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U   predicting of fl ow on the surface and 
in the subsurface necessitates recognizing “that surface water 

and ground water are simply two manifestations of a single integrated 
resource” (Winter et al., 1998). � is recognition has stimulated the 
development of numerical models capable of simulating the inter-
actions between surface and subsurface fl ow. � e accuracy of the 
simulation relies heavily on (i) the choice of governing equations used 
to simulate a fl ow behavior (e.g., three-dimensional Richards’ equa-
tion for subsurface fl ow), (ii) the numerical methodology chosen to 
solve the governing equations (e.g., fi nite diff erence or volume) and 
the order of its accuracy, (iii) the accuracy of representation of hydro-
geologic data on the model grids (details in Kumar et al., 2009), and 
fi nally, (iv) the discretization methodology (unstructured or struc-
tured mesh) and its resolution. Coupled surface–subsurface models 

include InHM (VanderKwaak, 1999), MIKE SHE (Graham and 
Refsgaard, 2001), WASH123D (Yeh and Huang, 2003), MODHMS 
(Panday and Huyakorn, 2004), PARFLOW-Surface Flow (Kollet and 
Maxwell, 2006), and PIHM (Qu and Duff y, 2007; Kumar, 2009). 
Among these, MIKE SHE, MODHMS, and PARFLOW-Surface 
Flow use fi nite diff erence methods, while InHM and WASH123D 
are based on fi nite element methods. Finite diff erence–based models 
have some signifi cant advantages in terms of ease of meshing the 
domain, simple topological structure and ease of parallelization, 
but the rigidity of the structured grids in conforming to curvilin-
ear geometries and representation of heterogeneities (Kumar et al., 
2009) make it prohibitive to perform accurate large-scale simulations. 
Barrash and Dougherty (1997) and the USEPA (1994) also reported 
loss of accuracy in predicting hydraulic heads near regions of steep 
head gradients and boundaries using fi nite diff erence models. � e 
inaccuracy can be reduced by performing relatively fi ne localized 
discretization in areas of steep head gradient (Leake and Claar, 1999; 
Mehl and Hill, 2004); however, this results in long execution times. 
An alternate solution strategy is the traditional Galerkin fi nite ele-
ment methods, which are used to solve diff usion wave equations in 
WASH123D. � ese methods ensure continuity in gradient at the 
discretization boundary, but there is no local conservation of mass 
within each discretized unit element (Di Giammarco et al., 1996). 
Control volume fi nite element (CVFE) methods alleviate this prob-
lem (InHM is based on CVFE) and are able to conserve mass.

Here we develop a second-order accurate, fully coupled, 
fi nite volume–based integrated hydrologic modeling (FIHM) 
framework for unstructured grids. � e primary advantages of this 
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Surface water, the vadose zone, and groundwater are linked components of a hydrologic con  nuum. In order to capture 

the interac  on between diff erent components of a hydrologic con  nuum and to use this understanding in water manage-

ment situa  ons, an accurate numerical model is needed. The quality of model results depends on accurate representa  on 

of the physical processes and the data describing the area of interest, as well as performance of the numerical formula  on 

implemented. Here we present a physics-based, distributed, fully coupled, second-order accurate, upwind cell-centered, 

constrained unstructured mesh based fi nite-volume modeling framework (FIHM) that simultaneously solves two-dimen-

sional unsteady overland fl ow and three-dimensional variably saturated subsurface fl ow in heterogeneous, anisotropic 

domains. A mul  dimensional linear reconstruc  on of the hydraulic gradients (surface and subsurface) is used to achieve 

second-order accuracy. Accuracy and effi  ciency in raster data and vector-boundary representa  ons are facilitated through 

the use of constrained Delaunay meshes in domain discre  za  on. The experiments presented here (i) explore the infl uence 

of ini  al moisture condi  ons, soil proper  es, anisotropy, and heterogeneity in determining the pressure head distribu  ons 

in the vadose and saturated zones, (ii) show the existence of localized “fl ux rota  on” phenomenon due to heterogeneous 

anisotropy,  leading to the crea  on of convergence–divergence zones, (iii) show the infl uence of ver  cal drainage from 

unsaturated zone on the response of an unconfi ned aquifer to pumping, and (iv) show the eff ects of capillarity, satura  on 

excess, infi ltra  on excess, and ini  al water table loca  on on determining the overland fl ow genera  on.
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methodology are the conservation of the solution property within 
each discretized element, use of spatially adaptive and bound-
ary-fi tting unstructured mesh, which can be generated using 
boundary constraints pertaining to topography, hydrogeology, 
soils, or climate (Kumar et al., 2009), and numerical robustness 
achieved due to validity of local extremum diminishing property 
on each grid cell. � e constrained unstructured mesh leads to 
enhanced effi  ciency in capture of topographic spatial variations 
with least number of elements, and also for the accurate cap-
ture of the complex geometries of topographic, geologic, and 
morphologic features. A higher-order scheme for overland fl ow 
(Fiedler and Ramirez, 2000; Lin et al., 2003) and subsurface 
fl ow (Manzini and Ferraris, 2004) yields improved simulation of 
states and derived hydraulic conductivity fi elds both in areas of 
smooth and steep gradients. � e model simulates overland fl ow 
by solving the diff usion wave approximation of St. Venant’s equa-
tion. Vadose zone pressure distribution is simulated by solving the 
nonlinear, three-dimensional Richards equation. � e model treats 
the complete subsurface regime with unsaturated and saturated 
fl ow as a unifi ed whole. � e second-order accuracy of the scheme 
is achieved through the use of higher-order approximations of the 
fl ux at the cell faces (Turkel, 1985). We note that fi rst-order fi nite 
volume models such as PIHM (Qu and Duff y, 2007; Kumar, 
2009), which are based on a piecewise constant head representa-
tion within an element, lead to smearing of discontinuities and are 
particularly inaccurate for simulation in orthotropic and aniso-
tropic media (Pasdunkorale and Turner, 2003). � e second-order 
formulation in FIHM is supported by a continuously diff eren-
tiable multidimensional slope limiter (developed by Jawahar and 
Kamath, 2000) to avoid spurious oscillations. � e evaluation of 
local gradient at each edge of the control volume necessitates 
head magnitude at the cell centers and vertices. � e model uses 
a pseudo-Laplacian–based reconstruction mechanism (Holmes 
and Connell, 1989) to obtain vertex head values from the cell 
averages (which are the primary unknowns). � e reconstruction 
procedure is of fundamental importance to achieve optimally 
accurate normal fl ux at the edge (Bertolazzi and Manzini, 2004; 
Ollivier-Gooch and Van Altena, 2002). � e model also han-
dles modifi cation of the fl ow fi eld due to arbitrarily oriented 
anisotropy of hydrogeologic and physiographic properties. � is 
is particularly important in regions with directional hydraulic 
conductivity or surface roughness. � e majority of existing com-
putational methods for anisotropic conductivity use structured, 
body-fi tted meshes where, to avoid dealing with cross derivatives, 
they align their coordinate system with the principal directions 
of the conductivity tensor. Such a methodology is not easy to use 
in problems with multiple anisotropic materials. Even the fi nite 
volume–based models are generally not designed to handle both 
inhomogeneity and general anisotropy. � e model detailed in 
this paper handles the media inhomogeneities in combination 
with full-tensor anisotropy by evaluating both the normal and 
tangential components of edge gradients.

� e objectives of this paper are to detail the second-order 
accurate fi nite volume modeling framework for coupled sur-
face and subsurface simulation and demonstrate its capability 
to simulate and improve understanding of process interactions. 
Specifi cally, we strive to understand why coupling of processes 
is needed and how the interaction between processes infl uences 
hydrologic states in the neighboring continua. Also, the infl uence 

of topographic and physiographic properties on process simula-
tion will be explored. Complete details of testing and validation 
of the model are available in Kumar (2009). � e six problems 
presented here highlight the model’s capabilities and verify and 
explore individual processes and the interaction between them.

Governing Equa  ons
� e equations governing two-dimensional head distribution 

on the surface and a three-dimensional pressure distribution in 
the subsurface are presented in this section. Processes describing 
water movement on the surface and in the subsurface zone are 
discussed fi rst, followed by coupling behavior between them.

Overland Flow

Overland fl ow is generally defi ned by the shallow-water St. 
Venant’s equation. � e equation is derived by depth-averaged 
integration of the three-dimensional Navier–Stokes equations. 
Application of a boundary condition on the free surface and 
continuity of fl ux on the ground surface during integration intro-
duces a term that couples it to the vadose zone (Weiyan, 1992). 
Here we use a diff usion-wave fl ow–based approximation of St. 
Venant’s equation with vadose zone–surface fl ow coupling terms 
as detailed in Gottardi and Venutelli (1993) by
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where K(ψo) is the diff usive conductance vector [L T−1], ψo is 
the overland fl ow depth [L], ho (= zs + ψo) is the total overland 
fl ow head [L], zs is the elevation of the ground surface [L], Qss is 
volumetric fl ux per unit area due to the sources or sinks, which 
can include precipitation and evapotranspiration [L T−1], and 
Qog is the vertical fl ux exchange per unit area between surface 
and subsurface fl ow [L T−1]. � e diff usive conductance term is 
given by
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where n  is Manning’s roughness coeffi  cient [L-1/3 T] and s  
is the direction of maximum slope [L]. Note that the overland 
fl ow equation is a nonlinear parabolic equation due to the nature 
of the diff usive conductance. � e assumptions inherent in the 
diff usion-wave approximation of St. Venant’s equation include 
depth-averaged fl ow velocities, a hydrostatic vertical head distri-
bution, mild bed slopes, neglecting inertial terms, and a dominant 
bottom shear stress. � e equation is able to adequately resolve 
backwater eff ects.

Variably Saturated Subsurface Flow

� ree-dimensional vadose zone fl ow in a heterogeneous 
porous medium is governed by Richards’ equation for variably 
saturated fl ow (Huyakorn and Pinder, 1983) given by
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where K(ψ) is the hydraulic conductivity tensor [L T−1], ψ is 
the potentiometric head [L], hg (= z + ψ) is the total head [L], 
S is the soil saturation, Ss is the specifi c storage [L−1], C(ψ) is 
the specifi c moisture capacity [L−1], and Qss is volumetric fl ux 
per unit volume [T−1] due to the sources or sinks which can 
include pumping at wells. � e [SSs + C(ψ)] term in the vari-
ably saturated equation describes the storage properties of the 
medium. As the soil pressure head, ψ, becomes positive and the 
pores saturate with water, the specifi c moisture capacity, C(ψ), 
converges to zero and the soil saturation, S, converges to one. � e 
soil characteristic functions K(ψ) and C(ψ) can be represented by 
several diff erent empirical and theoretical methods (e.g., Brooks 
and Corey, 1966; Mualem, 1976; Haverkamp et al., 1977; van 
Genuchten, 1980).

Coupling between Overland and Subsurface Flow

� e coupling of the surface and vadose zone fl ow is incorpo-
rated by ensuring continuity of normal vertical fl ux and pressure 
head at the surface–subsurface interface. � e methodology is 
equivalent to the “conductance concept” (VanderKwaak, 1999) if 
the thickness of the interfi cial domain goes to zero. Flux continu-
ity across the surface–subsurface domain is ensured by equating 
Qog in Eq. [1] to the vertical fl ux term Kz(∂hg/∂z) in Eq. [3], as 
discussed in Discacciati and Quarteroni (2002). � e equivalent 
vertical conductivity, Kz, is evaluated as
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We note that ∂hg/∂z < 0 corresponds to a negative downward 
gradient condition which essentially translates to fl ux in the 
upward direction (exfi ltration). Also, continuity in head is 
ensured by setting

o gsurface surfacez z
h h

= =
=  [5]

� e physical equations defi ned on the problem domain are now 
defi ned on each discretized element (control volume) using a 
fi nite volume strategy.

Finite Volume Framework

Domain Discre  za  on

� e FIHM model uses a semidiscrete fi nite volume formu-
lation to spatially discretize hydrologic process equations in the 
problem domain. � e fi rst step in doing so is the tessellation of 

the domain into a collection of nonoverlapping elements (con-
trol volumes) using an effi  cient domain discretization algorithm. 
We use constrained Delaunay triangulation to decompose the 
problem domain. In three dimensions, the triangulations are 
projected in depth to form prismatic elements. � e Delaunay 
property of the grid leads to a large decrease in the number of 
nodes and elements with respect to structured meshes (Shewchuk 
1996). Constraining of the Delaunay triangulations gives addi-
tional advantages through better representation of line features 
such as boundaries between zones having diff erent soil types, or 
land-use or land-cover, rivers, and subwatershed divides (Kumar 
et al., 2009). � e unique advantage of using thematic classes 
as constraints for unstructured grids is that all class boundaries 
(vegetation and/or soil polygons) are honored by the discretiza-
tion, thus resulting in a model grid where every cell contains a 
single class. � is reduces the data uncertainty arising from sub-
grid variability of mixed classes or themes within a model grid 
cell (Kumar et al., 2009). � e discretization strategy generates 
high-quality unstructured grids with user-specifi ed geometrical 
constraints such as element size and “roundness”. � e algorith-
mic details of generation of constrained Delaunay triangulations 
using geographical information system (GIS)–feature objects has 
been discussed in Kumar et al. (2009). More importantly, the 
discretization strategy has been integrated with a “shared data 
model”, which leads to coupling of the GIS with the hydrologic 
model (Kumar, 2009). � e integrated software framework facili-
tates rapid prototyping of meshes and data defi nitions resulting 
in effi  cient parameter steering, grid design, real-time visualization, 
and decision support. In summary, the “support-based” domain 
discretization and unstructured grid framework provides a close 
linkage between geoscientific data and FIHM (SoureForge, 
Mountain View, CA, http://sourceforge.net/projects/pihmgis/).

Semidiscrete Finite Volume Formula  on

� e governing partial diff erential equations (PDEs) describ-
ing surface and subsurface fl ow (Eq. [1] and [3]) are defi ned 
for each control volume using a semidiscrete fi nite volume for-
mulation. � e formulation entails discretization of a generalized 
PDE of a conservative scalar variable, φ, in space. We consider a 
generalized PDE (for surface or subsurface fl ow) as

∂φ
=∇⋅ φ +∇⋅ Γ∇φ +

∂ ss( ) ( )U Q
t

 [6]

or the rate of change in φ = 
(advective fl ux) + (diff usive fl ux) + (source/sink), where U is the 
fl ux velocity vector, Γ is the conductivity tensor, and Qss is rate 
of increase/decrease in φ due to sources and sinks. � e PDE in 
Eq. [6] is reduced to an ordinary diff erential equation (ODE) by 
integration over an arbitrary three-dimensional control volume, 
Vi, in the model domain
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By applying Gauss’s theorem on the advective and diff usive terms 
on the right-hand side of the Eq. [7], we obtain
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where n  is the normal vector to the surface j of the control 
volume i. By integrating the individual fl ux terms in Eq. [8] over 
a prismatic volume, we obtain a generic semidiscrete form of 
ODE that defi nes all the hydrologic processes incorporated in 
the fi nite volume as

ss

d
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t

φ
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where φ  (L) is the average volumetric conservative scalar per 
unit planimetric prismatic volume area Ai, Aij is the interfacial 
area, C  and D  are the advective and diff usive fl ux, respectively, 
n  is normal vector to the face of control volume and ssQ  is the 
average source–sink rate per unit control volume. We use this 
approach to convert the governing PDEs for surface (Eq. [1]) and 
subsurface (Eq. [3]) fl ows to their semidiscrete form of ODEs. As 
discussed in the previous section, both governing equations are 
parabolic diff usion–based PDEs, so the convective fl ux C  in Eq. 
[9] will be equal to zero. We can express the semidiscrete forms 
of [1] and [3] as
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where jF  and kG  are lateral and vertical fl ux vectors. j and k 
denote the faces of the ith control volume element and m is the 
vertical discretization index. Note that since the control volumes 
are prismatic in shape, there are a total of fi ve faces (edges): three 
vertical faces on the side of the prism and two horizontal faces 
on the top and bottom of the prism.

Ver  cal Flux Calcula  on

� e vertical subsurface fl ux term kG  at the interface between 
mth and (m + 1)th layer (see Fig. 1) is calculated by imposing 
continuity of fl ux and head at the interface and is given by
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� is results in calculation of the vertical fl ux as
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Both the fl ux and the vertical anisotropy along the z-axis have 
been assumed to be normal to the control volume face in this 
analysis. � e fl ow between surface and subsurface domains fol-
lows similar conceptualization. � e fl ux at the topmost face of 
the subsurface prismatic volume ( kG in Eq. [11]) is equal to the 
bottom fl ux from the overland-fl ow control volume ( kG  in Eq. 
[10], which is the same as ogQ  in Eq. [1]). � e coupling fl ux kG  
in this case can be calculated as

( )
0,1 0,1/2 1/2,1

continuity in fluxk k kG G G= =  [14a]

By ensuring continuity in head at the land surface (h0 = h1/2) and 
evaluating the eff ective vertical conductivity as in Eq. [4], reduces 
the above equation to
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Note that (h)0 and (h)1 in the above equation are ho and hg in Eq. 
[1] and [3], respectively.

Lateral Flux Calcula  on

� e normalized lateral fl ux term ( j jn Fi ) for surface fl ow in 
Eq. [10] is derived as
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and for the subsurface fl ux in Eq. [11] is derived as
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F . 1. Each prisma  c element is discre  zed in ver  cal into mul  ple layers. Δzm+1 is 
thickness of (m + 1)th discre  za  on layer. Layer 0 (shaded) corresponds to overland fl ow 
depth, ψ0. Gk is the ver  cal fl ux at the interface of the mth and (m + 1)th layers; ho [= 
(h)0] and hg [= (h)1] are the heads of the overland fl ow and in the top subsurface layer 
respec  vely; zs is the eleva  on to the ground surface; and Ai is the planimetric area of 
the prisma  c element.
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where ξij is edge length of the jth edge (or face) of element i, 
ψo is the overland fl ow depth, and Δz is the vertical discreti-
zation thickness of a given subsurface control volume. UW[ ] 
is an upwind function that determines the cell face at which 
normalized fl ux for the edge is calculated. � e cell face identifi ed 
belongs to the upstream cell from which fl ow is directed outwards 
through the edge. � e line integrals in Eq. [15] are computed 
by applying second-order midpoint quadrature rule to upstream 
numerical fl uxes (Blazek, 2001). � e calculation of lateral fl ow 
terms for both surface and subsurface fl ow (in Eq. [15]) crucially 
depends on the evaluation of gradient and head terms on the 
edge faces of each control volume. In the following discussion, h 
corresponds to total head of either subsurface head or overland 
fl ow head.

Edge Gradient Calcula  on

� e fi rst step in the formulation of the discrete gradient for 
internal or boundary edges consist of defi ning the one-sided 
gradient. � e gradient calculation for the variational triangle 
Δa1b (shown in Fig. 2) for the edge ab is calculated using the 
Green–Gauss theorem as

1
dh n h

A
ξ

∇ = ⋅ ξ∫  [16]

where ξ is the edge vector and A is the area of the Δa1b. Along 
the x and y directions, the gradient reduces to
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� e absolute gradient for the left variational triangle of edge ab 
is given by

2
2

1 1 1( ) ( ) ( )a b a b a bL x y
h h h h⎡ ⎤⎡ ⎤∇ = ∇ = ∇ + ∇⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 [18]

We note that the gradient calculation in Eq. [17] and [18] 
depends both on the cell center heads (such as h1) and the vertex 
heads (such as ha and hb). We use a multidimensional linear 
(second-order) reconstruction scheme within the framework of 
cell-centered fi nite-volume discretization to determine vertex 
values from cell averages.

Vertex Reconstruc  on

A second-order accurate, modifi ed pseudo-Laplacian pro-
cedure (Jawahar and Kamath, 2000) is used to obtain vertex 
values from the corresponding cell-centered values (Holmes and 
Connell, 1989). � e method outperforms the traditionally used 
inverse-distance weighted interpolation, which was observed 
to have less-than-second-order accuracy (Frink, 1994). For any 
vertex of the mesh, we fi rst defi ne the reconstruction stencil as 
the union of the cells that share the vertex; then, we calculate 
a cell weight for every element of the stencil. Figure 3 shows a 
representative stencil for the vertex b. � e value of head at vertex 
b is calculated as

1 1

M
i

b iM
i ii

h h
= =

ω
=

ω
∑
∑

 [19]

where M is the number of cells sharing the vertex and ωis are the 
cell weights that are made to satisfy the zero pseudo-Laplacian 
condition (Kim et al., 2003). � e weighted interpolation formula 
is linearly consistent. � e individual weights are calculated by 
using Lagrange multipliers λx and λy as

1 ( ) ( )i x i b y i bx x y yω = +λ − +λ −  [20]

where

2 2

xy y yy x xy x xx y
x y

xx yy xy xx yy xy

I R I R I R I R

I I I I I I

− −
λ = λ =

− −
 [21a]

F . 2. Plan view of a typical tessella  on where Δabc is surrounded 
by three neighboring elements (having centers 1, 2, and 3). Flux 
calcula  on on any edge ab of Δabc (shaded) uses heads at ver  ces 
a and b of the triangle and at cell centers 1 and d.

F . 3. Head reconstruc  on at an arbitrary vertex b in a tessella  on 
using a pseudo-Laplacian procedure (Jawahar and Kamath, 2000) 
uses head values at the centers of all the cells that share a node at b.
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∑
 [21b]

1 1

( ) ( )
M M

x i b y i b
i i

R x x R y y
= =

= − = −∑ ∑  [21c]

� is procedure gives most of the benefi ts of a true Laplacian and 
is also computationally inexpensive. It is important to realize that 
this reconstruction step is required by all vertices of the mesh, 
whether the vertex is internal or on the boundary of the com-
putational domain. Extraneous cell weights (negative or positive 
values that are greater than 2), which are sometimes obtained at 
the boundaries (Frink and Pirzadeh, 1999), are clipped based on 
Jawahar and Kamath (2000). � e modifi cation of weights, which 
is only performed for the boundary vertices, is not expected to 
have a signifi cant impact on accuracy since subsequent imposi-
tion of boundary conditions at these locations would weaken 
the eff ect.

Calcula  on of Head at an Edge 

Using Linear Reconstruc  on

� e overland fl ow depth value at an edge in Eq. [15a] can 
be approximated by either using an upwind cell-centered value 
(characteristic of fi rst order methods) or obtaining an interpolated 
value at the midpoint of the edge. First-order upwind methods 
introduce large and often unacceptable numerical diff usion. Here 
we use a second-order estimate of the solution at the edge by 
approximating the edge depth using a multidimensional linear 
reconstruction process. � e underlying assumption is a piece-
wise linear distribution of fl ow depth within a cell. To satisfy 
C-property (Bermudez and Vasquez, 1994), instead of linear 
distribution of fl ow depth, we perform interpolation of the total 
head at the edge and then subtract the elevation at the edge to 
obtain fl ow depth at the edge. � e higher-order edge estimate, 
hξ, is calculated by

c lh h r hξ = + ⋅∇  [22]

where hc is the head at the cell center, r  is the position vector of the 
midpoint of the edge face with respect to the cell center, and ∇hl 
is the limited cell gradient. � is reconstruction technique is based 
on a wide computational stencil and does not strongly depend on 
vertex values to preserve stability for highly distorted grids.

Limited Gradient Calcula  on

The linear reconstruction can cause spurious numerical 
oscillations when approximating strong gradient solutions. � e 
problem is alleviated by a limiter-based gradient calculation that 
locally monotonizes the reconstructed solution by limiting the 
slope of the reconstructed variables. � e limiter helps in achieving 
smooth transition for both discontinuous jumps and continuous 
gradients. Here we use a multidimensional limiter of Jawahar and 
Kamath (2000) that is shown to be eff ective for strong discon-
tinuities, even on a grid composed of highly distorted triangles. 
� is is in contrast to the often-used nondiff erentiable extremum 
seeking limiters such as the ones based on the MUSCL approach 

(Hubbard, 1999), which are strongly dependent on grid connec-
tivity. � e limiting procedure consists of calculation of limited 
gradient (∇hl) by taking the weighted average of the unlimited 
gradients (∇hu) in the neighboring elements as

l 1 u 1 2 u 2 3 u 3( ) ( ) ( )h h h h∇ = ω ∇ +ω ∇ +ω ∇  [23]

where the weights are

2 2
2 3 3 1

1 22 2 2 2 2 2 2 2
1 2 3 1 2 3

2
1 2

3 2 2 2 2
1 2 3

3 3

3

g g g g

g g g g g g

g g

g g g

+ ε + ε
ω = ω =

+ + + ε + + + ε

+ ε
ω =

+ + + ε

 [24]

and g1, g2, and g3 are the square of the L2 norm of the unlimited 
elemental gradients given by 2

1 u 1( )g h= ∇ , 2
2 u 2( )g h= ∇ , 

and 2
3 u 3( )g h= ∇ ; ε is a small number introduced to prevent 

indeterminacy. � e limiting weights in Eq. [23] are reduced to 
1/3 when all the three elemental gradients are equal.

Unlimited Gradient Calcula  on

The unlimited gradient of an element, ∇hu, is the area 
weighted average of gradients calculated on its edges, ∇he. � is 
implies that

3

u e e
1

( ) ( )i i
i

h A h
=

∇ = ∇∑  [25]

where (Ae)i is the cumulative area of the variational triangle on 
the either side of edge i. Using Fig. 2, the edge gradient on an 
arbitrary face ab can be calculated as

1 1
e

1

( ) ab ab abd abd
ab

ab abd

A h A h
h

A A

∇ + ∇
∇ =

+
 [26]

In the above equation, (Ae)ab = Aab1 + Aabd. For faces located on 
the boundaries, the solution at ghost elements is used to provide 
the same stencil to compute the face gradients.

Normalized Lateral Flux in Heterogeneous 

Anisotropic Domain

Evaluation of normalized fl ux at an edge must take into 
account the contribution of arbitrarily oriented anisotropy at the 
control volume interface. � e normalized fl ux j jn F⋅  in a two-
dimensional anisotropic domain with principal axes oriented as 
shown in Fig. 4 can be resolved into x and y components accord-
ing to Bear (1975) as

ˆ ˆ ˆ ˆ( ) ( )x y x x y yn F n F i F j n K h i K h j Aξ⋅ = ⋅ + = ⋅ ∇ + ∇  [27]

where ∇hx and ∇hy are calculated as in Eq. [17], and Kx and Ky 
are hydraulic conductivity components in the x and y directions, 
respectively; Aξ is the edge interaction–fl ux area, which is equal 
to ψoξ for surface fl ow and Δzξ for vadose zone. Assuming that 
principal conductivities K1 and K2 are oriented at an angle β to 
the global x–y axes (see Fig. 4), Eq. [27] becomes

{
}

2 2

1 2 1 2

2 2

1 2 1 2

ˆ( Cos Sin ) ( )Cos * Sin

ˆ( )Cos * Sin ( Sin Cos ) )

x y

x y

n F

A K K h K K h i

K K h K K h j n

ξ

⋅ =

β+ β ∇ + − β β∇

+ − β β∇ + β+ β ∇ ⋅

⎡ ⎤⎢ ⎥⎣ ⎦
⎡ ⎤⎢ ⎥⎣ ⎦

 

[28]
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� e conductivities in the above equation can be either a diff usive 
conductivity shown in Eq. [2] for the surface fl ow or a hydraulic 
conductivity of the subsurface domain. Taking into account the 
orientation of normalized fl ux that is at an angle α to the global 
x-axis (see Fig. 4), Eq. [28] can be rewritten as

2 2

1 2 1 2

2 2

1 2 1 2

( Cos Sin ) ( )Cos * Sin Cos

( )Cos * Sin ( Sin Cos ) ) Sin

x y

x y

n F

A K K h K K h

K K h K K h

ξ

⋅ =

β+ β ∇ + − β β∇ α

+ − β β∇ + β+ β ∇ α

⎡ ⎤⎢ ⎥⎣ ⎦
⎡ ⎤⎢ ⎥⎣ ⎦

 

[29]

By replacing ∇hx = ∇hCosθ and ∇hy = ∇hSinθ in Eq. [29], the 
equation transforms to

[ ]1 2Cos( )Cos( ) Sin( )Sin( )

n F

A K K hξ

⋅ =

θ−β α−β + θ−β α−β ∇
 [30]

where θ is angle of orientation of ∇h to the x-axis. An alternative 
derivation of Eq. [30] using a coordinate system that is oriented 
along the direction of principal conductivities is given in the 
Appendix.

Implicit Time Integra  on

� e semidiscrete scheme shown in Eq. [10] and [11] forms a 
system of diff erential equations, which can be written as

[ ]
d

, ( )
d

f t t
t

ψ
= ψ  [31]

where the vector ψ(t) is defi ned by

1,1 1,1 1,1 ,1 ,1 ,1

1,2 1,2 1,2 , , ,

( ) [ ( , , , ),..., ( , , , ),

( , , , ),..., ( , , , )]

N N N

N M N M N M

t x y z t x y z t

x y z t x y z t

ψ = ψ ψ
ψ ψ

 

M is the number of states, which includes overland fl ow and 
variably saturated heads in vertically discretized subsurface layers, 
N is the number of lateral discretization elements, and (xi,j, yi,j, 
zi,j) is the coordinate location of centroid of the ith cell and 
jth layer. For time integration, we use a variable-order, variable-
step backward diff erentiation formula–based stiff  ODE solver 
called CVODE (Cohen and Hindmarsh, 1994). Using Newton 

linearization scheme, CVODE solves the system given in Eq. [31], 
at each time step, by reducing it to

( 1) ( ) ( )[ ] ( )n k n k n mA G+ψ −ψ =− ψ  [32]

where

,0n nA I T J= − β  [33]

ψn(k) in Eq. [32] are computed approximations to ψ(tn) at itera-
tion k; Tn = tn − tn-1 is the step size; I is the identity matrix, J is the 
Jacobian, and β is a coeffi  cient that is uniquely determined by the 
order and recent history of the step sizes (Byrne and Hindmarsh, 
1975; Jackson and Sacks-Davis, 1980). Preconditioned, iterative 
Krylov method is used to solve the Jacobian system at each Newton 
iteration step (Brown and Hindmarsh, 1989). � e advantage of 
doing so using Krylov linear solver is that it requires only matrix 
vector products, which can be approximated by taking diff erences 
of the nonlinear function f( ). � is approach avoids computation 
and storage of the Jacobian matrix. � e memory effi  ciency, how-
ever, is obtained at the expense of increased computational time 
arising from additional evaluation of the nonlinear function. � e 
function G( ) in the Eq. [32] is the nonlinear system given by

,0 ,
1

( ) ( , )
Q

n n n i
n n n n n i

i

G T f t −

=

ψ = ψ − β ψ − α ψ∑  [34]

where Q is the accuracy order that varies from 1 to 5, and α is 
a coeffi  cient uniquely determined by the order and recent his-
tory of the step sizes (Byrne and Hindmarsh, 1975; Jackson and 
Sacks-Davis, 1980). At each iteration step in Eq. [32], the local 
error is estimated and is required to satisfy convergence tolerance 
conditions. � e time step size taken during iteration is reduced 
whenever that error test fails. In addition to adjusting the step size 
to meet the local error test, CVODE also adjusts the order, with 
the goal of maximizing the step size. � e integration starts out at 
order 1 and the order varies dynamically after that. However, if 
either a convergence failure or an error test failure occurred on the 
step just completed, no change in step size or order is performed 
(Cohen and Hindmarsh, 1994). By varying the step size and 

order, the solver aims for the most effi  cient simulation 
while ensuring stability.

Numerical Results
To illustrate the eff ectiveness of the developed model-

ing framework, six test case problems are presented in this 
section. Complete testing and validation of the model, 
using additional test cases, were detailed in Kumar (2009). 
� e model simulations were performed on dual 2.4 GHz 
AMD Opteron processors with 8 Gb of ECC RAM.

Infi ltra  on through Layered Soil

An unsaturated vertical fl ow experiment in a two-lay-
ered soil was used to verify fl ow behavior in unsaturated zone. 
We compare the simulation result with analytical solutions 
obtained by Srivastava and Yeh (1991). Exponential func-
tional forms were used to denote the saturation pressure-head 
relations and conductivity curves in both the layers as shown 
in Eq. [35].

F . 4. Arbitrarily oriented anisotropy in adjacent cells sharing interface ab. 
Note that principal conduc  vi  es (K1, K2) and their orienta  on (angle β) 
with respect to the global Cartesian coordinate system (x,y) for both le   (L) 
and right (R) cells can be diff erent. (x1,y1) is a local coordinate system that is 
oriented along the direc  ons of the principal axes of anisotropy. The vector 
normal to interface ab, n, is at an angle α to the global x axis.
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r

s r

( )  and sK K e S eαψ αψθ−θ
ψ = = =

θ −θ
 [35]

where Ks is saturated hydraulic conductivity, θ is the 
moisture content, and α is a soil pore size distribution 
parameter. � e α of the two layers is set to be equal to 0.1 
cm−1, and Ks for the lower and upper layers are equal to 
1 and 10 cm h−1, respectively; the thickness of each layer 
is 100 cm; and θr and θs (residual and saturated moisture 
contents, respectively) are taken as 0.06 and 0.4, respec-
tively. � e domain is discretized into 200 prismatic layers 
of 1-cm thickness each. Initial pressure distribution in the 
two layers corresponds to the steady-state infi ltration pro-
fi le when a constant fl ux is applied at the soil surface and 
a prescribed pressure is maintained at the lower boundary. 
Solutions are obtained for wetting and drying cases to test 
the robustness of the model. During wetting scenario, the 
infi ltration rate (constant fl ux at the top of soil column), 
initially equal to 0.1 cm h−1, is suddenly increased to 0.9 
cm h−1 at the start of simulation, while for the drainage 
scenario, it is decreased from an initial value of 0.9 cm 
h−1 to 0.1 cm h−1. Figure 5 shows calculated pressure 
head distributions at selected times during the infi ltration 
event as computed with the analytical equation derived 
in Srivastava and Yeh (1991) and the numerical model 
presented in this paper. In both cases, infi ltration starts in 
the upper, high conductivity layer. Once the wetting front 
reaches the top of the less-conductive layer, the pressure 
head at the interface increases rapidly to translate the fl ux 
and maintain mass balance. An excellent match between 
numerical and analytical models is observed. � e compu-
tation time needed to perform simulation for either case 
was less than 1 s.

Pumping in Three-Dimensional 

Homogeneous Orthotropic Domain

Verifi cation of the three-dimensional variably satu-
rated component in the numerical model was performed 
by comparing pumping test results in an artifi cial, asym-
metric, and orthotropic domain to results obtained by 
3DFEMWATER (Yeh and Cheng, 1994). � e domain 
is cuboidal in shape with dimensions of 72 m (in z) by 
800 m (in y) by 1000 m (in x), as shown in Fig. 6. � e 
pumping well is located at (x, y) = (540, 400 m). Initially, 
the whole domain is in hydrostatic equilibrium with total 
head being 60 m everywhere. � e top, bottom, front, and 
rear extremes of the domain are no-fl ow boundaries, while 
the head on the left and right boundaries is held con-
stant at 60 m. For the time of simulation, the head at the 
well is lowered and maintained at a height of 30 m. As a 
result, the water table profi le changes continuously until 
the system reaches steady state. � e soil is anisotropic with 
saturated hydraulic conductivity components in x, y, and z 
directions being equal to 5, 0.5, and 2 m d−1, respectively. 
� e porosity, θs, and residual moisture capacity, θr, of the medium 
are equal to 0.25 and 0.0125, respectively. � e moisture content, 
unsaturated conductivity and head are related through a variant 
of the van Genuchten equation as shown in Eq. [36]:

2

s r r
r r

s ra1 ( )
Kβ

⎛ ⎞θ −θ θ−θ ⎟⎜ ⎟θ= θ + = ⎜ ⎟⎜ ⎟⎜ θ −θ+ α ψ −ψ ⎝ ⎠
 [36]

F . 5. (a) We   ng behavior in a layered soil during the infi ltra  on experiment 
based on Srivastava and Yeh (1991). (b) Drying behavior in a layered soil dur-
ing the infi ltra  on experiment based on Srivastava and Yeh (1991). ψ is the 
poten  ometric head, and z is eleva  on of the soil layer above ground water 
table (lower boundary condi  on).
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where ψa is air entry pressure, and β and 
α are potentiometric parameters. The 
values of ψa, β, and α are 0, 0.5, and 
2.0, respectively. � e specifi c storage was 
assumed to be zero. � e model domain 
was discretized into 2597 elements hori-
zontally and 26 layers vertically. � e top 
21 layers were of 2 m thickness, while the 
remaining fi ve were of 6 m thickness each. 
This dichotomy in discretization coin-
cided with the height of well head (30 m 
from the bottom). � e steady-state solu-
tion was also obtained for a horizontally 
isotropic case by considering conductivity 
along the y axis to be equal that along 
the x axis, 5 m d−1. Modeled water table 
elevations were compared with the results 
obtained from 3DFEMWATER (Yeh and 
Cheng, 1994) along a cross-section in the 
x–z plane passing through the center of 
the well. An excellent match between the 
two results is observed and is shown in 
Fig. 7. � e model was run for a period 
of 300 d before it reached steady state. 
� e simulation time for the experiment 
was 1491 s. In the second case, the larger 
hydraulic conductivity in the y-direction 
impacts the cone of depression that develops 
in the x-direction as well, with less draw-
down occurring at a given location. � is 
experiment verifi es the conceptualization of 
three-dimensional variably saturated fl ow in 
presence of constant head (at the well and 
at the left and right extremes) and no-fl ux 
(at the top and bottom extremes) bound-
ary condition in an orthotropic media. We 
further explore the eff ect of anisotropy on 
variably saturated fl ow (i) when principal 
directions of anisotropy are not aligned 
with model domain orientation and (ii) in 
a heterogeneous, anisotropic domain in the 
next two sections.

Flow Modifi ca  on due to Phase 

Shi  ed Anisotropy

In an anisotropic domain with prin-
cipal axes direction not being coincident 
with the direction of maximal gradient, the 
resultant fl ux vector gets oriented in a new 
direction. Additionally, if the model grid 
coordinates are not oriented in the principal axes direction, 
numerical simulation for the fl ux necessitates proper resolution 
of each fl ux component due to anisotropy. Flow modifi cation 
due to the phase shift is explored further using a setup very simi-
lar to the one explained in the previous section. � e properties 
of the model domain in this experiment are the same as those 
in the previous section unless specifi ed otherwise. For compu-
tational effi  ciency, the aquifer’s thickness was reduced to 2 m 

(in z), and vertical discretization was limited to one layer. � e 
initial head in the model domain is set to 0 m. A reduced head 
of −30 m is maintained at the well location during the simula-
tion. Two numerical experiments were conducted to observe 
the relative change in fl ow behavior. In the fi rst experiment, the 
principal directions of saturated anisotropic conductivity (equal 
to 20 m d−1 and 0.5 m d−1 in horizontal and 2 m d−1 in vertical) 
are oriented along the grid coordinates. � e second experiment 

F . 6. Ini  al head distribu  on for a three-dimensional well pumping experiment in an ortho-
tropic media. The well is located at (x, y) = (540, 400 m). The domain is discre  zed into 67,522 
prisma  c elements. Finer discre  za  on along the x–z plane passing through the well was u  -
lized to compare the results with exis  ng solu  ons.

F . 7. Water table drawdown at steady state in the orthotropic media that was shown in 
Fig. 6. The FIHM model results have been compared to base results from FEMWATER for 
horizontal anisotropic (FEMWATER_AnIsoXY and Model_AnIsoXY) and isotropic (FEMWA-
TER_IsoXY and Model_IsoXY) cases.
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has principal directions of horizontal conductivity oriented at 
a 30-degree angle to the model coordinates. � e results of both 
simulations are shown in Fig. 8. Computational time was 868 
s. Due to the acute anisotropy, the potentiometric drawdown 

contours are elliptical and their major axis is oriented along the 
principal direction of anisotropy. Several other models (such as 
MODFLOW and ModHMS) are also able to simulate anisotro-
pic fl ow in a homogeneous domain by avoiding cross-derivative 

F . 8. Transient well 
drawdown in an aniso-
tropic domain with 
principal axis of conduc-
 vity (a) oriented along 

the direc  on (x–y) of 
gradient due to speci-
fi ed head on le   and 
right boundaries (equal 
to 60 and 30 m, respec-
 vely), and (b) oriented 

at 30-degree angle to 
gradient direc  on. Note 
the rota  on of the cone 
of depression along the 
principal direc  on of 
conduc  vity in case (b). 
t =  me.
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terms through alignment of the model coordinate 
system along the direction of anisotropy. FIHM is 
unique in terms of its fl exibility to simulate fl ow 
behavior in heterogeneous, anisotropic domain 
with multiple anisotropic zones. � is is achieved 
by (i) constrained domain discretization of the 
heterogeneous domain such that each elemental 
volume is assigned a unique property only; the 
constrained unstructured meshes also preserve the 
boundaries accurately; and (ii) a generic formu-
lation of anisotropic fl ux on arbitrarily oriented 
control volume faces. A representative simula-
tion in heterogeneous, anisotropic domain is 
presented next.

Flow in Heterogeneous Anisotropic 

Domain

In this experiment, we explore the fl ow behav-
ior due to heterogeneity in conductivity and in 
anisotropy. � e domain considered is a 1000 m 
(along x) by 800 m (along y) by 2 m (along z) 
cubical block. � e conductivity, moisture content, 
and saturation relations are the same as used in 
the previous experiment. � e initial head in the 
model domain is set to 0 m. � e top and bottom 
extremes of the domain are no-fl ow boundaries, 
while the head on the left and right boundaries 
are held constant at 0 m and-30 m, respectively. 
A rectangular subdomain of dimensions 200 m 
(along x) by 160 m (along y) by 2 m (along z) 
exists at the center of the experimental region. � e 
domain is decomposed into 3948 prismatic ele-
ments. We note that subdomain boundary was 
used as a constraint in generation of Delaunay 
triangulations. Figure 9 shows the decomposed 
domain and the conductivity properties relevant 
to each region. Four setups were considered: (a) 
soil properties in the rectangular subdomain are 
the same as in rest of the domain (homogeneous, 
anisotropic); (b) soil conductivity in the subdo-
main is diff erent (lower) than in rest of the region, 
although the principal direction of conductivity is 
oriented along the model coordinates everywhere 
(heterogeneous, anisotropic); (c) soil conductiv-
ity is same everywhere in the region; however, the 
principal direction of anisotropy in the subdomain 
is oriented at 45-degree angle to the model coor-
dinates (heterogeneous, phase shifted anisotropy); 
and (d) similar to case c, although the principal 
direction of conductivity in rest of the domain is oriented at 135 
degrees to positive x direction.

Results of simulation for each case are shown in Fig. 10. 
Figure 10a shows a uniform variation in head from left to right 
boundaries. Due to the introduction of heterogeneity by a low 
conducting rectangular subdomain, the contour intervals within 
the subdomain are contracted (Fig. 10b). � is is expected as the 
larger head gradient in the subdomain ensures mass balance even 
though its conductivity is lower than rest of the domain. Figure 
10c shows the modifi cation of head due to the change in principal 

axes orientation of anisotropy in the subdomain. � e head con-
tours inside the subdomain are oriented in direction of preferred 
conductivity, at an angle of 45 degrees clockwise to the x axis. 
Figure 10d shows a more complex case with the anisotropy in 
rest of the domain being rotated in a counter-clockwise direction 
such that the principal axes of anisotropy in the two regions are 
orthogonal to each other. � is leads to formation of convergence 
(at the lower interface of subdomain) and divergence (at the upper 
interface of subdomain) zones in the fl ow domain. � is is particu-
larly signifi cant and shows how preferred conductivity directions 
might aff ect the contaminant mixing/spreading in a region. � e 

F . 9. Setup to study anisotropic heterogeneous fl ow. Four subsurface fl ow experi-
ments were explored by se   ng the hydraulic conduc  vity and its orienta  on 
in region (i) and region (ii) to be diff erent. The domain is discre  zed into 3948 
prisma  c elements. The boundary for region (ii) has been used as a constraint in 
genera  on of triangles.
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shortest (case a) and longest (case d) execution times were 383 
and 626 s, respectively.

Transient Three-Dimensional Variably Saturated Flow

The numerical model was validated using data from an 
unconfi ned sand aquifer pumping test performed by Nwankwor 
et al. (1984). � e 9-m-thick aquifer is assumed to be in hydro-
static equilibrium at the start of pumping test, with total head 
everywhere being equal to 6.7 m. � e pumping well has an inner 
diameter of 0.15 m with a 4 m screen located at the bottom of 
the aquifer. � e discharge rate of 60 L min−1 was maintained 
during the entire test, which lasted 1440 min. Head values were 
measured using piezometers, tensiometers, and  gamma access 
tubes installed at diff erent radial distances from the pumping well 
(Nwankwor et al., 1984, 1992). � e saturated conductivity of the 

sand aquifer was equal to 6.6 × 10−5 m s−1 in the horizontal direc-
tion and 4.2 × 10−5 m s−1 vertically. � e specifi c storage, Ss, of the 
aquifer is 3.2 × 10−4 m−1 while the porosity and residual moisture 
content of the sand were equal to 0.37 and 0.07, respectively. � e 
moisture content and potentiometric head are related through the 
van Genuchten model (1980) as shown in Eq. [37]:

s r
r 1 1/

1 ( )
nn −

θ −θ
θ= θ +

⎡ ⎤+ α ψ⎢ ⎥⎣ ⎦

 [37]

where α = 1.9 m−1 and n = 6.095, respectively. Unsaturated con-
ductivity, K(θ), and moisture content, θ, were related through

4.72( ) 0.007195K θ = θ  [38]

F . 10. Transient subsurface fl ow in an anisotropic heterogeneous domain. The details regarding conduc  vity confi gura  on for four cases 
considered are shown in Fig. 9. t =  me.
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Akindunni and Gillham (1992) observed that the drawdowns 
were insignifi cantly small beyond 70 m from the pumping well, 
and so we conservatively set the external boundary of the domain 
to be at a radial distance of 100 m from the well. All of this trans-
lates to a cylindrical model domain of dimension 9 m thick and 
an outer radius of 100 m. Taking advantage of the symmetry of 
the problem, for computational effi  ciency, we simulated only a 
quarter of the domain as shown in Fig. 11. � e domain is dis-
cretized into a total of 6762 prismatic elements, which includes 
49 layers vertically. Variable discretization thickness was used with 
the top 23 layers (in unsaturated zone) being 0.1 m thick, the 
next 18 layers (until the start of well screen) being 0.15 m thick, 
and the remaining 8 layers were 0.5 m thick. � e outer bound-
ary was assigned no-fl ux boundary condition while the boundary 
condition at the well (see inset in Fig. 11) was constant fl ux. � e 
value of the fl ux through each element’s edge was equal to the 
total fl ux divided by the percentage wall area. Figure 12a shows 
the simulated and observed drawdown curves at horizontal dis-
tances of 5 and 15 m from the pumping well and at the depth 
of 7 m from the surface. A good agreement between the fi eld 
data and the model results is observed. We explored further to 
examine the signifi cance of drainage processes above the water 
table on the drawdown response in unconfi ned aquifers. We fi nd 
that the recharge gradient at the water table reaches its maximum 
value (Fig. 12b) during the delayed response periods (Fig. 12a). 
Figure 12b also shows that the increase in recharge (gradient) can 

be correlated with the “excess storage” when more water is stored 
above the water table relative to hydrostatic conditions due to the 
extension of the capillary zone (Akindunni and Gillham, 1992); 
during this period, capillary fringe thickness (at 5 m distance) is 
observed to be as much as 5.6% greater than before pumping. 
After the initial period of rapid drawdown (Fig. 12a) and concur-
rent development of large vertical gradient (Fig. 12b), drainage 
from the vadose zone reaches its maximum, yielding water to the 
well causing the drawdown curves to level off  during the middle 
of the test. We also observe that the magnitude of the vertical 
gradient decreases with increasing distance from the well, sug-
gesting that at large distances, fl ow is predominantly radial. � e 
simulation time for the experiment was 258 min.

Coupled Surface–Subsurface Flow

Validation of coupled surface–subsurface fl ow was performed 
by simulating a laboratory experiment conducted by Abdul and 
Gillham (1984). � e experimental setup consisted of a plexiglass 
tank of dimensions 140 cm (along x), 120 cm (along z), and 8 
cm (along y). � e tank was packed with sand of porosity = 0.34 
and van Genuchten parameters α and n for wetting and drying 
equal to 0.024 cm−1 and 5, and 0.015 cm−1 and 8, respectively. 
Equation [37] was used for the soil characteristic curve. � e satu-
rated conductivity of sand was equal to 3.5 × 10−5 m s−1, while 
the average specifi c yield was determined to be 0.007 (Abdul and 
Gillham, 1984). Sand was packed in the tank such that it formed 

F . 11. Setup for valida  on of t variably saturated fl ow based on the experiment in Nwankwor et al. (1992). Due to symmetry, only one-
quarter of the domain has been simulated. The ini  al condi  ons, with the water table eleva  on in the aquifer at 6.7 m from the bo  om, are 
shown. The domain was discre  zed into 6762 elements. Well has been simulated as constant fl ux boundary condi  on applied on the inner 
curvilinear boundary (shown in magnifi ed panel).
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a sloping upper surface (slope = 12°) with its toe at a height of 
74 cm from the bottom (Fig. 13). � e initial water table was at 
74 cm. Water was applied uniformly over the surface at a rate of 
0.0011945 cm s−1 for 20 min. A screened tube at the toe of the 
slope collected generated outfl ow. We discretized the domain into 
25 layers, with the bottom six layers being of thickness 10 cm 
each, followed by a transition layer of 5 cm thickness and then 
18 prismatic layers of uniform thickness until the top. Laterally, 
the domain was discretized into 140 elements (shown in Fig. 13). 
Boundary conditions on all sides are no-fl ux except at the surface 
outlet, where it is considered to follow a critical head condition. 
Figure 14 shows the outfl ow hydrograph simulated by InHM 
(VanderKwaak, 1999) and FIHM for the given experimental set-
tings (base case), and from the observations (Abdul and Gillham, 
1984). � e simulation time for the experiment was 25.2 min. 

� e hydrograph shape and the peak magnitudes simulated by 
FIHM are consistent and closely match the observations, with 
a transient steady-state condition obtained after approximately 
270 s. � e quick response of the hillslope is due to the capillary 
fringe that extends almost 35 cm above the water table. Even in 
uphill areas where initial water table is deeper, the extended cap-
illary fringe results in very little storage capacity in unsaturated 
zone. � e FIHM simulation better captures the ascending and 
the receding limb of the hydrograph than InHM; InHM uses a 
diff erent infi ltration function, which may explain the diff ering 
results. Figure 15 (Case I) shows that during the initial 1200 s 
of simulation (time for which water is applied on the surface), 
infi ltration occurs on the upper portion of the hillslope at the 
same rate as precipitation. Concurrently, as the subsurface head 
builds up near the toe of the hillslope, groundwater exfi ltrates 

F . 12. (a) Drawdown (m) simu-
lated and measured at depth 7 
m from the land surface and at 
a radial distance of 5 (Obs_5m) 
and 15 m (Obs_15m) from the 
well casing. Observed data were 
obtained from Nwankwor et al. 
(1992). (b) Extension of capillary 
fringe above the water table 
(15m_Fringe and 5m_Fringe) 
and the ver  cal gradient (15m_
Grad and 5m_Grad) at the water 
table at distances 15 and 5 m 
from the well axis. The percent-
age increase in the capillary 
fringe is rela  ve to its thickness 
before pumping. Delayed yield 
of water from the capillary 
fringe is observed at  mes with 
maximum ver  cal gradient at 
the water table.
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and contributes to the surface fl ow hydrograph. � e portion of 
the hillslope discharging groundwater to the surface increases 
from the lowest few centimeters initially, to approximately 45% 
of the total hillslope during peak outfl ow. Even in uphill areas 
where initial water table is deeper, quick groundwater response 
is observed due to the extended capillary fringe (almost 35 cm 
thick above the water table), which translates to an unsaturated 
zone with little storage capacity. During the period 
of peak outfl ow, the exfi ltration rate at the toe of the 
hillslope is higher than the infi ltration rate anywhere 
on the surface. After the precipitation is stopped (Fig. 
15, right panel), the remaining overland fl ow on the 
hillslope drains down while the unsaturated zone 
desaturates. Infi ltration ceases to occur on the upper 
portion of the hill, while exfi ltration continues at the 
toe. � e infi ltration rate peaks at the junction between 
dry overland and desaturated subsurface, which shifts 
downhill as the recession proceeds. Region upslope 
of the infi ltration peak is dry overland, which results 
in zero infiltration rates. As we move downslope 
from the infi ltration peak, both overland fl ow depth 
and potentiometric head in the underlying subsur-
face layer increases. However, the rate of increase of 
overland fl ow depth lags behind rate of increase of 
subsurface head. � is leads to decrease in infi ltration 
rate as we move down along the hillslope transect. � e 
infi ltration–exfi ltration curve recedes toward a new 
equilibrium as the time progresses. Note that during 
recession (see Fig. 15), hillslope area that exfi ltrates 
exceeds that of infi ltration.

To explore the infl uence of initial water table (and 
hence, the capillary zone that extends 35 cm above the 
water table) on runoff  generation, we simulate the 
previous experiment (Case I) with a reduced initial 
water table height of 34 cm (40 cm lower than in last 

experiment, Case II). � e hydrograph in Fig. 14, indicates that 
for the initial 552 s, all the water applied to the hillslope infi ltrates. 
Negligible infi ltration–excess overland fl ow is produced and the 
infi ltrated water contributes to increase in water table. Once 
the hillslope surface starts saturating, it results in generation of 
saturation–excess overland fl ow on the lower portion of the slope 
(Fig. 15). Next, we reduced the conductivity of the hillslope from 
3.5 × 10−5 m s−1 to 1.0 × 10−7 m s−1 (Case III) to study the eff ect 
of physiographic properties on runoff  generation. � e reduced 
conductivity resulted in generation of infi ltration–excess overland 
fl ow, right from the start of the simulation (see Fig. 14). Because 
of the lower conductivity, the rate of water table increase is slower 
and so the surface of the hillslope never saturates. However, the 
persistent increase in subsurface saturation during this period 
(fi rst 1200 s) still infl uences the infi ltration rate. As observed in 
Fig. 15, infi ltration rate decreases monotonically toward the toe 
of the hill slope where a higher subsurface saturation is expected. 
In the last experiment (Case IV), we used experimental settings 
similar to Case II, the only change being setting the top surface 
conductance to be equal to zero (impervious). As expected, the 
outfl ow produced in this case is entirely due to infi ltration–excess 
runoff , as neither infi ltration nor exfi ltration can occur along 
the hillslope. � e corresponding hydrograph is shown in Fig. 14. 
� is set of coupled surface–subsurface experiments shows that 
vadose zone capillarity, initial position of groundwater table, soil 
properties, and topography play important roles in the generation 
of surface runoff . � e infi ltration to the groundwater is observed 
to be equally dependent on these critical fl ow, material and topo-
graphic parameters.

F . 13. Setup to study surface–subsurface fl ow genera  on using 
plexiglass soil column as presented in Abdul and Gillham (1984). 
The soil column is ini  ally in hydrosta  c equilibrium with the water 
table at an eleva  on of 74 cm from the bo  om.

F . 14. Streamfl ow hydrograph generated at the outlet of soil column in sur-
face–subsurface coupling experiment by Abdul and Gillham (1984). Base case 
corresponds to hydrograph simulated by FIHM (Case I, Base [WT = 74, K = 0.0035]) 
where ini  al water table was set at 74 cm. Three more experiments were con-
ducted to study surface–subsurface coupling. In Case II (WT = 34, K = 0.0035), ini  al 
water table was set at 34 cm. Case III (WT = 34, K = 0.0001) has the same se   ngs 
as Case II with reduced conduc  vity of 0.0001 cm s−1. Case IV (WT = 34, K = 0.0035, 
surface K = 0) has a similar se   ng as Case II, but the surface was made imperme-
able. WT = water table eleva  on, and K = saturated conduc  vity (in cm/s−1).
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Conclusions

A second-order accurate, finite volume framework to 
understand and predict coupled surface and subsurface fl ow is 
presented. � e model simulates a full three-dimensional solution 

for saturated–unsaturated fl ow in the subsurface and a two-dimen-
sional solution for overland runoff  on the surface. Using a set of six 
experiments, we show the infl uence of soil heterogeneity, anisotropy, 
and topography on the distribution of moisture above and below 

F . 15. Infi ltra  on–exfi ltra  on rate along the length of the hillslope. Four experiments each highligh  ng the infl uence of capillarity (Case I), 
ini  al water table height (Case II), conduc  vity, and infi ltra  on excess runoff  (Case III and IV) were conducted to study the coupling between 
surface and subsurface processes. Case IV has zero infi ltra  on–exfi ltra  on rate at all  mes. Le   panels are for the precipita  on period 
(through 1200 s); right panels are for the period a  er rainfall ceases (1200–1500 s).
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the ground surface. � e capability of the integrated model to simu-
late fl ow behavior in heterogeneous, anisotropic materials shows 
the possible development of local “fl ux rotation” phenomena. � e 
experiments also underscore the degree to which detailed coupled 
surface–subsurface physics can be studied, such as where runoff  
generation and infi ltration become closely coupled to underlying 
groundwater levels and adjacent surface water states. � e model 
takes advantage of constrained Delaunay triangulation for domain 
discretization, which is also supported by a “shared data model,” 
leading to accurate representation of data and fast prototyping of 
model experiments. � e test cases presented were chosen not only 
to compare individual model components against classical exam-
ples from the literature (e.g., one-dimensional unsaturated fl ow 
or two-dimensional surface fl ow) but also to further examine the 
degree to which individual unsaturated–saturated zone fl ow or sur-
face–subsurface processes are aff ected by each other. Representative 
experiments explored in detail the infl uence of drainage from unsat-
urated zone on delayed water table drawdown during pumping, the 
role of water table position on infi ltration and surface runoff , and 
the interaction of overland fl ow–unsaturated zone–groundwater 
exchanges in relation to the dynamics of infi ltrating–exfi ltrating 
surfaces on the hillslopes.

Appendix
An alternative derivation of the normalized fl ux can be 

obtained by calculating gradients in a local coordinate system 
(x1, y1) that is oriented along the principal directions of anisot-
ropy (see Fig. 4); θ is the angle of orientation of ∇h to the global 
x axis:

[ ]

[ ]

1 11 1 2 1

1 1 2 1

1 2

1 2

ˆ ˆ( )
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Cos( )Cos( ) Sin( )Sin( )

Cos( )Cos( ) Sin( )Sin( )

x yn F K h i K h j n
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K K h

⋅ = ∇ + ∇ ⋅

= ∇ θ−β + ∇ θ−β ⋅

= ∇ θ−β α−β + ∇ θ−β α−β

= θ−β α−β + θ−β α−β ∇

⎡ ⎤⎣ ⎦  

[A1]

Note that the normalized lateral fl ux expression obtained in Eq. 
[30] and Eq. [A1] is the same.
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