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A SECOND-ORDER ACCURATE CONSERVATIVE

FRONT-TRACKING METHOD IN ONE DIMENSION∗

CAROLINE GATTI-BONO† , PHILLIP COLELLA‡ , AND DAVID TREBOTICH†

Abstract. This paper presents a conservative front-tracking method for shocks and contact
discontinuities that is second-order accurate. It is based on a volume-of-fluid method that treats
the moving front with concepts similar to those of an embedded-boundary method. Special care
is taken in the centering of the data to ensure the right order of accuracy at the front, and a
redistribution step guarantees conservation. A suite of test problems, for tracking both shocks and
contact discontinuities, is presented that confirms that the method is second-order accurate.
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1. Introduction. There are two approaches to computing time-dependent dis-
continuities as they arise in hyperbolic systems of conservation laws in multiple space
dimensions. In shock capturing methods, the discontinuity is represented on the grid
as a continuous transition across several grid cells, with the jump relations being
satisfied because the discretization is in discrete conservation form [13]. The second
method is front tracking, in which the discontinuity is represented as a moving free
boundary, at which the jump relations are applied as boundary conditions. Both
approaches have their advantages and disadvantages. Capturing relies on the can-
cellation of O(1) errors in the fluxes, which can fail if, for example, the grid is not
smoothly varying [20]. Also, there are fronts such as the interface between two ma-
terials with radically different equations of state for which defining the intermediate
states obtained in the continuous transition is problematic. Front tracking has been
primarily used if the discontinuity can be identified in the initial data and the surface
of discontinuity separates the spatial domain into distinct disjoint regions. Because
of these limitations, hybrid approaches have been developed, in which one or more
discontinuities are identified in the initial data as tracked fronts, with the remaining
ones represented by capturing, with conservative differencing used to discretize the
conservation laws away from the front (for a review of the early work in this area, see
[12]). Lagrangian and arbitrary Lagrangian Eulerian (ALE) methods are a version of
this approach in that the tracked front (usually a material interface) is aligned with
the faces of a moving grid. The disadvantage to the Lagrangian/ALE approach is
that local distortions in the front lead to distortions in the grid, leading to a loss of
smoothness in the grid and thereby a loss of accuracy in the capturing method.

The starting point for our work is the conservative hybrid tracking and capturing
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method in [4, 3, 14]. In this approach, the tracked front cuts through a Cartesian
grid, and the intersection of the Cartesian cells with the regions on either side of the
front forms a collection of time-dependent control volumes, over which the conser-
vation laws can be integrated in space-time to derive a finite-volume discretization.
Such an approach leads to a CFL stability issue due to the presence of arbitrarily
small control volumes, which was addressed in this work by computing the difference
between a conservative update and a nonconservative, but CFL stable, update, and
redistributing that difference to maintain overall stability, accuracy, and conservation.
Another approach is cell-merging. It was used by Glimm, Li, and Zhao [10], where
a second-order accurate algorithm on the one-dimensional Burgers’s equation is pre-
sented, and in Glimm et al. [9], where the method is extended to multiple dimensions.
In cell-merging, the small control volumes are merged with adjacent cells to avoid
singularities, but, while finding a full cell for each small cell is a well-behaved problem
in one dimension, it is not always straightforward to do in multiple dimensions. A
major advantage of redistribution is that it is a simple method for simultaneously
maintaining numerical stability and conservation in multiple dimensions [3, 14].

The primary limitation of the methods as originally formulated [4, 3, 14] is the loss
of accuracy at the irregular control volumes. Classical truncation error estimates for
finite-volume methods rely on a cancellation of errors in the flux differences between
successive cell faces in each coordinate direction, which in turn depends on smooth
variation of the geometric properties of the grid such as face areas and face centroids.
At the irregular control volumes formed at the intersection of the front with the grid,
these cancellations no longer occur, and there is a loss of at least one order of accuracy
relative to that obtained away from the front. In addition, the methods in [4, 3, 14] use
quadrature methods for approximating the face averages in space-time that are only
first-order accurate at the irregular control volumes, leading to O(1) truncation errors.
Nonetheless, these methods have proved surprisingly effective, particularly in the case
of shock waves. The latter are noncharacteristic boundaries for gas dynamics, so that
an O(1) truncation error on a set of codimension one leads to first-order convergence
in max norm for the solution error [6].

Our goal is to extend the ideas developed for embedded-boundary representations
of conservation laws in [8] to obtain a method that is second-order accurate away
from the irregular control volumes and formally consistent at the tracked front, with
a truncation error that vanishes linearly with the mesh spacing. This is sufficient
to obtain a second-order convergence in the solution error in L1; for the case of
shocks, the solution error is second-order in L∞. As in the embedded-boundary
case, our method is a generalization of a second-order accurate Godunov method
and uses redistribution to deal with the small-cell CFL stability problem. However,
the programming machinery required to generalize the approach in [8] to the case
of moving tracked fronts is substantial. In the present work, our goal is to identify
the fundamental ideas for performing that extension for the case of one-dimensional
problems, prior to undertaking the more general case. One of the new issues that
arises in the tracked front setting is the necessity to distinguish correctly between
the averages of the conserved quantities over control volumes and the value at the
center of the Cartesian cell, which differ by terms of first order in the mesh spacing
at irregular control volumes. For nonmoving boundaries this is not necessary due to
a cancellation of errors in the time discretization.

2. Algorithm description.

2.1. Equations of gas dynamics. We consider a problem where the domain
is filled by two fluids separated by a front. On either side of the front, the fluid is
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assumed to be compressible and inviscid, and the equations in conservation form are

∂U

∂t
+

∂F

∂x
= 0,(1)

where

U = (ρ, ρu, ρE) ,(2)

F =
(

ρu, ρu2 + p, ρuE + up
)

.(3)

Here, ρ is the fluid density, u is the velocity, p is the pressure, and

ρE =
p

γ − 1
+ ρ

u2

2
.(4)

The speed of the front is given by

dxf

dt
= sf ,(5)

where xf is the position of the front. At the front, the variables satisfy the Rankine–
Hugoniot conditions

[(

F− sfU
)

· n
]

=
((

F− sfU
)

· n
)

L
−
((

F− sfU
)

· n
)

R
= 0,(6)

where L (respectively, R) represents the state of the left (respectively, right) fluid.
We introduce the vector W:

W = (ρ, u, p) .(7)

The governing equations can be rewritten as

∂W

∂t
+A

∂W

∂x
= 0(8)

with

A =

⎛

⎝

u ρ 0
0 u 1

ρ

0 ρc2 u

⎞

⎠ .(9)

2.2. Finite-volume discretization for a moving boundary. The method is
based on ideas akin to those of an embedded-boundary method, but we work on a
space-time grid instead of a spatial grid. In an embedded-boundary approach, we
superimpose a Cartesian grid onto the computational domain, and this can generate
cells that are not rectangular because of the presence of geometry. The primary
variables are the conservation variables U centered at the space centroids and, at
time tn, are denoted Ūn. The fluxes are centered spatially at the faces and at the
time centroids, and are denoted by F̄i+ 1

2
. The variables W are used at half time step

and are centered spatially on the faces.
We use a volume-of-fluid method to discretize the Euler equations, using the

divergence theorem to evaluate the second term in (1):

div (F) ≈
1

V

∫

Ω∩Υi

div (F) dx =
1

V

∮

∂(Ω∩Υi)

F · ndS(10)

=
1

κih

(

∑

±=+,−

d
∑

s=1

±αi± 1
2
es
F̄ s

(

xi± 1
2
es

)

+ αB
i F(x

B
i ) · n

B
i

)

,(11)
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where Υi is the Cartesian cell at i, Ω is the computational domain, V =
∫

Ω∩Υi

dx is

the cell volume, n is the outward normal, F̄ represents the quantity F taken at the
face centroid, κ is the volume fraction of the cell (i.e., the ratio of the current cell and
the volume of a regular (uncut) Cartesian cell), α is the area fraction of the face (i.e.,
the ratio of the length of the current face and the length of a regular face), and the
superscript B denotes quantities taken on the embedded boundary.

(b) Multifluid

Front

Fluid L

Fluid R

xx

y t

Fig. 1. Comparison between embedded-boundary and multifluid approaches.

In an embedded-boundary tracking approach, each fluid cuts out a domain on a
Cartesian grid in space and time, and a front represents the interface between them,
as shown in Figure 1. The divergence theorem is applied in space and time:

∫

[tn;tn+1]×(Ωa(t)∩Υi)

(

∂U

∂t
+

∂F

∂x

)

dxdt = 0(12)

with a ∈ {L,R}.
Here, we use the same ideas as in (11), and we use the formula

∂

∂t

∫

Ω(t)

U(x, t)dx =

∫

Ω(t)

∂U

∂t
dx+

∮

∂Ω(t)

UsfdS(13)

for integration and differentiation with a variable volume.
Therefore, (12) becomes

[

∫

(Ωa(t)∩Υi)

Udx

]tn+1

tn

+

∫

∂([tn;tn+1]×(Ωa(t)∩Υi))\F(t)

(

∂F

∂x

)

dxdt

+

∫

F(t)

(

F− sfU
)

· ndS = 0,(14)

where F(t) represents the front, and, discretizing in time and in space, we obtain

κn+1
a,i

(

Ūn+1
a,i − Ū

n, n+1
a,i

)

= κn
a,iŪ

n
a,i − κn+1

a,i Ū
n, n+1
a,i

−∆t

(

αa, i+ 1
2
F̄a, i+ 1

2
− αa, i− 1

2
F̄a, i− 1

2

∆x
±

1

∆x
αf F̄f

)

≡ −κn+1
a,i ∆t

(

DF
)C

i
= −κn+1

a,i ∆t
∂F

∂x

∣

∣

∣

∣

x
n+1
c

∆x+O(h∆t),(15)
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x
n+1

C
(x  )

n+1

(x  )
nf

C

n
x

i

n
x

x
n+1

i

L

R

f

Fig. 2. Location of the centroids, face centers, and front at times tn and tn+1.

where we define Ūn, n+1 as the quantity U at time tn taken at the centroid for time
tn+1:

Ūn, n+1 = U(xn+1
c , tn),(16)

where xn+1
c is the location of the centroid at time n + 1 as shown in Figure 2, αf is

the area fraction of the front, and Ff is

F̄f = F̄− sfŪ,(17)

which is single-valued at the front by (6). By construction, (15) satisfies the discrete
conservation property

∑

κn+1
a Ūn+1 =

∑

κn
aŪ

n + boundary terms.(18)

The update equation (15) can be rewritten as

Ūn+1
a = Ūn, n+1

a −∆t
(

DF
)C

.(19)

Because κn+1 has the potential of being arbitrarily small, we use a weighted
average for the update:

Ūn+1
a,i = Ū

n, n+1
a,i −∆tκn+1

a,i DF
C

a,i −∆t(1 − κn+1
a,i )DF

NC

a,i ,(20)

where DF
NC

is a stable nonconservative estimate of DF
C
. To ensure conservation,

the mass difference between the conservative and the nonconservative update,

δMa,i = κn+1
a,i

[

DF
C
−
(

κn+1
a,i DF

C
− (1− κn+1

a,i )DF
NC

)]

= O(h∆t),(21)

is redistributed to (large) adjacent cells. The details of the redistribution algorithm are
given in section 2.4.3. In one dimension, redistribution could have easily been avoided
by using cell-merging (see, e.g., [10]). However, cell-merging in three dimensions leads
to difficult geometric constructions that have not been fully worked out, and it is not
clear how to combine them with discretization methods that maintain O(h) truncation
error near the embedded boundary.
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2.3. Overview of the algorithm. This algorithm aims to compute Ūn+1
a and

(xf )n+1 = xf ((n + 1)∆t) given Ūn
a and (xf )n = xf (n∆t), where (xf )n and (xf )n+1

are pictured in Figure 2. The quantity Ūn
a,i is defined as

Ūn
a,i ≈

1

κn
a,i∆x

∫

∆n
a,i

Un(x, n∆t)dx ∀κn
a,i > 0,(22)

where

κn
a,i =

1

∆x
|Υi ∩Ωa|.(23)

Following [8], we will compute O(h2) approximations to the fluxes required to
compute a consistent approximation to ∆t∂F

∂x
given in (15), given Un

a,i ≈ Ua(ih, n∆t),
the values of the solution at the centers of Cartesian cells. For the cells that are not
intersected by the tracked front, these are the same to O(h2) as the cell averages Ūn

a .
However, the cell averages at irregular control volumes differ from the values at the
Cartesian cell centers by O(h).

• We compute O(h2) approximations of Un
a,i at such cells by linear extrapola-

tion:

Un
a,if = Ūn

a,if +
(1 − κn

a,if
)

(1 + κn
a,if

)
(Ūn

a,if − Un
a,if±1).(24)

In the case of the embedded-boundary representations of a nonmoving bound-
ary, the primary dependent variables are the Un

a,i, and the O(h) errors asso-
ciated with approximating the cell averages by Un

a,i cancel to leading order in
the expression for the truncation error, so this problem does not arise.

• We compute an initial estimate of the front speed by solving the Riemann
problem

sf, n = R
(

W
f,n
L , Wf,n

R

)

,(25)

where Wf,n
a is obtained by second-order extrapolation from Wn

a (xi, t
n):

Wf,n
a =

1

2

(

Wn
a,i +Wn

a,i±1

)

+ κn
a

(

Wn
a,i −Wn

a,i±1

)

.(26)

From this, we obtain

xf,n+1 = xf,n +∆tsf,n.(27)

The geometry is advanced for the entire time step using this first estimate of
the front speed.

• We compute the values of U for a newly uncovered cell if necessary, as well
as the eigenvectors and eigenvalues:

Un

if
n+1 = Un

if
n ±∆U,(28)

where

(29)

∆U =

⎧

⎨

⎩

min(2|∆Uif
n− 1

2
|, 2|∆Uif

n− 3
2
|, 2|∆Uif

n− 5
2
|, |∆Uif

n−2|)

if ∆Uif
n− 1

2
∆Uif

n− 3
2
> 0, ∆Uif

n− 3
2
∆Uif

n− 5
2
> 0,

0 otherwise
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with

∆Ui− 1
2
= Ui − Ui−1,∆Ui−2 =

Ui−1 − Ui−3

2
.

• We advance the variables W to half time step:

W
n+ 1

2

a, i+ 1
2

= Wa

(

xi+ 1
2
, tn +

∆t

2

)

.(30)

Then we compute the fluxes F for the same centering:

F
n+ 1

2

a, i+ 1
2

= F
(

W
n+ 1

2

a,i+ 1
2

)

.(31)

• We advance the primary variables Ua,i using the fluxes at half time step:

Ũn+1
a,i = Un

a,i −∆t (DF )
NC
a,i ,(32)

(DF )
NC
a,i =

F
n+ 1

2

a,i+ 1
2

− F
n+ 1

2

a,i− 1
2

∆x
.(33)

• We use this preliminary update to get a new estimate of the front velocity
sf,n by solving the Riemann problem

sf, n+1 = R
(

W̃
f,n+1
L , W̃f,n+1

R

)

,(34)

where W̃f,n+1
a is obtained using (26) and the quantities W̃f,n+1

a,i = W ( ˜Un+1
a,i ).

The second-order estimate of the front speed is given by

sf =
sf, n + sf, n+1

2
.(35)

The geometry is then reconstructed with the position of the front xf given
by

xf, n+1 = xf, n + sf∆t.(36)

The geometry and eigenproperties are recomputed. If the front crosses into a
new cell as a result of this recompute, we go through the steps above to have
the right data in the newly uncovered cell.

• The solution Ū is advanced using (20).
• We redistribute the excess mass according to (21).

2.4. Details of the algorithm.

2.4.1. Predictor step. In this section, we evaluate the variables that are needed
to compute the final update of U. This means that we will need to evaluate fluxes
at time centers and time centroids. We take a standard Godunov approach where we
advance the vector W from the left (W+) and the right side (W−) of the face we are
looking at and obtain the final value on this face by picking the upwind state with a
Riemann problem:

W±
a

(

xi ±
∆x

2
; tn +

δt

2

)

= Wn
a, i +

1

2

∑

k

αk

(

±1−
δt

∆x
max(±λk, 0)

)

rk,

(37)
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where a ∈ {L, R}, δt = ∆t or δt = 0, rk are right eigenvectors of the matrix A, and
λk are the eigenvalues. The coefficient αk (not to be confused with the area fraction)
is the projection, using a Van Leer limiter, of the slope onto the left eigenvector lk:

∆vlW =
∑

k

αkr
k,(38)

where

αk =

{

sign (αC)min
(

2|αk
L|, 2|α

k
R|, |α

k
C |
)

if αk
R.α

k
L > 0,

0 otherwise
(39)

and

αk
L = lk · (Wi −Wi−1) ,(40)

αk
R = lk · (Wi+1 −Wi) ,(41)

αk
C = lk ·

(

Wi+1 −Wi−1

2

)

.(42)

The cell that contains the front has one face that is covered, and this requires
the following extrapolation to get the left or right state for the Riemann solver (see
Figure 3):

W±
a

(

xi ±
∆x

2
; tn +

δt

2

)

= Wn
a, i±1 +

1

2

∑

k

αk

(

±1−
δt

∆x
max(±λk, 0)

)

rk.(43)

The extrapolation happens across the front and should really take into account the
jump conditions. Thus, the left and right states on the covered face are extrapolated
back to the front, where a Riemann solve is performed and the final upwind state is
extrapolated back to the covered face. For the fluid on the left side, this extrapolation
step is as follows. First, we extrapolate the left and right states from the covered face
i+ 1

2 back to the front:

WLL(x
f , tn+

1
2 ) = WL, i+ 1

2
+

xf − xi+ 1
2

∆x
∆WL,(44)

WRL(x
f , tn+

1
2 ) = WR, i+ 1

2
+

xf − xi+ 1
2

∆x
∆WR.(45)

Then, we solve a Riemann problem with the left and right sides being WLL(x
f , tn+

1
2 )

and WRL(x
f , tn+

1
2 ). This yields WL(x

f , tn+
1
2 ) and takes into account the jump con-

dition. Finally, this quantity is extrapolated back to the covered face:

WL, i+ 1
2
= WL(x

f , tn+
1
2 )−

xf − xi+ 1
2

∆x
∆WL.(46)

The data at the time centroid is computed from the quantities obtained in (37):

Wnc

a, i+ 1
2

= W
n+ 1

2

a, i+ 1
2

± (1− αa)
(

W
n+ 1

2

a, i+ 1
2

−Wn
a, i+ 1

2

)

,(47)

where nc is the time centroid.
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− − −+ + + + −

Fig. 3. Extrapolation near the front.

2.4.2. Corrector step. We use (20) to advance the solution

Ūn+1
a = Ūn, n+1

a −∆tDF
C

a −∆t(1− κn+1
a )DF

NC

a .(48)

According to (15) and (19), the conservative increment DF
C

taken at the cell
centroid is given by

DF
C
=

1

∆t

(

κn+1
a Ūn, n+1

a − κn
aŪ

n
a

)

+
αa, i+ 1

2
F̄a, i+ 1

2
− αa, i− 1

2
F̄a, i− 1

2

∆x
±

αf

∆x
F̄f .

(49)

To ensure accuracy and stability, the flux through the front F̄ f for a shock is
evaluated from the expression of (49) on the low-pressure side Lo:

∓αf F̄ f =
∆x

∆t

(

κn+1
Lo Ū

n, n+1
Lo − κn

LoŪ
n
Lo

)

+
αLo, i+ 1

2
F̄Lo, i+ 1

2
− αLo, i− 1

2
F̄Lo, i− 1

2

∆x

− κn+1
Lo ∆xDF

NC

Lo .(50)

For a contact discontinuity, F̄ f is computed exactly as

F̄ f = (0, p, up)
T
,(51)

where we have obtained u and p through a Riemann solve using an extrapolation of
W on each side of the front, as pictured in Figure 4.

The nonconservative increment DF
NC

is first computed at the cell center (CC)
and then averaged to the cell centroid (Ce):

(DF )
NC

=
F

n+ 1
2

i+ 1
2

− F
n+ 1

2

i− 1
2

∆x
,(52)

DF
NC

= Av
(

(DF )
NC

)CC→Ce

.(53)
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Fig. 4. Extrapolation on the front.

2.4.3. Redistribution. To ensure that the method is conservative, we need to
redistribute the excess mass to larger adjacent cells:

δMa = −∆t
(

1− κn+1
a

)

κn+1
a

[

DF
C

a −DF
NC

a

]

=
∑

k

βk
ar

k
a.(54)

The mass increment is projected onto the eigenvectors to redistribute the mass
according to characteristics. We denote by p ∈ {−1, 0, 1} the wave family that we
are tracking. For a shock (p ∈ {−1, 1}), the mass to be redistributed on each side of
the shock is

δMred
L =

(

p+ 1

2

)

(βp
Lr

p
L + βp

Rr
p
R) +

∑

k<p

βk
Lr

k
L +

∑

k<p

βk
Rr

k
R,(55)

δMred
R =

(

1− p

2

)

(βp
Lr

p
L + βp

Rr
p
R) +

∑

k>p

βk
Lr

k
L +

∑

k>p

βk
Rr

k
R.(56)

For a contact, we take into account the reflection and the refraction of the waves
to redistribute the mass

δMred
L = βp

Lr
p
L +

∑

k<p

βk
Lr

k
L + µR

∑

k<p

βk
Rr

k
R + (1− µL)

∑

k>p

βk
Lr

k
L,(57)

δMred
R = βp

Rr
p
R +

∑

k>p

βk
Rr

k
R + (1− µR)

∑

k<p

βk
Rr

k
R + µL

∑

k>p

βk
Lr

k
L(58)

according to acoustic impedances [11], where we have introduced

µL =
1/ρLcL

1/ρLcL + 1/ρRcR
,(59)

µR =
1/ρRcR

1/ρLcL + 1/ρRcR
.(60)

The new velocity is then obtained by

Ūn+1
a, i = Ūn+1

a, i +
1

1 + κn+1
a

δMred
a ,(61)

where i ∈ {if , if − 1} for a = L, i ∈ {if , if + 1} for a = R, and if is the index of the
front at time tn+1.
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Now, we can write the conservation property in the form

∑

κn+1
a Ūn+1

a =
∑

κn
a Ū

n
a + boundary terms.(62)

3. Algorithm for multimaterial flows. In this section, we revise the algo-
rithm from section 2 to include the case of vastly different materials. We treat the
case where one material is described as in section 2 and one material is described by
Tait’s equations

p = A

(

ρ

ρo

)γ

−B,(63)

where A = 3.001 108, B = 3 108, and γ = 7 for water.
Equations (1) and (8) remain the same. The matrix A in (9) has the same terms,

but the expression of c will be different:

c2 =
dp

dρ
=

Aγ

ργo
ργ−1.(64)

We follow the same time-stepping procedure as that presented in the previous
section. However, we add the following steps.

• When we compute the vector W given the vector U on the water side, we
use the following relationship:

ρ = U1,(65)

u =
U2

ρ
,(66)

p = A

(

ρ

ρo

)γ

−B.(67)

• After the variablesW have been advanced to half time step in (30), we enforce
Tait’s equation of state by modifying the first component ρ to be equal to

ρ = ρo

(

p+B

A

)
1
γ

.(68)

This step is necessary because p and ρ are not independent since they are
linked by Tait’s equation.

• Finally, the redistribution step (61) is changed so as to not redistribute mass
across materials:

Ūn+1
a, i = Ūn+1

a, i +
1

1 + κn+1
a

δMa.(69)

4. Results. The classical approach to verifying the accuracy of this method is
to apply it to problems whose solutions are piecewise-smooth and smooth on either
side of the tracked front, and to apply Richardson error estimation. Away from the
tracked front, the construction of such solutions is routine, since the only constraint
is that the initial data be smooth. At the tracked front, the construction of general
piecewise-smooth initial data is nontrivial. Obviously, the initial data must satisfy
the jump relations. In addition, the solution derivatives must also satisfy appropriate
jump relations; otherwise, discontinuities in the derivatives are generated at the front
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and propagate into the interior. The one case for which it is easy to verify that the
derivatives satisfy the appropriate jump relations is the case where the derivative on
either side of the front vanishes at the front. Thus, for the purpose of verifying the
accuracy of the method, we use such initial data. We also investigate the accuracy of
the method in more classical problems in which the solution or its derivatives have
discontinuities, for which we do not expect second-order convergence of the interior
method.

Small perturbation

Front

Fig. 5. Piecewise-smooth solutions.

4.1. Piecewise-smooth solutions.

4.1.1. Tracking a shock. For this test problem, we superimpose a perturbation
in a single characteristic quantity onto a simple shock wave propagating to the right,
as shown in Figure 5. The simple shock wave is described by

ρR = 0.1,
uR = −11.6,
pR = 0.5,
pL = 14

with ρL and pL determined by the Rankine–Hugoniot conditions and the fluid ideal
gas law γ being γ = 1.667. The computational domain has a length of 1, and the
position of the front xf is at xf = 0.5001. We use four resolutions in space to compute
the convergence rates: ∆x = 1/100, ∆x = 1/200, ∆x = 1/400, and ∆x = 1/800. The
CFL is chosen to be 1

2 .
The shape of the perturbation density is described as

ρ(x) = ρR

⎛

⎝1 + a

(

1−

(

x− xi

xf − xi

)2
)4

⎞

⎠ ,(70)

where xi = 0.65 is the position of the beginning of the perturbation, xf = 0.85 is the
position of the end of the perturbation, and a = (ρL − ρR)/10 is the amplitude of the
perturbation.

We take the perturbation to be characteristic in one of the waves, and the velocity
and pressure for a plus or minus wave are given as

u±(x) = uR ±
2

γ − 1

√

γpR
ρR

(

ρ(x)

ρR

)
γ−1

2
−1

,(71)

p(x) = pR

(

ρ(x)

ρR

)γ

.(72)
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Tables 1–3 show the errors and the convergence rates after a time that corresponds
to 200 time steps taken on the coarsest grid. As expected, the convergence is second-
order in both the L1 and the L∞.

Table 1

Errors and convergence rates for a contact-wave perturbation.

ρ ρu ρE
L1 L∞ L1 L∞ L1 L∞

100/200 7.84× 10−5 1.42 × 10−3 2.25× 10−4 2.50× 10−3 1.34× 10−3 1.94× 10−2

200/400 3.64× 10−5 9.00 × 10−4 8.27× 10−5 1.58× 10−3 3.14× 10−4 3.29× 10−3

400/800 1.01× 10−5 2.92 × 10−4 2.14× 10−5 5.15× 10−4 6.61× 10−5 7.70× 10−4

800/1600 2.45× 10−6 7.14 × 10−5 5.15× 10−6 1.25× 10−4 1.52× 10−5 1.98× 10−4

100/200/400 1.10 0.65 1.44 0.66 2.09 2.56
200/400/800 1.85 1.62 1.95 1.61 2.25 2.09
400/800/1600 2.04 2.03 2.05 2.04 2.12 1.96

Table 2

Errors and convergence rates for a minus-wave perturbation.

ρ ρu ρE
L1 L∞ L1 L∞ L1 L∞

100/200 5.06× 10−5 8.11 × 10−4 1.99× 10−4 3.11× 10−3 1.59× 10−3 3.63× 10−2

200/400 2.32× 10−5 6.02 × 10−4 6.17× 10−5 1.06× 10−3 3.31× 10−4 7.96× 10−3

400/800 7.96× 10−6 2.65 × 10−4 1.82× 10−5 4.68× 10−4 7.79× 10−5 1.70× 10−3

800/1600 2.02× 10−6 7.41 × 10−5 4.45× 10−6 1.30× 10−4 1.87× 10−5 4.56× 10−4

100/200/400 1.12 0.43 1.69 1.55 2.26 2.19
200/400/800 1.54 1.18 1.76 1.18 2.09 2.22
400/800/1600 1.98 1.84 2.03 1.85 2.06 1.90

Table 3

Errors and convergence rates for a plus-wave perturbation.

ρ ρu ρE
L1 L∞ L1 L∞ L1 L∞

100/200 6.52× 10−5 1.10 × 10−3 1.76× 10−4 1.94× 10−3 9.58× 10−4 6.87× 10−3

200/400 2.15× 10−5 4.62 × 10−4 5.00× 10−5 8.15× 10−4 2.01× 10−4 1.67× 10−3

400/800 5.26× 10−6 1.25 × 10−4 1.17× 10−5 2.21× 10−4 4.31× 10−5 3.25× 10−4

800/1600 1.25× 10−6 3.11 × 10−5 2.78× 10−6 5.48× 10−5 9.95× 10−6 7.63× 10−5

100/200/400 1.60 1.25 1.82 1.25 2.25 2.04
200/400/800 2.03 1.88 2.09 1.88 5.54 2.36
400/800/1600 2.07 2.00 2.07 2.01 2.11 2.09

4.1.2. Tracking a contact discontinuity. In this example, the underlying
wave is a contact wave described by

ρL = 0.353, ρR = 0.1,
uL = 0.5, uR = 0.5,
pL = 1, pR = 1,

and we superimpose the same plus-wave perturbation as the one described in the
previous section. Table 4 shows the errors and the convergence rates for this example.
As expected, we obtain second order in L1 and first order in L∞ since the boundary
is characteristic. The CFL is chosen to be 1

2 .
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Table 4

Errors and convergence rates for a plus-wave perturbation for a tracked discontinuity.

ρ ρu ρE
L1 L∞ L1 L∞ L1 L∞

100/200 2.34× 10−4 2.61× 10−3 3.43× 10−4 4.01× 10−3 2.03× 10−3 2.39× 10−2

200/400 1.31× 10−4 2.26× 10−3 1.99× 10−4 3.51× 10−3 1.19× 10−3 2.09× 10−2

400/800 4.19× 10−5 1.45× 10−3 6.37× 10−5 2.18× 10−3 3.78× 10−4 1.32× 10−2

800/1600 1.35× 10−5 7.68× 10−4 2.06× 10−5 1.17× 10−3 1.22× 10−4 7.01× 10−3

1600/3200 5.05× 10−6 3.72× 10−4 7.64× 10−6 5.64× 10−4 4.55× 10−5 3.39× 10−3

3200/6400 1.27× 10−6 1.21× 10−4 1.91× 10−6 1.84× 10−4 1.13× 10−5 1.11× 10−3

100/200/400 0.84 0.20 0.78 0.19 0.77 0.19
200/400/800 1.64 0.64 1.64 0.69 1.66 0.66
400/800/1600 1.63 0.92 1.63 0.90 1.63 0.91
800/1600/3200 1.42 1.04 1.43 1.05 1.42 1.05
1600/3200/6400 1.99 1.62 2.00 1.61 2.01 1.61

4.2. Shock tube. The first test is the classical shock tube problem discussed in
Sod [18]. Initially, the left and right states are

ρL = 1, ρR = 0.125,
uL = 0, uR = 0,
pL = 1, pR = 0.1

with γ = 1.4.
When the membrane separating the two states is broken, three different waves

appear: a rarefaction wave, a contact wave, and a shock. For test purposes, we
consider two cases. We track the shock and capture the contact as shown with ×’s in
Figure 6, and we track the contact and capture the shock as shown with ◦’s in Figure 6.
A CFL of 1

2 is used for both simulations, and the curves are exactly superimposed,
except on the actual fronts, as expected. When the contact is tracked, a few points
immediately to the right mark a small dip in the curve for the density. This is a result
of errors generated at the very beginning when the three waves separate [15].

4.3. Interactions of two simple waves.

4.3.1. Tracked shock overtaking a rarefaction wave. In this example, we
consider a shock wave and a rarefaction wave of the same family, propagating in
opposite directions, as shown by the dotted line in Figure 7. The shock wave is
tracked. We choose a CFL of 1

2 .
As expected [5], the shock slowly overtakes the rarefaction wave, weakening both

the shock and the rarefaction wave. In the back of the shock, a contact wave and a
compression wave are created. Table 5 shows that the position of the front converges
to second order, and Table 6 shows the convergence rates in L1-norm. In this example,
the convergence is not second-order because the initial data is not smooth, and the
loss of smoothness translates into a loss of accuracy.

4.3.2. Rarefaction wave overtaking a tracked contact wave. In this test
problem, we consider a rarefaction wave and a contact wave, which are initially de-
scribed by the dotted lines in Figure 8. The contact wave is tracked. As the simulation
progresses, we expect the rarefaction wave to move toward the right and slowly over-
take the contact wave. This is what is obtained and shown by the solid lines in
Figure 8. The convergence rate for this problem is expected to be second-order in L1;
the convergence rates are given in Table 7. We obtain second-order convergence once
the asymptotic regime is reached. A CFL of 1

2 is used.
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Fig. 6. Density, velocity, and pressure for Sod’s shock tube problem with tracked shock (crosses)
and tracked contact (circles). h = 1/800.
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Fig. 7. Shock overtaking a rarefaction wave. The dotted line is initial conditions.
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Table 5

Convergence rate for the position of the front xf .

Npts 100 200 400 800

xf
coarse − xf

fine
7.03 × 10−6 1.29× 10−6 3.27× 10−7 9.09× 10−8

Convergence rate 1.70 1.99 1.84

Table 6

Errors and convergence rates in L1 for a shock-rarefaction interaction.

ρ ρu ρE

100/200 2.76 × 10−4 1.16× 10−3 9.98× 10−3

200/400 9.21 × 10−5 4.65× 10−4 3.94× 10−3

400/800 2.98 × 10−5 1.59× 10−4 1.43× 10−3

800/1600 1.00 × 10−5 5.31× 10−5 4.86× 10−4

1600/3200 3.56 × 10−6 1.84× 10−6 1.56× 10−4

100/200/400 1.59 1.32 1.34
200/400/800 1.63 1.55 1.46
400/800/1600 1.58 1.58 1.56
800/1600/3200 1.49 1.53 1.64
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Fig. 8. Rarefaction overtaking a contact wave. The dotted line is initial conditions.
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Table 7

Errors and convergence rates in L1 for a rarefaction-contact interaction.

ρ ρu ρE

100/200 2.60× 10−4 2.43× 10−4 9.06× 10−4

200/400 1.18× 10−4 2.18× 10−4 8.75× 10−4

400/800 9.12× 10−5 1.58× 10−4 8.01× 10−4

800/1600 4.63× 10−5 6.40× 10−5 1.75× 10−4

1600/3200 1.27× 10−5 1.22× 10−5 4.54××10−5

100/200/400 0.37 0.15 0.05
200/400/800 0.37 0.47 0.13
400/800/1600 0.98 1.30 2.19
800/1600/3200 1.87 2.39 1.98

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

ρ

0 50 100 150 200

0

u

0 50 100 150 200
0

2

4

6

8

10

12
x 10

7 p

Fig. 9. Multimaterial case with water on the left and air on the right. A compression wave is
propagating in the water.

4.4. Multimaterial case. In this test case, the interface is in the middle, and
the right and left states are

ρL = 1, ρR = 1.29e− 3,
uL = 0, uR = 0,
pL = 105, pR = 108.

Right after the initial state, a compression wave forms in the water and propagates
to the left. The results after 800 time steps are shown in Figure 9. One should also
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note that the front between the water and the air has moved significantly during that
time, about 2.3∆x.

5. Conclusion. This paper presents a new conservative algorithm for tracking
a moving discontinuity, whether it be a shock or a contact, generalizing the ideas in
[8] to the case of moving free boundaries. The method is based on a finite-volume
discretization derived from applying the divergence theorem on the irregular regions in
space-time obtained by intersecting Cartesian cells with the region on either side of the
front. Small-cell stability problems are avoided by updating irregular control volumes
using a linear combination of conservative and nonconservative methods, combined
with redistribution to maintain conservation. The resulting method has a truncation
error that is O(h) at the irregular cells and O(h2) elsewhere, leading to a method
whose solution error is O(h2). The previous methods for free boundaries using this
approach had O(1) truncation errors at the tracked front, leading to a method that
was no more than first-order accurate in solution error. We also presented an extension
to a multimaterial case where the interface separates very different materials, namely,
water and air, that have different equations of state.

The extension of this method to multiple dimensions will require the application of
the machinery in [8] to compute the required time-centered fluxes for the conservative
and nonconservative discretizations. To carry this out, we will need to generalize two
of the constructions in this paper. One is relatively straightforward: the calculation
of O(h2) values at cell centers based on the values at cell centroids, corresponding to
(24). We expect that a least-squares approach to computing the gradient, similar to
that used in [17], combined with monotonicity constraints, will provide a sufficiently
accurate and robust method. The second issue, which is the calculation of second-
order accurate dynamics of the front location and the corresponding finite-volume
discretization data, requires a more significant effort. In the one-dimensional case,
the evolution is done using a second-order accurate integration of the ODE for a
Lagrangian point representing the front, and the geometric constructions of the finite-
volume discretization data are trivial. The use of Lagrangian points in more than one
dimension requires regular remapping of the Lagrangian points, which is difficult
to do while maintaining second-order accuracy, particularly in three dimensions. The
approach we will take is based on the use of a level-set representation of the front, along
the lines of that described in [1]. In this approach, the speed is computed at the front
using jump relations and extended to the interior using transport equations, leading to
a method that preserves distance functions. Given an implicit function representation
in space-time, it is then straightforward to compute the finite-volume discretization
information using repeated applications of the divergence theorem. However, this
approach will require the development of some extensions to the level-set approach
in [1] that will preserve second-order accuracy while preserving robustness in the
presence of kinks in the front.

REFERENCES

[1] D. Adalsteinsson and J. A. Sethian, Transport and diffusion of material quantities on
propagating interfaces via level set methods, J. Comput. Phys., 185 (2003), pp. 271–288.

[2] B. N. Azarenok and T. T. Tang, Second-order Godunov-type scheme for reactive flow cal-
culations on moving meshes, J. Comput. Phys., 206 (2005), pp. 48–80.

[3] J. Bell, P. Colella, and M. Welcome, Conservative front-tracking for inviscid compress-
ible flows, in Proceedings of the AIAA 10th Computational Fluid Dynamics Conference,
Honolulu, HI, 1991, pp. 814–822.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A SECOND-ORDER CONSERVATIVE FRONT-TRACKING METHOD 4813

[4] I.-L. Chern and P. Colella, A Conservative Front Tracking Method for Hyperbolic Con-
servations Laws, LLNL Report UCRL-97200, Lawrence Livermore National Laboratory,
Livermore, CA, 1987.

[5] P. Colella, Glimm’s method for gas dynamics, SIAM J. Sci. Statist. Comput., 3 (1982),
pp. 76–110.

[6] P. Colella, Volume-of-fluid methods for partial differential equations, in Godunov Methods—
Theory and Applications, Kluwer/Plenum, New York, 2001, pp. 161–177.

[7] P. Colella, D. Graves, T. Ligocki, and B. Van Straalen, EBAMRGodunov Documenta-
tion, Lawrence Berkeley National Laboratory, Berkeley, CA.

[8] P. Colella, D. T. Graves, B. J. Keen, and D. Modiano, A Cartesian grid embedded bound-
ary method for hyperbolic conservation laws, J. Comput. Phys., 211 (2006), pp. 347–366.

[9] J. Glimm, X. Li, Y. Liu, Z. Xu, and N. Zhao, Conservative front tracking with improved
accuracy, SIAM J. Numer. Anal., 41 (2003), pp. 1926–1947.

[10] J. Glimm, X. L. Li, and N. Zhao, Conservative front tracking and level set algorithms, Proc.
Natl. Acad. Sci. USA, 98 (2001), pp. 14198–14201.

[11] J. Hilditch and P. Colella, A projection method for low Mach number fast chemistry react-
ing flow, in Proceedings of the AIAA Aerospace Sciences Meeting, Reno, NV, 1997, AIAA
paper 97-0263.

[12] J. M. Hyman, Numerical methods for tracking interfaces, Phys. D, 12 (1984), pp. 396–407.
[13] P. Lax and L. Baumhoff, On Discontinuous Initial Value Problems for Nonlinear Equa-

tions and Finite Difference Schemes, Technical report LAMS-1332, Los Alamos Scientific
Laboratory, Los Alamos, NM, 1952.

[14] G. Miller and P. Colella, A conservative three-dimensional Eulerian method for coupled
solid-fluid shock capturing, J. Comput. Phys., 183 (2002), pp. 26–82.

[15] W. F. Noh, Errors for calculations of strong shocks using an artificial viscosity and an artificial
heat flux, J. Comput. Phys., 72 (1987), pp. 78–120.

[16] P. Schwartz, D. Adalsteinsson, P. Colella, A. P. Arkin, and M. Onsum, Numerical
computation of diffusion on a surface, Proc. Natl. Acad. Sci. USA, 102 (2005), pp. 11151–
11156.

[17] P. Schwartz, M. Barad, P. Colella, and T. J. Ligocki, A Cartesian grid embedded bound-
ary method for the heat equation and Poisson’s equation in three dimensions, J. Comput.
Phys., 211 (2006), pp. 531–550.

[18] G. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic con-
servation laws, J. Comput. Phys., 27 (1978), pp. 1–31.

[19] H. Tang and T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic con-
servation laws, SIAM J. Numer. Anal., 41 (2003), pp. 487–515.

[20] P. Woodward, Piecewise-parabolic methods for astrophysical fluid dynamics, in Proceedings
of the NATO Advanced Workshop on Astrophysical Radiation Hydrodynamics, Munich,
West Germany, 1982.




