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A SECOND-ORDER ACCURATE LINEARIZED DIFFERENCE SCHEME
FOR THE TWO-DIMENSIONAL CAHN-HILLIARD EQUATION

ZHI-ZHONG SUN

Abstract. The Cahn-Hilliard equation is a nonlinear evolutionary equation

that is of fourth order in space. In this paper a linearized finite difference

scheme is derived by the method of reduction of order. It is proved that the

scheme is uniquely solvable and convergent with the convergence rate of order

two in a discrete Li -norm. The coefficient matrix of the difference system is

symmetric and positive definite, so many well-known iterative methods (e.g.

Gauss-Seidel, SOR) can be used to solve the system.

1. Introduction

We consider the Cahn-Hilliard equation

(1.1) ut + A2u = A(p(u),     (x,y,t)£Cix(0,T]

for u(x, y, t),  subject to the boundary conditions

(1.2) f^ = 0'    ^(4>(u)-Au) = 0   on   dQx(0,T]

and the initial condition

(1.3) u(x,y,0) = u0(x,y),       (x,y)eU,

where (p(-) = y/'(-), y/(u) = y(u2 - ß2)2/4, y > 0, Q is the interior of the

rectangle [0, Lx ] x [0, L2], and v is the outward pointing normal to 9Í2. This

initial-boundary value problem arises in the study of phase separation in binary

mixtures [1 - 2]. In [3] a continuous in time Morley finite element Galerkin

approximation for (1) is presented and an optimal-order error bound in L2

derived. However, a nonlinear system of ordinary differential equations remains

to be solved. The authors of [4] developed a completely discrete difference

scheme for (1), which was also nonlinear. In this paper, a linearized finite

difference scheme is derived for (1) by the method of reduction of order [5-7]

(see §4 below). The coefficient matrix of the difference system is symmetric

and positive definite, so many well-known iterative methods (e.g. Gauss-Seidel,

SOR) can be used to solve the system. We prove that the difference scheme is
uniquely solvable and second-order convergent in a discrete L2-norm.
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Let Mx, M2, K be integers and hx = Lx/Mx, h2 = L2/M2, x = T/K
such that hx = axh, h2 = a2h, x = a3/ze+I/2, where ax, a2, a3 and e are

positive constants. The optimal choice for e is 1/2. We use the notations

&h = {(x¡, yj)\Xi = ihx, yj =jh2,0<i<Mx,0<j< M2},

Çlt = {tk\tk = kx,Q<k<K).

Suppose u = {Uij\Q <i<Mx,0<j< M2} and v = {u,7|0 <i<Mx,0<j <
M2} are two mesh functions on Í2/,. Denote

D+xUij = (ui+lJ - Ujj)/hx,    D-xUij = D+xUi-XJ,    o2u¡j = D+xD^xUi¡ ;

D+yUij = (Uij+i - u¡j)/h2,    D-yUij = D+yUij-X,    S2Uij = D+yD-yUij ;

"¿+1/2,7 = («i+U + "ü)/2>       "i,7+1/2 = (Uij+i + Uij)/2

and define the inner product

(u,v) = hxh2

M,-l M2-l

E E u'Jvu
1=1     7=1

j A/,-1 j A/2-1

+ 2   E (U'0V'0 + Ui,M2Vi,M2) + 2   E (M°7% + "M, jVMuj)
1=1 7=1

+ t(mO0u0O + "A/, ,0UA/, ,0 + "0,^2^0,^2 + uM,,M2VMi,M2

and the discrete L2-norm

||m|| = y/(U, u).

In addition, if w = {wk\0 < k < K] is a mesh function on QT,  we use the

notation

wk = (Wk+i + wk-iy2,     Atwk = (wk+x - wk~x)/(2x).

It is obvious that

M¡   M2

(u,v) = hxh2J2J2(UiJvu + ui-\Jvi-iJ + u'J-iv'J-i +",-1,7-1^-1 j-i)/4
i=l 7 = 1

and

Atwk = (wk - wk~x)/x.

Let

v = 4>(u) -Au;
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then ( 1 ) is equivalent to

(2.1) ut = Av,     (x,y,t)£Cix(0,T],

(2.2) v = <p(u)-Au,     (x,y,t)£ilx(0,T],

1465

(2-3) £
du

dx

(2.4)

(2.5)

dv_

dx

x=0

x=0

du

dx

dv_

dx

x=L¡

x=L¡

du

dy~
y=0

du

dy
= 0,

y=L2

0<x<Lx,0<y<L2,0<t<T,

dv_

dy
y=0

dv

dy
= 0,

y=L2

0<x<Li,0<y<L2,0<t<T,

u(x,y,0) = u0(x ,y),        (x,y)e£l.

Our difference scheme for (2) is as follows:

(3.1)
u uo(Xi,yj),    u¡j = uo(xj,yj) + xux(Xj,yj),    0 < i < Mx ,0 < j < M2;

for 1 < k < K - 1,

(3.2) Atukj = S2vkj + S2vkj,     1 < i < Mx - 1, 1 < j < M2 - 1

(3.3) Atuk0 = ô2xvk0 + 2D+yvk0/h2,     l<i<Mx-l,

(3.4) AtutM2=ô2xvk>Mi-2D-yvkM2/h2,     l<i<Mx-l,

(3.5) Atuk0j = 2D+xvkj/hx + ô2vkj,     l<j<M2-l,

(3.6) Atuk

a'ma/, ,o = ~2D-xvkMx 0/hx + 2D+yv^]Q/h2,

Atuk0Mi = 2D+xv^MJhx - 2D-yv%tMJh2,

^ukMxMl = -2D_xvkMxMJhx - 2D_yvkMx Mi¡h2,

:2,.kvfj = tf,(u1j) - (Sxufj + Sjufj),     l<i<Mx-l,l<j<M2-l,
i2„k

Ko = mo) - (¿Xo + 2D+yu*0/h2),     l<i<Mx-l,

iMl j = -2D_xvkM¡ j/hi + S2vkMi j,     l<j<M2-l,

(3.7)    Atuk0Q = 2D+xvk0/hx + 2D+yvk0/h2,

(3.8)

(3.9)

(3.10

(3.11

(3.12

(3.13

(3.14

(3.15

(3.16

(3.17

(3.18

(3.19

i,M2 = m,M2) - (àX,M2 - 2D-yuktMJh2),     1 < / < MX - 1,

< = HKj) - (2D+xuk0j/hx + ô2uk0j),     l<j<M2-l,

J\i\ j = <t>(ukMx j) - (-2D_xukMi j/hx + ô2yuhMx J,     l<j<M2-l,

«m = 0("ob) - (2D+xukm/hx + 2D+yuk00/h2),

»ir, ,o = <t>(ukMl ,o) - (~2D-xukMi >0/A, + 2D+yukM¡ >0/h2),

4,m2 = <A("o,m2) - (2D+xu^MJhx - 2D-yuk0MJh2),

VM¡, M2 = <t>(ukM,,M2)-(-2D-xukMxMi lhx-2D-yukMxtMJh2),

where ux = A(<f>(uo) - Awn).

The relations (3.2)—(3.19) can be rewritten in vector-matrix form as

(4.1) (uk ,k-\ )/x = -Avk,
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(4.2) vk = <p(uk) + Auk ,

where

(Aw)ij = -(S2wu + ô2Wjj),     l<i<Mx-l,l<j<M2-l,

(Aw)io = -(S2wi0 + 2D+ywi0/h2),     1 < i < Mx - 1,

(Aw)iiM2 = -(ôxWj,M2 - 2D-yWi,MJh2),     1 < i < Mx - 1,

(Aw)oj - -(2D+xwoj/hx + S2w0j),     1 < j < M2 - 1,

(5) (Aw)A/l,j = -(-2D-xwMlJ/hx +ö2wMlJ),     l<j<M2-l,

(Aw)oo = -(2D+xwoo/hx + 2D+yw00/h2),

(Aw)Ml,o = -(-2D-xwMx,olhx +2D+ywMii0/h2),

(Aw)o,m2 = -(2D+xu>o,M2/hx -2D-yw0,M2/h2),

(Aw)m¡,m2 = -(-2D-xwM¡,M2/hx - 2D-ywMt¡MJh2);

(<p(uk))u = <p(ukj),        0<i<Mx, 0<j<M2.

Substituting (4.2) into (4.1), we obtain

(6) (I + xA2)uk = uk~l-xA(b(uk),     i<k<K-l,

where / is an (Mx + 1) x (M2 + 1) unit matrix.  If uk is determined, then

uk+x - 2uk - uk~x. We construct the difference scheme (3.1) and (6) for (1.1-

3).
The main result of this paper is the following theorem, which is proved in

§3.

Theorem 1.1. (I) The difference scheme (3.1) and (6) is uniquely solvable.

(II) If (1.1-3) has solution u(x, y, t) £ C6(Q x [0, T]),  then the solution
of the difference scheme (3.1) and (6) converges to the solution o/(l.l-3) in the

2 + h2i + "2discrete L2-norm, and the rate of convergence is 0(h\ + h\ + x2).

2. Some auxiliary lemmas

Lemma 2.1. Let A be defined in (5); then A is symmetric and positive semidef-

inite.

Proof. Through simple and trivial calculations, we may obtain (Au,v) -

(u, Av) = 0 and (Au, u) > 0 for any mesh functions u, v on QA. So A

is symmetric and positive semidefinite.

Lemma 2.2. If f £ C4[a, b] and

then

(8.1) 0(fl) = ^[f(a + h)- f(a)] + 0(h2),

(8.2) Çf2(b) = ~^[f(b) - f(b - h)] + 0(h2)

for small h.
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Proof. Using Taylor expansion, we have

f(a + h) = f(a) + *L(a)h + \^-2(a)h2 + ^(a)h3 + 0(h%
dx 2dx2 6dx*

Noticing (7), we obtain

It follows that

f(a + h) = f(a) + ^(a)h2 + 0(h4).

^I2(a) = ^2[f(a + h)-f(a)] + 0(h2).

This is (8.1). The other relation (8.2) can be obtained similarly.   D

Lemma 2.3. Let cx, c2 and a*,fc=l,2,3,...,  be positive and satisfy

ak+x < (1 +cxx)ak + c2x,    k= 1, 2, 3, ... ;

then

ak+x < exp(cxkx)(ax +c2/cx),    k= 1,2,3, ... .

Proof. We have

fljt+i < (i + cxx)ak + c2x

<(1+ cxx)[(l + cxx)ak_x + c2x] + c2x

= (1 + cxx)2ak_x + [(1 + cxx) + l]c2x

<...

< (1 +cxx)kax + [(1 +cxx)k~x + (1 +cxx)k~2 + ■■■ + (l+cxx) + l]c2x

= (l+cxx)kax + {[(l+cxx)k - l]/[(l + dT) - l]c2}i

<e\p(cxkx)(ax+c2/cx),    k= 1,2,3, ... .   D

3. The analysis of the difference scheme

We now come to the proof of Theorem 1.1. From Lemma 2.1 we see that the

coefficient matrix of the system of linear algebraic equations (6) is symmetric

and positive definite. So the difference scheme (3.1) and (6) is uniquely solvable.

This completes the proof of the first part of the theorem.

Since <p(u) = \j¿[y(u2 - ß2)2],  we have

d(j>(u)

dx W"^-<-
Noticing (2.3), we have

d(p(u)

(9) dx

d(p(u)

x=0 dx

d(p(u)

x=L, dy

d<p(u)

y=0
dy

= 0,
y=L2

0<x<Lx,0<y<L2,0<t<T.

Differentiating (2.1) with respect to x, we have

d   ö«        9_(d^     d2v

dx{~dt>~ dx{dx2 + dy2'
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or
d ,du, d3v      d2 ,dv.

+ —(:
dtydx'     dx3     dy2Kdx

Noticing (2.3) and (2.4), we obtain

(10.1)
dh
dx3

d3v

x=0 dx3
= o,   o<y<L2,o<í<r.

x=L,

Differentiating (2.1) with respect to y, we obtain

(10.2)
d3v

dy*
y=0

d3v

dy3
= 0,   o<x<L,,o<?<r.

y=L2

Similarly, differentiating (2.2) with respect to x and y, respectively, and using

(2.3), (2.4) and (9), we get

d3u

(11) dx3

d3u

x=0 dx3 x=Li

d3u

dy3
y=0

d3u

dy3
o,

y=L2

0<x<Lx,0<y<L2,0<t<T.

Define the following mesh functions on Í2/, x QT :

Ukj = u(xl, yj, tk),    Vkj = v(x¡, y¡, tk),    û% = Ukj - uku,    vkj = V/j - vfj.

Using Lemma 2.2 and Taylor expansion, noticing (2.3), (2.4), (10) and (11), we

obtain the error equations of the difference scheme (3.1) and (6) as follows:

(12.1) ü° = 0,    üx=R,

(12.2) Atük =-Avk + Fk ,     l<k<K-l,

(12.3) vk = (j>(Uk) - (p(uk) + Aük + Gk ,     i<k<K-l,

where

(Atü% = (ük;x - ük7x)l(2x),     (cp(Uk) - <j>(uk))u = <p(Ukj) - 4>(ukj),

R = (ru),    Fk = (fkJ),     Gk = (gk])

and there exists a constant cx such that

(13.1) <cxx¿,

(13.2) \fk\<Cx(h2 + h22 + x2),     \gkj\<cx(h2 + h22 + x2),

because   of   the   assumption   that   the   solution    u(x, y, t)    belongs   to

C6(Qx[0, 71).
Denote

c2 = max \u(x, y, t)\
0<x<Li ,0<y<L2,0<t<T

Ci =      max     \d(j)(z)/dz\.
c2-l<z<c2+l

We will prove that

(14)

where

< c4(h2 + h\ + x2),

c4 = exp ( -(1 + c32)T) cxJLXL2(1 +
1+C32
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From (13) and (12.1), we have

1469

(15.1)

(15.2)

= 0, u' < y/LxL2CXX2 ,

k\fk\\ < y/LiTïc^ + hi + x2),     \\gk\\ < y/Lj^c^ + hl + x2),

1 <k<K- 1.

It follows from (15.1) that (14) is valid for k = 0 and k = 1. Now suppose
(14) is valid for 1 < k < I. Then, for small h,

\ükj\ < 2cä,(h\ + h\ + x2)l^hxh2 < 1,    0 < / < Mx, 0 < j < M2, 1 < k < I,

and therefore

0(L/£)-<rH4)<C3 uij ,    0<i<Mx,0<j<M2,l<k<l.

For 1 < k < I, taking the inner product of (12.2) with 2ük , and (12.3) with

2vk, then adding the results and using Lemma 2.1, we obtain

|2

2(ö\ A,ü*) + 2

== 2[-(ük, AvK) + (vk, Aük)] + 2(vk, <f>(Uk) - <p(uk))

■fjc        J7k k   r-M+ 2(üK ,FK) + 2(vK,GK)

»~.*= 2(t)* , (p(UK) - 4>(uK)) + 2(ÜK, Fk) + 2(vk , Gk);k   nk\

<

<2

v <p(Uk) - (p(uk)

2
+

or,

ük+x

<

<( -,k+l

U

ük~X

2

+

+ cï u

+ + +

+ ( +

)/(2t)

2

+ (

2

U +

~.k-\
)/2 + c32 + ( +

Thus,

;i-t) k+\ <(1 + X) Ük-X + 2cx2x + 2x( +

When t< 1/3,

|2fc+1 <(1 + 3t) uk~x + 3c32t + 3t( irk
+

From the above inequality and (15.2), we have

max( -,*+!
)

<[1 + 3(l+c32)T]max(

<[l + 3(l+c32)T]max(

;k-\

;k-\

) + 3t(

')

+

+ 6xLxL2cx2(hj + hj + x2)2, l<k<l
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Utilizing Lemma 2.3 and (15.1), we have

max( \\ü
/+i üf)

6LlL2Cl2(h2 + h¡ + x2)2]) +
3(1 + c32)

< exp (3(1 + c32)/t j [max(

< exp (3(1 + c32)/t) [LxL2cx2x4 + ^g  (h2 + h\ + x2)2]

< exp (3(1 + Ci2)T) LxL2(1 + —^(/t2 + h\ + x2)2.

2LxL2cx2

or

ül+x a<exp   -(l+c32)r   Cn/L,L2(1 +
1 +Cy

:)(h2 + h2 + x2).

By the induction principle, (14) is true. This completes the proof of Theorem

1.1.    D

4. Comments

In this paper we use the method of reduction of order to derive the linearized

difference scheme (3.1) and (6) for (1.1-3). First, a new variable v is intro-

duced to reduce the original problem into an equivalent system of second-order

differential equations (2.1-5), and a difference scheme (3.1-19) is constructed

for the latter. Then, the discrete variables are separated to obtain the difference

scheme (3.1) and (6) containing only the original variable u. The aim of intro-
ducing the intermediate variable v is to prove the solvability and convergence

of the difference scheme (3.1) and (6).
A difference scheme similar to (3.1) and (6) may be constructed [6] on

nonuniform meshes, and similar results hold if we rewrite (1.1-3) as the fol-

lowing equivalent system of first-order differential equations:

dvx     dv2 dv
Vl = dx-'

v2
dv

dy''

.. .     ,dux     du2. du
v. = m-(äF + äp-).   Ml = äP   U2

(x,y,t)£ilx(0,T],

(x,y,t)££lx(0,T],
du

dy'

"lU=0 = "lU=L, = "2ly=0 = W2ly=L2 =°>      0<X<Li,0<>'<L2,0<?<r,

vx\x=o = vx\x=Ll = v2\y=0 = v2\y=L2 =0,    0<x<Lx,0<y<L2,0<t<T,

u(x,y,0) = u0(x,y),       (x,y)eQ.
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