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We derive a second order correction to an existing leading order model for surface waves in linear elas-

ticity. The same hyperbolic-elliptic equation form is obtained with a correction term added to the surface

boundary condition. The validity of the correction term is shown by re-examining problems which the

leading order model has been applied to previously, namely a harmonic forcing, a moving point load and

a periodic array of compressional resonators.
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1. Introduction

Plane surface waves in linear elasticity, also known as Rayleigh waves Achenbach (1973), are commonly

used to model real world problems. Recently this has included a renewed interest in systems involving

a forcing along the surface of an infinite bulk, including piezo-electric devices Morgan (1985), non-

destructive testing Cho (2003), seismic wave ‘lenses’ Colombi et al. (2016b), and metasurfaces intended

to control and suppress wave propagation Colombi et al. (2016a); Colquitt et al. (2017).

However, unlike bulk waves, these surface waves do not have an explicit wave equation; they are

instead ‘hidden’ through the equations of linear elasticity. This makes both finding the exact solution

or undertaking numerical analysis for a system dominated by surface waves difficult. Previous results

have shown that the displacement potentials can be expressed as a single function related through har-

monic conjugates Friedlander (1948), allowing the Rayleigh wave to be easily found in an arbitrary

form Chadwick (1976). This has been extended to surface waves in linear elasticity with general depth

dependence Achenbach (1998); Kiselev & Rogerson (2009); Kiselev & Parker (2010). Taking advantage

of the relation between displacement potentials, a leading order asymptotic model has been developed

for the Rayleigh-type waves produced by forcing along the surface of a linearly elastic half plane, for

example see Kaplunov & Prikazchikov (2017).

This model has been applied to multiple problems including: Plane-strain and moving load sys-

tems Kaplunov et al. (2010, 2013), mixed boundary problems Erbaş et al. (2012), surface arrays of

c� The author 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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rod-like Ege et al. (2018) and beam-like Wootton et al. (2019) resonators, and coated half-space prob-

lems Dai et al. (2010). For more general works and further examples see also Kaplunov & Prikazchikov

(2017); Nobili & Prikazchikov (2018). In each, the asymptotic model has produced a simple but remark-

ably accurate approximation of the exact solution. The same asymptotic expansion method has also

been applied to produce similar models for interfacial waves in linear elasticity and edge waves on

plates Kaplunov & Prikazchikov (2013), piezo-electric waves Kaplunov et al. (2006) and plates with

surface loading Erbaş et al. (2018) with similar success.

While this model has proven to give close representations of the exact solution in many cases, as the

problems become more involved the deviation between the exact solution and result from the leading

order model will increase. This is most notable when there are stresses both parallel and perpendicular

to the surface Wootton et al. (2019). As such it is necessary to investigate further development to this

model by adding a correction term.

The work shall be arranged as follows: First the leading order model for surface waves in an elastic

half plane from Kaplunov & Prikazchikov (2017) will be described, followed by the derivation for a

second order model which will add an additional term to the existing model. This new model will then

be applied to a variety of simple problems on which the leading order asymptotic model has already

been applied. The results from our new model will be compared directly with both the solution from the

leading order asymptotic model and the exact solution. The first problem considered will be a simple

2D harmonic forcing. This will be followed by considering a near-resonant moving point load along the

surface. Finally we will consider a system originally from Colquitt et al. (2017) consisting of vertical

rod-like resonators periodically embedded into the surface of the half plane.

2. Leading Order Asymptotic Model

First we shall summarise the leading order asymptotic model for Rayleigh waves Kaplunov & Prikazchikov

(2017). Let there be a linearly elastic half plane with shear and longitudinal displacement potentials ψ
and φ respectively. From Achenbach (1973) this system has governing equations,

φ,11 +φ,33 �
1

c2
1

φ,tt = 0,

ψ,11 +ψ,33 �
1

c2
2

ψ,tt = 0

(2.1)

where the shear and longitudinal wave speeds are given in terms of the first and second Lamé parameters,

λ and µ , and the half plane density, ρ , by

c1 =
λ +2µ

ρ
, c2 =

µ

ρ
(2.2)

with surface conditions at x3 = 0,

2φ,13 +ψ,11 �ψ,33 =
Q

µ
,

(κ�2 �2)φ,11 +κ�2φ,33 +2ψ,13 =
P

µ
.

(2.3)

where κ = c2/c1 and Q and P represent some horizontal and vertical surface loading respectively that

induce surface wave motion. If the surface loading is small then it follows that the perturbed surface
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wave speed, c, will be close to the classical Rayleigh wave speed, cR. Then a small parameter 0 < ε ⌧ 1

can be defined by,

c = cR(1± ε). (2.4)

and if Q and P are both O(ε) then φ and ψ will have the two-term asymptotic expansions,

φ = ε�1φ0 +φ1, ψ = ε�1ψ0 +ψ1, (2.5)

where the scale factor ε�1 is due to the system resonance for c= cR. Utilising a multiple scales perturba-

tion scheme in the usual way, define independent fast time and slow time variables τ f and τs respectively

such that,

τ f = t, τs = εt, (2.6)

leading to the operator identity,

∂

∂ t
=

∂

∂τ f

+ ε
∂

∂τs

. (2.7)

If we use this operator relation to perturb the bulk equations (2.1),

φ,33 +α2
Rφ,11 �2

ε

c2
1

φ,τ f τs �
ε2

c2
1

φ,τsτs = 0,

ψ,33 +β 2
Rψ,11 �2

ε

c2
2

ψ,τ f τs �
ε2

c2
2

ψ,τsτs = 0.

(2.8)

then at O(ε�1),

φ0,33 +α2
Rφ0,11 = 0, ψ0,33 +β 2

Rψ0,11 = 0. (2.9)

For a function of the form, f,33 + γ2 f,11 = 0 we can use the harmonic function relations,

f,3 =�γ f ⇤,1, f,1 = γ�1 f ⇤,3, f ⇤⇤ =� f (2.10)

where f ⇤ denotes the harmonic conjugate of f . From Chadwick (1976) it is proven that the displacement

potentials φ and ψ are related by,

ψ⇤ =�
1+β 2

R

2βR

φ , φ ⇤ =
1+β 2

R

2αR

ψ. (2.11)

At O(1) the perturbed bulk equations (2.8) give,

φ1,33 +α2
Rφ1,11 =

2

c2
1

φ0,τ f τs , ψ1,33 +β 2
Rψ1,11 =

2

c2
2

ψ0,τ f τs . (2.12)

Assume then that the second order terms of ψ and φ are,

φ1 = φ10 + x3φ11, ψ1 = ψ10 + x3ψ11, (2.13)
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and again substituting into the perturbed bulk equations (2.12) yields,

φ11,31 =
1

c2
1

φ0,1τ f τs , φ11,11 =�
1

α2
Rc2

1

φ0,3τ f τs ,

ψ11,31 =
1

c2
2

ψ0,1τ f τs , ψ11,11 =�
1

β 2
Rc2

2

ψ0,3τ f τs .

(2.14)

Finally, substituting these into the surface conditions (2.3) and taking advantage of the harmonic func-

tion relations at O(1) gives, for a small vertical stress (ie. P = O(1), Q = 0),

2αRφ10,111 +(1+β 2
R)ψ

⇤
10,111 =

✓

2

αRc2
1

�
1+β 2

R

βRc2
2

◆

φ0,1τ f τs (2.15)

(1+β 2
R)φ10,111 +2βRψ⇤

10,111 =

✓

2

c2
2

�
1+β 2

R

β 2
Rc2

2

◆

φ0,1τ f τs �
P,1

µ
(2.16)

which gives an expression for the leading order term of φ ,

2φ0,τ f τs =�c2
R

1+β 2
R

2µB
P. (2.17)

Similarly, for a horizontal stress (ie. P = 0, Q = O(1)),

2ψ0,τ f τs = c2
R

1+β 2
R

2µB
Q. (2.18)

3. Second Order Asymptotic Model

We now intend to use the same method to produce a higher order asymptotic model. Continuing the

previous expansions (2.5) in the usual way, suppose that φ and ψ have the three term asymptotic expan-

sions,

φ = ε�1φ0 +φ1 + εφ2, ψ = ε�1ψ0 +ψ1 + εψ2. (3.1)

We shall first complete the asymptotic treatment for a vertical stress only so let Q = 0, P = εPε . Assume

the solution for φ0 (2.17) and relations for the first order non-homogeneous φ and ψ terms (2.14) from

above. Also assume that φ and ψ are related as a single plane harmonic function Chadwick (1976).

Taking the perturbed bulk equations (2.8) at O(ε),

φ2,33 +α2
Rφ2,11 �

2

c2
1

φ1,τ f τs �
1

c2
1

φ0,τsτs = 0,

ψ2,33 +β 2
Rψ2,11 �

2

c2
2

ψ1,τ f τs �
1

c2
2

ψ0,τsτs = 0.

(3.2)

Supposing that the second order term solutions have the form,

φ2 = φ20 + x3φ21 + x2
3φ22,

ψ2 = ψ20 + x3ψ21 + x2
3ψ22,

(3.3)
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then it follows by substitution that,

2φ21,3 +2φ22 +4x3φ22,3 =
2

c2
1

(φ01,τ f τs + x3φ11,τ f τs)+
1

c2
1

φ0,τsτs , (3.4)

2ψ21,3 +2ψ22 +4x3ψ22,3 =
2

c2
2

(ψ01,τ f τs + x3ψ11,τ f τs)+
1

c2
2

ψ0,τsτs , (3.5)

(3.6)

Matching coefficients in the usual way,

2φ22,311 =
1

c2
1

φ11,11τ f τs , 2φ21,3 +2φ22 =
2

c2
1

φ10,τ f τs +
1

c2
1

φ0,τsτs , (3.7)

2ψ22,311 =
1

c2
2

ψ11,11τ f τs , 2ψ21,3 +2ψ22 =
2

c2
2

ψ10,τ f τs +
1

c2
2

ψ0,τsτs . (3.8)

Using the relations (2.14) from above yields,

2φ22,311 =�
1

α2
Rc4

1

φ0,3τ f τ f τsτs , 2ψ22,311 =�
1

β 2
Rc4

2

ψ0,3τ f τ f τsτs . (3.9)

Assuming that the forcing produces a travelling surface wave, introduce the travelling wave ansatz,

∂ 2

∂τ2
f

= c2
R

∂ 2

∂x2
1

, (3.10)

which gives,

2φ22 =�
c2

R

α2
Rc4

1

φ0,τsτs , 2ψ22 =�
c2

R

β 2
Rc4

2

ψ0,τsτs , (3.11)

and so,

2φ21,3 =
2

c2
1

φ10,τ f τs +
1

α2
Rc2

1

φ0,τsτs , (3.12)

2ψ21,3 =
2

c2
2

ψ10,τ f τs +
1

β 2
Rc2

2

ψ0,τsτs . (3.13)

Then by using the relations for harmonic functions,

2φ21,1 =
2

αRc2
1

φ ⇤
10,τ f τs

+
1

α3
Rc2

1

φ ⇤
0,τsτs

, (3.14)

2ψ21,1 =
2

βRc2
2

ψ⇤
10,τ f τs

+
1

β 3
Rc2

2

ψ⇤
0,τsτs

. (3.15)

Substituting the second order expansions for φ and ψ into the boundary conditions and setting x3 = 0,

2φ20,13 +(1+β 2
R)ψ20,11 =�2φ21,1 +2ψ21,3 +2ψ22,

�(1+β 2
R)φ20,11 +2ψ20,13 =�2

1�β 2
R

1�α2
R

(φ21,3 +φ22)�2ψ21,1.
(3.16)
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which, on substituting the above relations, yields,

2φ20,13 +(1+β 2
R)ψ20,11 =

2

c2
2

ψ10,τ f τs +
1

c2
2

ψ0,τsτs �
2

αRc2
1

φ ⇤
10,τ f τs

�
1

α3
Rc2

1

φ ⇤
0,τsτs

, (3.17)

2φ ⇤
20,13 +(1+β 2

R)ψ
⇤
20,11 =

2

c2
2

ψ⇤
10,τ f τs

+
1

c2
2

ψ⇤
0,τsτs

+
2

αRc2
1

φ10,τ f τs +
1

α3
Rc2

1

φ0,τsτs , (3.18)

and,

�(1+β 2
R)φ20,11 +2ψ20,13 =�

1�β 2
R

1�α2
R

✓

2

c2
1

φ10,τ f τs +
1

c2
1

φ0,τsτs

◆

�
2

βRc2
2

ψ⇤
10,τ f τs

�
1

β 3
Rc2

2

ψ⇤
0,τsτs

. (3.19)

Use the similar leading order relations (2.15) to find a relation for ψ⇤
10 in terms of φ0 and φ10,

ψ⇤
10,11 =�

2αR

1+β 2
R

φ10,11 +

✓

2

(1+β 2
R)αRc2

1

�
1

βRc2
2

◆

φ0,τ f τs , (3.20)

and using the travelling wave ansatz (3.10),

ψ⇤
10,τ f τs

=�
2αR

1+β 2
R

φ10,τ f τs +

✓

2c2
R

(1+β 2
R)αRc2

1

�
c2

R

βRc2
2

◆

φ0,τsτs , (3.21)

Then by taking advantage of relations between harmonic functions,

2αRφ20,11 +(1+β 2
R)ψ

⇤
20,11 =

✓

2αR

1+β 2
R

◆✓

1+β 2
R

α2
Rc2

1

�
2

c2
2

◆

φ10,τ f τs

+

✓

2αR

1+β 2
R

◆✓✓

1+β 2
R

2α4
R

+
1�β 2

R

α2
R

◆

1

c2
1

�
✓

4
1�β 2

R

1+β 2
R

+1

◆

1

c2
2

◆

φ0,τsτs ,

(3.22)

�(1+β 2
R)φ20,11 +2ψ20,13 =�

✓

2

c2
2

�
1+β 2

R

β 2
Rc2

2

◆

φ10,τ f τs

�
✓

1

c2
2

+4
1�α2

R

(1+β 2
R)αRβRc2

2

�2
1�β 2

R

β 2
Rc2

2

�
1+β 2

R

2β 4
Rc2

2

◆

φ0,τsτs .

(3.23)

This system of equations can be expressed as,

2αRφ20,11 +(1+β 2
R)ψ

⇤
20,11 =

✓

2αR

1+β 2
R

◆

⇣

aφ0,τsτs +bφ10,τ f τs

⌘

,

�(1+β 2
R)φ20,11 �2βRψ⇤

20,11 =�
⇣

cφ0,τsτs +dφ10,τ f τs

⌘

,

(3.24)

where,

a =

✓

1+β 2
R

2α4
R

+
1�β 2

R

α2
R

◆

1

c2
1

�
✓

4
1�β 2

R

1+β 2
R

+1

◆

1

c2
2

, b =
1+β 2

R

α2
Rc2

1

�
2

c2
2

,

c =
1

c2
2

+4
1�α2

R

(1+β 2
R)αRβRc2

2

�2
1�β 2

R

β 2
Rc2

2

�
1+β 2

R

2β 4
Rc2

2

, d =
2

c2
2

�
1+β 2

R

β 2
Rc2

2

.

(3.25)
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Using the Rayleigh identity, this system of equations can then be simplified to,

cφ0,τsτs +dφ10,τ f τs = aφ0,τsτs +bφ10,τ f τs (3.26)

which leads to the relation for the second order component of φ ,

φ10,τ f τs =
a� c

d �b
φ0,τsτs , (3.27)

= ΓR φ0,τsτs , (3.28)

where ΓR can be significantly simplified as,

ΓR = 2
1�β 2

R

1+β 2
R

�
1

2
+

1

2B

✓

2(1�β 2
R)

2 +
(α2

R �β 2
R)

2

α3
Rβ 3

R

◆

, (3.29)

which is plotted in Fig [1] for varying values of the Poisson ratio, ν .

To obtain a general relation for φ , combine the second order relation (3.28) and the leading order

0.0 0.1 0.2 0.3 0.4 0.5
-12

-10

-8

-6

-4

-2

0

 

!
R

FIG. 1: The values for ΓR (3.29) for varying Poisson ratio ν .

relation (2.17) to produce,

2εφ,τ f τ f τ f τs =�c2
R

1+β 2
R

2µB

⇣

P,τ f τ f
+ εΓRPτ f τs

⌘

. (3.30)

Then it follows from the operator relationship (2.7) that,

2ε
∂ 2

∂τ f ∂τs

=
∂ 2

∂ t2
�

∂ 2

∂τ2
f

� ε2 ∂ 2

∂τ2
s

, (3.31)

=
∂ 2

∂ t2
� c2

R

∂ 2

∂x2
� ε2 ∂ 2

∂τ2
s

, (3.32)

=�c2
R2� ε2 ∂ 2

∂τ2
s

. (3.33)
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which gives,

2φ =
1+β 2

R

2µB
P�

ε2

c2
R

(2ΓR +1)φ,τsτs +2
ε3

c2
R

ΓRφ10,τsτs , (3.34)

2φ,τ f τ f
=

1+β 2
R

2µB
P,τ f τ f

�
ε2

c2
R

(2ΓR +1)φ,τ f τ f τsτs +2
ε3

c2
R

ΓRφ10,τ f τ f τsτs , (3.35)

and the O(ε2) term can be expanded using the operator relation,

ε2

c4
R

φτ f τ f τsτs =
1

2

✓

2ε

c2
R

φ0,τ f τ f τsτs

◆

+O(ε3) (3.36)

=�
1+β 2

R

8µB

�

c2
R2P+ ε2P,τsτs

�

+O(ε3) (3.37)

so on neglecting the remaining O(ε2) terms, these can be combined using the travelling wave ansatz

(3.10) to give,

2φ,11 =
1+β 2

R

2µB

✓

P,11 +
2ΓR +1

4
2P

◆

, (3.38)

or equivalently for a horizontal load,

2ψ,11 =�
1+β 2

R

2µB

✓

H,11 +
2ΓR +1

4
2H

◆

. (3.39)

From the definition of ΓR (3.29),

2ΓR +1

4
=

1�β 2
R

1+β 2
R

+
1

4B

✓

2(1�β 2
R)

2 +
(α2

R �β 2
R)

2

α3
Rβ 3

R

◆

. (3.40)

We can verify this using a Taylor expansion around the Rayleigh solution. If the Rayleigh denomi-

nator is expressed as a function of r = c2/c2
2,

R(r) = (2� r)2 �4
p

1� r
p

1�κ2r (3.41)

which has Taylor expansion around the Rayleigh solution r0 = c2
R/c2

2,

R(r)⇡ R(r0)+R0(r0)(r� r0)+
1

2
R00(r0)(r� r0)

2 + ... (3.42)

These derivatives are,

R0(r) = 2(r�2)+2
κ2(1� r)+(1�κ2r)
p

1� r
p

1�κ2r
, (3.43)

R00(r) = 2+
(1�κ2)2

(
p

1� r
p

1�κ2r)3
(3.44)
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and it is clear that,

(r� r0) =�r0

✓

1�
r

r0

◆

=�(1�β 2
R)

✓

1�
c2

c2
R

◆

, (3.45)

so for each term of the Taylor series. By definition the leading order term is given by,

R(r0) = 0, (3.46)

which as expected represents a solution R(r) = 0 at c = cR. The next order term is given by,

R0(r0)(r� r0) =

 

2(2� r0)�2
κ2r0(1� r0)+(1�κ2r0)r0

p
1� r0

p

1�κ2r0

!

✓

1�
c2

c2
R

◆

, (3.47)

=�2B

✓

1�
c2

c2
R

◆

, (3.48)

which is the same behaviour as the leading order model. The second order term then takes the form,

1

2
R00(r0)(r� r0)

2 =

 

r2
0 +

(r0 �κ2r0)
2

2(
p

1� r0

p

1�κ2r0)3

!

✓

1�
c2

c2
R

◆2

, (3.49)

=

✓

(1�β 2
R)

2 +
(α2

R �β 2
R)

2

2α3
Rβ 3

R

◆✓

1�
c2

c2
R

◆2

. (3.50)

On combining these expressions we produce the Taylor series,

R(r)⇡�2B

✓

1�
c2

c2
R

◆✓

1�
1

4B

✓

2(1�β 2
R)

2 +
(α2

R �β 2
R)

2

α3
Rβ 3

R

◆✓

1�
c2

c2
R

◆◆

, (3.51)

which can then be substituted into the previous boundary conditions along the surface. In the case of a

vertical stress only,

R(r)φ =�
1+β 2

µk2
P, (3.52)

✓

1�
c2

c2
R

◆

φ ⇡
1+β 2

2µBk2

✓

1�
1

4B

✓

2(1�β 2
R)

2 +
(α2

R �β 2
R)

2

α3
Rβ 3

R

◆✓

1�
c2

c2
R

◆◆�1

P, (3.53)

⇡
1+β 2

R

2µBk2

✓

1+

✓

1�β 2
R

1+β 2
R

+
1

4B

✓

2(1�β 2
R)

2 +
(α2

R �β 2
R)

2

α3
Rβ 3

R

◆◆✓

1�
c2

c2
R

◆◆

P. (3.54)

This clearly has the same form as the dispersion relation obtained above, and by rearranging, the coef-

ficient from the Taylor series matches exactly with the coefficient from the asymptotic expansion.

4. Example Problems

In order to verify that this second order model is valid, we shall next consider three different fundamental

types of forcing along the surface and see how the solution obtained from the newly obtained model

compares with the result from the previous leading order model and the exact solution. For each, it is

expected that the second order model will closely match the exact solution in the vicinity of wave speeds

close to the Rayleigh solution and will, in general, be more accurate than the leading order solution.
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4.1 2-Dimensional Harmonic Forcing

As in Kaplunov & Prikazchikov (2017), introduce a vertical load of constant amplitude,

P = P0eik(x1�ct), (4.1)

where k is the wave number and as before c is the wave speed. For this forcing the exact solution for φ
is given by,

φ =
P0(1+β 2)

µk2R(c)
eik(x1�ct)�kαx3 , (4.2)

with

R(c) = (1+β 2)2 �4αβ . (4.3)

If we define the wave speed by c=(1+ε)cR then c2�c2
R =(2ε+ε2)c2

R and the leading order asymptotic

solution is hence given by,

φ =
P0(1+β 2

R)

2(2ε + ε2)µBk2
eik(x1�ct)�kαRx3 . (4.4)

We shall repeat the same procedure but use our newly derived second order model (3.38), which yields,

φ =
P0(1+β 2

R)

2(2ε + ε2)µBk2

✓

1�
2ΓR +1

4
(2ε + ε2)

◆

ei(kx1�ct)�kαRx3 . (4.5)

It is clear to see that this result is the same as that obtained with the leading order model but with an O(ε)
correction term. To compare the previously obtained results from Kaplunov & Prikazchikov (2017) with

that of our new second order model, introduce the scaled potential,

φs =
(2ε + ε2)µk2

2P0
e�ik(x1�ct)φ(x1,0, t). (4.6)

where Fig. 2 shows the plots of φs for both asymptotic models and the exact solution near the Rayleigh

speed for a half-plane Poisson ratio of ν = 0.25.

From this figure the improvement of the second order model is clear; while both asymptotic models

match exactly with the exact solution at ε = 0, the second order model stays close to the exact solution

for a remarkably wide range of wave speeds. It does not however model the mode conversion of the

exact solution, where the travelling surface wave solution becomes evanescent and begins to decay along

the surface. This is due to treating α and β as fixed constants. In the exact solution as c increases α and

β become purely imaginary and the wave propagates into the bulk, a behaviour the asymptotic model

cannot replicate.

4.2 Point Moving Load Steady-State Problem

Since we have shown that the above model is valid for a static harmonic load, we shall next move to

modelling the effects of a moving load. As with before we will make use of a system previously solved
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Second Order

Exact solution
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FIG. 2: A comparison of the leading and second order asymptotic models with the exact solution for the

scaled potential φs near the Rayleigh speed for Poisson ratio ν = 0.25. The leading order and second

order asymptotic solutions correspond to the dashed grey and solid grey lines respectively and the exact

solution is denoted by the solid black line.

using the leading order model Kaplunov et al. (2010); Kaplunov & Prikazchikov (2017), in this instance

considering a point vertical load moving at constant speed, c. Using the delta function to represent the

point forcing, this load is given by P= P0δ (x1�ct) along x3 = 0. Introduce a moving coordinate system

s = x1 � ct such that

∂ 2

∂x2
1

=
∂ 2

∂ s2
, 2= (1� c2)

∂ 2

∂ s2
, (4.7)

for which from Kaplunov & Prikazchikov (2017) the leading order asymptotics yields,

φ,ss(s,0) =
1+β 2

R

2µB

c2
R

c2
R � c2

P0δ (s), (4.8)

and so instead at second order,

φ,ss(s,0) =
1+β 2

R

2µB

✓

c2
R

c2
R � c2

+
2ΓR +1

4

◆

P0δ (s). (4.9)

This retains the key properties of the leading order model, most notably the resonance at c = cR. This

form makes the change from the leading order to the second order model solution relatively straightfor-

ward as for constant c, the second order correction acts as a constant multiplicative factor. For instance,
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where in Kaplunov & Prikazchikov (2017), the leading order displacement potentials were found to be,

φ,s(s,x3) =
1+β 2

R

2πµB

c2
R

c2
R � c2

P0 tan�1

✓

s

αRx3

◆

, (4.10)

ψ,s(s,x3) =�
αR

4πµB

c2
R

c2
R � c2

P0 ln (s2 +β 2
Rx2

3), (4.11)

from the second order model we instead yield,

φ,s(s,x3) =
1+β 2

R

2πµB

✓

c2
R

c2
R � c2

+
2ΓR +1

4

◆

P0 tan�1

✓

s

αRx3

◆

, (4.12)

ψ,s(s,x3) =�
αR

4πµB

✓

c2
R

c2
R � c2

+
2ΓR +1

4

◆

P0 ln (s2 +β 2
Rx2

3). (4.13)

Using the dimensionless variables v, vR and ξ such that,

ξ =
s

x3
, v =

c

c2
, vR =

cR

c2
, (4.14)

in the same way we can also produce the second order solution for the steady-state displacements,

ust
1 =

1+β 2
R

2πµB

✓

v2
R

v2
R � v2

�
2ΓR +1

4

◆

P0

✓

tan�1

✓

ξ

αR

◆

�
1+β 2

R

2
tan�1

✓

ξ

βR

◆◆

, (4.15)

ust
2 =�

(1+β 2
R)αR

4πµB

✓

v2
R

v2
R � v2

�
2ΓR +1

4

◆

P0

✓

ln (ξ 2 +α2
R)�

2

1+β 2
R

ln (ξ 2 +β 2
R)

◆

. (4.16)

As in Kaplunov & Prikazchikov (2017), introduce a scaled stress S33 such that,

S33 = π
σ33x3

P0
, (4.17)

for which the exact solution of the system gives,

S33 =
α

R(c)

✓

(1+β 2)2

ξ 2 +α2
�

4β 2

ξ 2 +β 2

◆

. (4.18)

The leading order asymptotic solution then gives,

S33 =
2αRβR

B

v2
R

v2
R � v2

✓

�
αR

ξ 2 +α2
R

+
βR

ξ 2 +β 2
R

◆

(4.19)

and hence it is straightforward to obtain S33 from the second order asymptotic solution,

S33 =
2αRβR

B

✓

v2
R

v2
R � v2

+
2ΓR +1

4

◆✓

�
αR

ξ 2 +α2
R

+
βR

ξ 2 +β 2
R

◆

. (4.20)

We shall again compare the leading order solution with the solution obtained from the second order

model. This comparison is given in Fig 3 for a Poisson ratio of ν = 0.25, with vR ⇡ 0.9194, at ξ = 0.2.

This again shows a significant improvement between the leading order and the exact solution, with the
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FIG. 3: A comparison of the leading and second order asymptotic models with the exact solution for

the scaled stress S33 near the Rayleigh speed for a Poisson ratio ν = 0.25 with ξ = 0.2 . Here the

leading order and second order asymptotic solutions correspond to the dashed grey and solid grey lines

respectively and the exact solution is denoted by the solid black line.

second order model being a consistent improvement for a wide range of speeds, even those far away

from the resonance at the Rayleigh speed. The plot shows that for forcing speeds less than the Rayleigh

speed in particular, the second order model approximates the exact solution remarkably well.

Furthermore, the second order model in this instance only introduces a constant multiplying factor

to the leading order model. This is a feature of having a forcing of the form P = P(x1 � ct) and so for

any similar moving load problems the second order model will be more accurate than the leading order

model but no more difficult to apply.

It is however important to note that this model is only valid near the surface of a near-resonant load,

ie. for c ⇡ cR, and s ⌧ x3. While when both of these conditions are met the model is shown to be highly

accurate, the asymptotic solution cannot predict far-field behaviour or the effect of non-resonant moving

loads.

4.3 Vertical Rod-like Resonators

We will now attempt to replicate and improve on the results produced by the leading order asymptotic

model for a more involved system. From Ege et al. (2018) the asymptotic model was used to accurately

interpret the behaviour of a system consisting of a periodic array of identical vertical rod like resonators

along the surface of a half plane, originally proposed in Colquitt et al. (2017).

If the spacing between each rod is l then we can introduce the dimensionless variables,

K = kl, Ω =
ωl

cR

, (4.21)

where ω and k are respectively the angular frequency and wavenumber of the wave. Hence the exact

dispersion relation for this system from Colquitt et al. (2017) can be expressed in dimensionless form in
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terms of the Rayleigh denominator (3.41) as,

R

✓

cRΩ

c2K

◆

= 2B
α

αR

✓

Ω

K

◆3

ϒ , (4.22)

where ϒ is a non-dimensional function showing the effect of the resonators, given by,

ϒ =
dr

l
Er

cR

cr

αR

β 2
R �1

2µB
tan

✓

hr cR

l cr

Ω

◆

, (4.23)

with dr, hr and Er respectively being the width, height and Young modulus of the resonators and as

usual the compressional wave speed of the resonators, cr, given by cr =
p

Er/ρr where ρr is the res-

onator mass density. The leading order asymptotic dispersion relation produced for this system can be

expressed as the quadratic equation,

K2 +Kϒ Ω �Ω 2 = 0. (4.24)

Using the second order model introduced above, we instead produce the cubic dispersion relation,

K3 +K2

✓

2ΓR +5

4

◆

ϒ Ω �KΩ 2 �
✓

2ΓR +1

4

◆

ϒ Ω 3 = 0. (4.25)

This dispersion relation is plotted in Fig 4 using the parameters in Table 1. For simplicity, these are the

same system parameters as used in the previous treatments of the same problem Colquitt et al. (2017);

Ege et al. (2018). Although not immediately clear, it is possible to show that this is the same as the

leading order dispersion relation with an O(ε) correction. Unlike the previous systems however, the

second order model requires the solution of a higher order polynomial than the leading order model.

While in this case the cubic dispersion relation can still be solved explicitly, this may not be true for

other systems where the increase in difficulty to solve the second order model may require numerical or

computational solutions.

Table 1: The numerical system parameter values for the rod resonators and half-space used to produce

the dispersion relation curves of Figs. 4 and 5.

Symbol Definition Value

l Lattice spacing 2 m

ρ Half-plane density 13000 kg m�3

µ Half-plane shear modulus 325 MPa

λ Half-plane first Lamè parameter 702 MPa

hr Resonator length 14 m

dr Resonator diameter 0.3m

ρr Resonator density 450 kg m�3

Er Resonator Young modulus 1.70 GPa

Fig 4 shows the main behaviours of the exact solution, specifically the resonances at the rod resonant

frequency, as well as anti-resonances which intersect the Rayleigh line. However, since both the leading
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FIG. 4: The second order asymptotic solution (4.25), denoted by the grey curve, for a 2-dimensional

system of rod like resonators. The Rayleigh line is plotted in dashed purple and the shear wave line in

dashed orange.

order and second order models represent the exact solution near-exactly, it is difficult to determine from

this plot whether the second order model is an improvement.

To see if the second order solution is an improvement on the leading order model, we will compare

the results of both the leading order and second order model to the exact solution near the system

resonances. This comparison is given by Fig 5. These figures show a clear improvement between

2.6 3.0 3.4
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(b) Second Asymptote

FIG. 5: The dispersion relation near the first two resonances for a 2-dimensional system of rod like

resonators. The second order asymptotic solution (4.25) is denoted by the solid grey curve, the exact

solution (4.22) by the solid black curve, and the first order asymptotic solution (4.24) by the dashed grey

curve. The Rayleigh line is plotted in dashed purple and the shear wave line in dashed orange.
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the leading order model and the second order model. Between the Rayleigh and shear wave lines

in particular the second order model matches with the exact solution remarkably well, with the two

solutions almost indistinguishable. Even for larger values of K where the model is predicted to not work

as well, the level of matching remains highly accurate with a relative error in Ω of less than ⇠ 2% for

these material parameters.

5. Concluding Remarks

In this work we have shown that by using the same method used to produce the leading order model

for the Rayleigh wave field, it is possible to obtain a higher order correction term to the surface bound-

ary condition while leaving the equations for the bulk unchanged. This correction term leaves the

hyperbolic-elliptic nature of the system unchanged with the surface boundary condition still giving a

hyperbolic equation. This correction term also converges with the second order Taylor expansion for

a surface loading, demonstrating that in a general case the model obtained will converge to the exact

solution.

This new higher order model has been applied to three different systems: a vertical harmonic forcing,

a steady state point moving load, and an array of vertical resonators attached to the surface. Each of

these problems has been treated by the leading order model previously to good effect. Applying the new

higher order model to each has shown close matching to the exact solutions and significant improvement

over the existing leading order model, at the cost of a less succinct solution form.

The treatment of the harmonic forcing in particular shows how the second order model is an improve-

ment over the leading order model. While the leading order model matches the exact solution only at

the Rayleigh speed, the solution from second order model remains a good fit for the exact solution for a

much greater range of speeds.

Furthermore, the moving load problem demonstrates how the added accuracy of the model does not

necessarily come with an increased difficulty to solve. While the second order model is significantly

more accurate than the leading order model, particularly for a wider range of load speeds, the process

for solving the problem remains the same.

Finally, the resonator forcing demonstrates how well the second order model can predict the reso-

nances and band gaps caused by a structured surface. This is especially notable as the forcing is not

applied, it is caused as a reaction to the existing motion of the half-space, and so the model must accu-

rately represent both the initial motion and the effect of the reaction. These band gaps are particularly

sought after for their uses in controlling and suppressing wave propagation and have shown a recent

increase in interest in such ‘metasurfaces’.

From these results there is clear scope for further development of the model and application of

this model in other situations. The leading order model has been extended to full 3D systems and

both tangential and perpendicular applied stresses and displacements, and there is no reason why the

same cannot be done for the higher order model. Similarly, the higher order model can be used to re-

examine previously studied systems to gain further insight and extend those previous systems into more

involved problems which the leading order model was not refined enough to accurately approximate.

This includes refining the leading order effective parameters obtained for thin film or coating problems,

or problems with anisotropy.
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Erbaş, B., Kaplunov, J., Nolde, E. & Palsü, M. (2018) Composite wave models for elastic plates. Proceedings of

the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2214), 20180103.
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