

kTf = 196µs

(
3− s
n− s

)2

V2
4 keV. (3)

The observed colours of SN 2002ap imply temperatures 0.5 <∼
kT <∼ 0.9 keV, suggesting that the emission comes from the
reverse shock, and that the density gradient of the ejecta is very
steep, withn >∼ 20, from Eq. (3).

The cooling timescaletcool of the reverse shock, at each
time t after the SN event, depends onn, s, V, Ṁ and vw
(Eq. (3.14) in Fransson et al. 1996). Takings = 2, andt = 5 d
(time of theXMM-Newtonobservation), one obtains:

tcool = 1.5× 107 V5.34
4

(n− 3) (n− 4) (n− 2)3.34

vw,3

Ṁ−6
d, (4)

whereṀ−6 is the mass-loss rate in units of 10−6 M� yr−1, and
vw,3 the wind speed in units of 103 km s−1. For n >∼ 20, and
vw,3/Ṁ−6 ≈ 1, tcool ≈ 107(V4/n)5.34 d, i.e., only a few days
or weeks. We would not expect the reverse shock to remain
radiative after a year.

The total luminosity emitted by the reverse shock is (for
s= 2):

Lr = 1.6× 1038 V3
4

(n− 3) (n− 4)
(n− 2)3

Ṁ−6

vw,3
erg s−1. (5)
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This simple approximation gives an emitted luminosity
∼1037 erg s−1, in agreement with the observations (Table 2) if
the absorbing column density is<∼1021 cm−2. On the other hand,
the same model predicts an X-ray luminosity from the forward
shock∼1031–1032 erg s−1, entirely negligible (Fransson et al.
1996). As the reverse shock cools down radiatively, a cold shell
is formed between the reverse shock and the contact disconti-
nuity, with a column density that scales∼(n− 4) (Vt)−1 (Ṁ/vw)
(Fransson et al. 1996). Att = 5 d after the event, and for values
of the physical parameters suitable to SN 2002ap, this implies
an intrinsic column density≈(1−2)× 1020 cm−2.

In conclusion, we argue that the low temperature (kT ≈
0.8 keV) of the X-ray emission observed from SN 2002ap on
2002 February 2 points to a radiatively-cooling reverse shock
as the origin of the X-rays. If so, the fact that it was already de-
tected 5 d after the event implies that the cool shell between the
reverse shock and the contact discontinuity was already opti-
cally thin. The ratio of mass-loss rate over stellar-wind velocity
is the crucial factor determining the column density across the
cool shell (scaling as (̇M/vw)) and the luminosity of the forward
shock (scaling as (̇M/vw)2). For type Ic SNe, which originate
from a massive but more compact progenitor, this factor may
be ∼103 times smaller than for type II SNe (e.g., SN 1993J;
SN 1999em). Hence, in the latter cases the cool shell is gen-
erally optically thick to the soft X-ray emission until a few
weeks or months after the event (Fransson et al. 1996; Immler
& Lewin 2002), and only hard X-ray emission from the forward
shock may be detected in the initial phases. In this scenario, the
late X-ray detection of SN 1994I suggests a higherṀ/vw ratio
for this object (Immler et al. 2002), than for SN 1998bw and
SN 2002ap, despite all three being classified as type Ic events.

The limited S/N and the scarce temporal information do
not allow us to measure the X-ray flux decline timescale in
SN 2002ap, and therefore we are unable to investigate in more
detail the density of the circumstellar medium as a function
of radial distance from the SN, and the cooling timescale of
the shocked ejecta. More cases of type Ic SNe must be fol-
lowed with XMM-Newton, to understand the emission pro-
cesses, constrain the parameters of the circumstellar medium
and detect possible deviations from isotropy in the geometry of
the explosion.

3.2. Nature of the brightest X-ray sources

Accreting X-ray sources are usually classified as “ultra-
luminous” (ULXs) when they are persistently brighter than the
”classical” Eddington limit of a≈7 M� BH (e.g., Colbert &
Mushotzky 1999; Roberts & Warwick 2000; Makishima et al.
2000). In 2002 February, XMMU J013636.5+155036 was the
brightest source in M 74 with a luminosity≈1.6× 1039 erg s−1,
approximately constant over the 25-ks observation, and a fea-
tureless power-law X-ray spectrum. Its location in a star-
forming region suggested that the source was a high-mass X-
ray binary. However, the source was no longer detected in 2003,
its flux having declined by at least 30 times, and we cannot
determine how long the high state may have lasted. Repeated

observations in the future will be necessary to determine its
duty cycle.

The other candidate ULX in M 74,
CXOU J013651.1+154547, showed little variability in the
2003 January observation, at a luminosity of≈8× 1038 erg s−1.
The persistent component of the X-ray emission was
≈5× 1038 erg s−1 in 2001 October and 2002 February (Krauss
et al. 2003). Hence, the “steady” X-ray luminosity appears
to be always less than the Eddington limit for a “canonical”
7 M� BH. (This is still the case even for the larger distance to
M 74 assumed by Krauss et al. 2003.) The new observation
suggests that the X-ray spectrum in the non-flaring state is
marginally softer than during flares, and that it is dominated by
the non-thermal (power-law) component, usually interpreted
as Compton-scattered emission. Any additional blackbody or
disk-blackbody components (required to provide the soft seed
photons) are constrained to have temperatures<∼0.25 keV. If
confirmed, such a low temperature is consistent with a standard
geometrically-thin accretion disk around an intermediate-mass
BH (Makishima et al. 2000). Alternatively, it would also be
consistent with thermal emission from Compton-thick outflows
(King & Pounds 2003) which may occur for super-Eddington
accretion rates (̇M > ṀEdd).

In the first three observations, hard X-ray flares were de-
tected on top of the persistent component, on timescales of a
few thousand seconds. During the flares, the source exceeded
the 7 M� Eddington limit by up to a factor of 10, but only
for short periods of time: none of the flares lasted longer than
≈1 h. The rapid variability was interpreted (Krauss et al. 2003)
as evidence of a beamed emission component, possibly asso-
ciated with a jet. It may not be necessary to invoke a micro-
quasar scenario to explain the flares: short episodes of super-
Eddington emission are sometimes also found in neutron-star
XRBs. For example, the high-mass XRB LMC X-4 shows a
persistent luminosity≈2 × 1038 erg s−1 ≈ LEdd for a neutron
star, with repeated bursts/flares (typical duration∼100 s) reach-
ing peak luminosities≈2 × 1039 erg s−1 (Moon et al. 2003).
The “Rapid Burster” MXB 1730−335 and GRO J1744−28 are
two other examples of rapid, repeated flaring (Lewin et al.
1996). The X-ray bursts in these systems are generally thought
to be caused by the spasmodic release of gravitational poten-
tial energy (“type-II” bursts, as opposed to the thermo-nuclear
“type-I” bursts; e.g., Lewin 1995). However, the exact mech-
anism is still unclear and may differ from source to source.
Thermal-viscous instabilities in the inner disk region have been
invoked to explain the inhomogeneous accretion (Cannizzo
1996, 1997). Alternatively, the flares have been attributed to
the accumulation and subsequent sudden release of accreting
matter at a centrifugal barrier; in the case of a neutron star, the
barrier can be created by the magnetosphere of the rapidly ro-
tating compact object (Bann 1977, 1979). Mass transfer insta-
bilities or inhomogeneous winds from the companion star have
also been suggested (Vogt & Penrod 1983). Further X-ray stud-
ies of CXOU J013651.1+154547 will be required to ascertain
whether its flaring behaviour could be an example of type-II
bursts in a stellar-mass BH XRB, and to determine what phys-
ical mechanism is responsible for the intermittent accretion, or
for the intermittent ejections in the micro-quasar scenario.
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3.3. X-ray colours of the point sources

The discrete X-ray sources are roughly clustered into three
main groups in the colour-colour plots (Figs. 5 and 6). Firstly,
“classical” supersoft sources have detectable emission only in
the soft band and are therefore located at (H−M)/(S+M+H) ≈
0, (M − S)/(S + M + H) <∼ −0.7. Secondly, a group of
soft sources with detectable emission in the soft and medium
band is located at−0.7 <∼ (M − S)/(S + M + H) <∼ −0.2.
It has been suggested (Prestwich et al. 2003) that thermal
SNRs dominate this class of sources. Thirdly, most XRBs have
−0.2 <∼ (M − S)/(S + M + H) <∼ 0.5, with a broad spread in
(H − M)/(S + M + H). (See also Soria & Wu 2003 and Soria
& Kong 2003 for a discussion of colour-colour plots in other
nearby spiral galaxies, and Di Stefano & Kong 2003 for a clas-
sification of soft and supersoft sources.) A preliminary compar-
ison between the twoChandraand twoXMM-Newtonobserva-
tions shows that at least three bright (∼1038 erg s−1) candidate
XRBs exhibit spectral transitions between a harder and a softer
state. This is beyond the scope of this paper and is left to further
work.

Above our detection limit of≈10−4 ACIS-S cts s−1 (Lx ≈
6× 1036 erg s−1 for the spectral model assumed in Sect. 2.5), 7
out of the 74 point sources are supersoft (kT <∼ 100 eV), an-
other 7 are in the soft subgroup. Of the remaining 60 sources,
about half are XRBs and the other half are likely to be back-
ground AGN. Hence, supersoft sources represent about 15%
of the true galactic sources brighter than our detection limit,
and soft sources another 15%. Among the sources brighter than
3× 10−4 ACIS-S cts s−1, none are supersoft, 2 are soft and 44
are consistent with XRB colours (20 of them may be AGN).
Hence, the fraction of soft sources is less than 8%, much lower
than in more actively star-forming late-type spiral galaxies. For
example, we can compare M 74 with M 83 (Soria & Wu 2003),
taking into account that the distance to M 83 is≈1/2 of the dis-
tance to M 74 (de Vaucouleurs et al. 1991; Thim et al. 2003). In
M 83, soft sources represent more than 40% of the X-ray point
sources brighter than what would be the detection limit in our
M 74 study, and 25% of the sources in the brighter subgroup.
This is consistent with the interpretation of the soft sources
as candidate X-ray SNRs: the number of detected SNRs at a
given luminosity is related to the recent star-formation rate in a
galaxy, as well as to other factors such as the density of the in-
terstellar medium. A more comprehensive study of these issues
is left to further work.

4. Conclusion

We investigated the X-ray source population in the late-
type spiral M 74. We took a newXMM-Newtonobservation
in 2003 January to study the evolution of the rare type Ic
SN 2002ap a year after the event, and monitor the variabil-
ity of two bright BH candidates. In addition, we used archival
ChandraACIS observations from 2001 June and October to de-
termine the luminosity and colour distribution of all the other
discrete sources.

We have more accurately determined the X-ray colours
and luminosity of SN 2002ap five days after the event, and
put an upper limit to its luminosity a year later. Unlike other
well-studied core-collapse SNe (e.g., SN 1999em: Pooley et al.
2002), SN 2002ap was not dominated by hard X-ray emis-
sion in its early stages. The X-ray colours observed in 2002
February were soft, suggesting that the dominant component
was optically-thin thermal emission atkT < 1 keV. Assuming
an absorbing column density<∼1021 cm−2, we estimate an emit-
ted luminosity of≈5 × 1037 erg s−1 in the 0.3–12 keV band,
on 2002 February 2. The emitted luminosity in the 2–12 keV
band is at least an order of magnitude lower. After 11 months,
the source was no longer detected, implying that its lumi-
nosity had decreased by at least a factor of seven. We argue
that the prompt soft X-ray emission was coming from the re-
verse shock, and that this is consistent with a low mass-loss
rate and high stellar-wind velocity from the progenitor, as ex-
pected in type Ic events. Unlike for other type Ic events such as
SN 1998bw, there is no evidence of relativistic ejecta.

Seventy-four discrete X-ray sources (not including two ob-
vious foreground stars) were detected inside theD25 ellipse in
the combinedChandraobservations, with a detection limit of
≈6× 1036 erg s−1 (completeness limit≈2× 1037 erg s−1). After
subtracting the estimated background AGN contribution, the
luminosity distribution of the discrete sources is well modelled
by a simple power-law of slope≈−0.9, similar to the value
inferred for other moderately active star-forming spiral disks.
About 15% of the true M 74 sources have soft colors consistent
with thermal SNRs: they are all fainter than aChandraACIS-S
count rate of≈5× 10−4 cts s−1, corresponding to emitted lumi-
nosities≈2× 1037 erg s−1 (for a kT = 0.6 keV thermal plasma
model andnH = 1021 cm−2). All brighter sources are likely
XRBs.

We have studied the temporal and spectral behaviour
of the two brightest X-ray sources previously found in
M 74. XMMU J013636.5+155036 (emitted luminosity≈1.6×
1039 erg s−1 in 2002) is no longer detected in 2003 and
must now be fainter than 5× 1037 erg s−1. The flaring source
CXOU J013651.1+154547 has settled into a soft state: its
power-law spectrum has photon indexΓ ≈ 2.5; any additional
thermal component is constrained to temperatures<∼0.25 keV.
Its luminosity shows only little variations around an average
value≈8 × 1038 erg s−1. In the 21 ks of our 2003 January ob-
servation we did not find any of the hard flares (peak luminos-
ity ≈1040 erg s−1) detected in 2001–2002 (Krauss et al. 2003).
The nature of the super-Eddington bursts remains unclear: we
argue that they could either be due to beamed emission in a
microquasar/jet scenario (as proposed by Krauss et al. 2003),
or be analogous to type-II bursts in neutron star XRBs, ie due
to episodes of spasmodic/intermittent accretion in addition to a
steady sub-Eddington component.
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Appendix A: Chandra source list and count rates.

Table A.1. Source ID and average count rates (total and in three narrow bands) of the discrete X-ray sources detected byChandraACIS-S in
the combined 2001 June–October observation. The count rates are in units of 10−4 cts s−1. Errors are 1σ, with 3σ upper limits for sources not
detected in a certain band.

IAU Name Count rate Count rate Count rate Count rate
(0.3−8) keV (0.3−1) keV (1−2) keV (2−8) keV

CXOU J013623.5 + 154458 5.7± 1.2 0.8± 0.4 2.3± 0.7 1.8± 0.6
CXOU J013623.6 + 154309 8.5± 1.5 1.3± 0.4 4.0± 1.0 3.4± 0.9
CXOU J013625.1 + 154859 17.9± 1.4 2.9± 0.6 10.1± 1.1 4.7± 0.7
CXOU J013626.6 + 154458 1.9± 0.5 0.6± 0.1 0.7± 0.3 0.5± 0.2
CXOU J013626.7 + 154304 5.6± 1.2 0.1± 0.1 2.2± 0.7 3.2± 0.9
CXOU J013627.8 + 154752 33.4± 1.9 12.1± 1.2 12.6± 1.2 8.7± 1.0
CXOU J013628.7 + 154859 1.7± 0.5 0.1± 0.1 0.1± 0.1 1.1± 0.4
CXOU J013629.0 + 154319 1.2± 0.4 0.2± 0.1 0.5± 0.2 0.5± 0.2
CXOU J013629.5 + 154656 4.3± 0.7 <0.1 <0.1 4.3± 0.7
CXOU J013630.0 + 154855 3.2± 0.6 2.5± 0.5 0.6± 0.2 <0.1
CXOU J013630.1 + 154520 8.5± 1.0 0.2± 0.1 4.7± 0.7 3.7± 0.7
CXOU J013630.4 + 154519 9.4± 1.1 2.7± 0.6 3.9± 0.7 2.9± 0.6
CXOU J013631.1 + 154458 4.5± 0.8 <0.1 1.9± 0.5 2.2± 0.5
CXOU J013631.7 + 154848 15.2± 1.3 3.4± 0.6 8.3± 1.0 3.4± 0.6
aCXOU J013631.9 + 154507 12.2± 1.2 10.1± 1.1 1.9± 0.5 0.2± 0.1
CXOU J013635.2 + 154657 3.1± 0.6 0.2± 0.1 1.1± 0.4 1.8± 0.5
CXOU J013635.3 + 154711 4.0± 0.7 1.6± 0.4 1.9± 0.5 0.3± 0.2
CXOU J013635.3 + 154227 2.2± 0.6 <0.1 0.5± 0.2 1.7± 0.5
CXOU J013635.4 + 154953 1.7± 0.5 0.4± 0.2 0.3± 0.1 1.0± 0.3
CXOU J013635.7 + 154556 7.4± 0.9 2.2± 0.5 2.9± 0.6 2.2± 0.5
CXOU J013637.5 + 155030 1.3± 0.4 <0.1 0.8± 0.3 0.5± 0.2
CXOU J013637.6 + 154717 4.6± 0.7 1.9± 0.5 1.9± 0.5 0.7± 0.3
CXOU J013637.7 + 154740 9.0± 1.0 2.7± 0.6 3.4± 0.6 2.9± 0.6
CXOU J013637.9 + 154749 2.1± 0.5 0.6± 0.2 1.0± 0.4 0.3± 0.2
CXOU J013638.8 + 154404 1.3± 0.4 1.1± 0.4 <0.2 <0.2
CXOU J013639.0 + 154755 5.7± 0.8 2.0± 0.5 2.1± 0.5 1.7± 0.4
CXOU J013639.1 + 154309 35.6± 2.1 11.0± 1.2 16.9± 1.4 7.4± 1.0
CXOU J013639.2 + 154600 3.0± 0.6 1.5± 0.4 1.0± 0.3 0.1± 0.1
CXOU J013639.3 + 154744 10.2± 1.1 <0.1 2.3± 0.5 8.1± 0.9
CXOU J013639.4 + 154905 3.3± 0.6 2.0± 0.5 0.9± 0.3 0.3± 0.2
CXOU J013639.6 + 154830 2.4± 0.6 1.6± 0.4 0.5± 0.2 0.1± 0.1
CXOU J013639.6 + 154749 1.2± 0.4 1.0± 0.4 0.1± 0.1 <0.1
CXOU J013640.0 + 154625 4.1± 0.7 2.5± 0.5 1.4± 0.4 <0.1
CXOU J013640.3 + 154735 1.4± 0.4 1.2± 0.4 <0.1 <0.1
CXOU J013640.5 + 154928 6.9± 0.9 0.9± 0.3 3.1± 0.6 2.8± 0.6
CXOU J013640.6 + 154713 7.0± 0.9 2.5± 0.5 2.2± 0.5 2.2± 0.5
CXOU J013640.6 + 154647 4.0± 0.7 1.0± 0.4 1.7± 0.4 1.2± 0.4
CXOU J013641.0 + 154705 1.7± 0.5 0.4± 0.2 0.6± 0.2 0.4± 0.2
CXOU J013641.3 + 154650 1.0± 0.4 0.3± 0.1 0.4± 0.2 0.2± 0.1
CXOU J013641.6 + 155117 2.0± 0.5 <0.1 0.1± 0.1 1.8± 0.5
CXOU J013641.6 + 154552 32.9± 1.9 7.9± 0.9 14.5± 1.3 10.5± 1.1
bCXOU J013641.7 + 154701 18.7± 1.5 6.7± 0.9 7.3± 0.9 4.8± 0.7
CXOU J013641.9 + 154721 1.1± 0.4 1.2± 0.4 <0.1 <0.1
CXOU J013642.0 + 154430 1.3± 0.4 1.2± 0.4 0.1± 0.1 0.1± 0.1
CXOU J013642.0 + 154857 2.9± 0.6 0.6± 0.3 1.3± 0.4 0.8± 0.3
CXOU J013642.4 + 154701 2.2± 0.5 1.6± 0.4 0.3± 0.1 0.1± 0.1
CXOU J013643.2 + 154709 5.1± 0.8 0.6± 0.2 2.0± 0.5 2.3± 0.5
CXOU J013643.6 + 154742 4.5± 0.7 1.0± 0.3 1.8± 0.4 1.0± 0.4
CXOU J013643.8 + 154357 5.4± 0.8 1.0± 0.3 2.4± 0.5 1.8± 0.5

a Foreground star.
b Nucleus of M 74.
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Table A.1.continued.

IAU Name Count rate Count rate Count rate Count rate
(0.3−8) keV (0.3−1) keV (1−2) keV (2−8) keV

CXOU J013643.8 + 155022 4.1± 0.7 0.9± 0.3 1.8± 0.5 1.5± 0.4
CXOU J013644.0 + 154908 2.7± 0.6 0.4± 0.2 1.3± 0.4 0.9± 0.3
CXOU J013644.1 + 154818 31.1± 1.9 5.3± 0.8 16.5± 1.3 9.4± 1.0
CXOU J013644.3 + 154629 4.0± 0.7 3.2± 0.6 0.5± 0.2 0.3± 0.2
CXOU J013644.6 + 154848 1.4± 0.5 1.1± 0.4 0.1± 0.1 0.1± 0.1
CXOU J013644.9 + 154546 5.6± 0.9 1.7± 0.4 1.4± 0.4 2.0± 0.5
CXOU J013645.1 + 154837 1.4± 0.4 0.1± 0.1 0.5± 0.2 0.8± 0.2
CXOU J013645.2 + 154747 3.7± 0.7 1.5± 0.4 1.3± 0.4 0.2± 0.2
CXOU J013645.3 + 154910 2.7± 0.6 0.5± 0.2 1.1± 0.4 1.0± 0.4
CXOU J013646.0 + 154422 11.0± 1.2 1.9± 0.5 5.8± 0.8 3.1± 0.6
CXOU J013646.1 + 154842 3.1± 0.6 3.0± 0.6 0.1± 0.1 <0.1
CXOU J013646.6 + 154611 0.7± 0.3 0.7± 0.3 <0.1 <0.1
cCXOU J013647.4 + 154745 35.7± 2.0 28.5± 1.8 5.9± 0.8 0.8± 0.2
CXOU J013648.0 + 154445 1.8± 0.5 0.3± 0.2 1.3± 0.4 0.2± 0.1
CXOU J013648.8 + 154653 3.9± 0.7 0.7± 0.3 1.6± 0.4 1.5± 0.4
CXOU J013649.1 + 154527 5.2± 0.8 0.1± 0.1 0.9± 0.3 3.8± 0.7
CXOU J013650.0 + 154931 7.0± 0.9 1.2± 0.4 2.2± 0.5 2.8± 0.6
CXOU J013650.2 + 154915 9.6± 1.1 2.7± 0.6 3.9± 0.7 2.1± 0.5
CXOU J013650.3 + 155117 1.3± 0.4 <0.1 0.6± 0.2 0.6± 0.2
CXOU J013651.1 + 154547 131.2± 3.9 60.5± 2.6 48.0± 2.3 23.3± 1.7
CXOU J013651.2 + 154339 13.5± 1.4 2.9± 0.6 8.1± 0.9 1.9± 0.5
CXOU J013651.8 + 155135 2.4± 0.6 0.6± 0.3 0.7± 0.3 0.8± 0.4
CXOU J013652.3 + 154737 9.4± 1.1 2.6± 0.6 4.3± 0.7 2.4± 0.6
CXOU J013653.0 + 155008 6.2± 0.9 1.3± 0.4 3.2± 0.6 1.1± 0.4
CXOU J013653.0 + 154510 1.7± 0.5 0.1± 0.1 0.6± 0.3 0.8± 0.3
CXOU J013653.8 + 154537 1.4± 0.5 <0.1 0.1± 0.1 1.3± 0.4
CXOU J013654.4 + 154539 1.4± 0.5 0.4± 0.2 0.5± 0.3 0.3± 0.2
CXOU J013659.3 + 154631 5.6± 0.9 0.4± 0.2 1.4± 0.4 4.2± 0.7

c Foreground star.
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