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Abstract. This paper proposes an explicit, (at least) second-order, maximum principle sat-
isfying, Lagrange finite element method for solving nonlinear scalar conservation equations. The
technique is based on a new viscous bilinear form introduced in Guermond and Nazarov [Com-
put. Methods Appl. Mech. Engrg., 272 (2014), pp. 198–213], a high-order entropy viscosity method,
and the Boris–Book–Zalesak flux correction technique. The algorithm works for arbitrary meshes in
any space dimension and for all Lipschitz fluxes. The formal second-order accuracy of the method
and its convergence properties are tested on a series of linear and nonlinear benchmark problems.
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1. Introduction. Imposing both the maximum principle and high-order accu-
racy in space is a difficult task for numerical methods approximating scalar conserva-
tion equations. The Godunov theorem even asserts that it is impossible for one-step
linear approximation methods to be at least second-order accurate in space and be
monotonicity preserving. Satisfying the maximum principle and having high-order
accuracy on arbitrary meshes in any space dimension are very desirable properties
in all applications, but these are two contradicting requirements: (i) on one hand
one needs to add artificial viscosity to guarantee the maximum principle; (ii) on the
other hand one needs to stay as close as possible to the Galerkin discretization of the
problem to be high-order accurate in space. Enforcing the maximum principle using
finite volume methods with piecewise constant approximation goes back to the early
works of Lax and Godunov. Constructing second-order (or higher-order) maximum
principle preserving methods by making use of limiting techniques in one space di-
mension or on uniform Cartesian grids in higher space dimensions is also well known;
see, for example, Boris and Book [3], Zalesak [33], Sanders [29], Liu [25], Nessyahu
and Tadmor [27], and Jiang and Tadmor [19] for finite volume methods, and Zhang
and Shu [34], Zhang, Xia, and Shu [35], and Zhang, Zhang, and Shu [36] for the
discontinuous Galerkin methods. Extensions to nonuniform finite volumes are also
known; see, e.g., Piar et al. [28]. Quite surprisingly, the general case of continuous
finite elements on unstructured meshes in arbitrary space dimension is not yet fully
understood. Although interesting and effective nonlinear stabilization techniques and
limiting strategies have been proposed for finite elements (see, e.g., Burman and Ern
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[5], Burman and Ern [6], Burman [4], and Badia and Hierro [1] for nonlinear vis-
cosities, and Kuzmin [22] and Kuzmin and Turek [24] for limiters), until recently
there did not exist in the literature an explicit, first-order, continuous finite element
method with linear viscosity that could be proven to satisfy the maximum princi-
ple on any mesh (e.g., irrespective of any angle condition), in any space dimension,
and with any Lipschitz flux. To the best of our knowledge, the first method with
these properties has been constructed in Kuzmin and Turek [24] using an edge-based
viscosity and in Guermond and Nazarov [13] using an element-based viscosity. The
goal of the present paper is to extend the first-order technique introduced in [13] to
an explicit second-order maximum principle preserving numerical method that works
on arbitrary meshes in any space dimension with any Lipschitz flux using continuous
Lagrange finite elements. The four key ingredients are the first-order technique [13],
a novel treatment of the consistent mass matrix by Guermond and Pasquetti [16], a
high-order technique (entropy-viscosity method of Guermond, Pasquetti, and Popov
[17]), and the Boris–Book–Zalesak flux correction technique [3, 33]. The main charac-
teristics of the new method are (i) it is maximum principle preserving, (ii) it preserves
the accuracy of the entropy viscosity method, and (iii) the dispersion errors induced
by mass lumping are corrected in the flux limiting step.

The paper is organized as follows. Preliminary technicalities and the construction
of the first-order viscosity, which is the starting point for building the higher-order
algorithm, are described in section 2. The full description of the method, including
time and space discretization and limiting, is given in section 3. The novel correction
technique that counteracts the dispersive effects of mass lumping is described in sec-
tion 3.3. The adaptation of the Boris–Book–Zalesak flux correction technique to the
present setting is done in section 3.4. The main result of the paper is Theorem 3.6.
The convergence behavior of the new method is investigated in section 4. The key
steps of the limiting process, which is based on the Boris–Book–Zalesak flux correction
technique, are recalled in the Appendix A.

2. Preliminaries. In this section, the problem is formulated, the finite element
setting is introduced, some key shortcomings of the traditional notion of isotropic
artificial viscosity are listed, and a novel definition of a first-order artificial viscosity
introduced in Guermond and Nazarov [13] is recalled.

2.1. Formulation of the problem. Let Ω be an open polyhedral domain in
�d, d being the space dimension. Let f ∈ Lip(�;�d) be a vector-valued function that
we hereafter call flux, and let u0 ∈ L∞(Ω) be some initial data. We consider the
scalar-valued conservation equations

(2.1) ∂tu+∇·f (u) = 0, u(x, 0) = u0(x), (x, t) ∈ Ω×�+.

To simplify questions regarding boundary conditions, we assume that either periodic
boundary conditions are enforced or the initial data is compactly supported, and
in that case we are interested in the solution before the domain of influence of u0

reaches the boundary of Ω. This problem has a unique entropy solution satisfying
the additional entropy inequalities ∂tE(u) + ∇·F (u) ≤ 0 for all convex entropies
E ∈ Lip(�;�) and associated entropy fluxes F i(u) =

∫ u

0 E′(v)f ′
i(v) dv, 1 ≤ i ≤ d (see

Kružkov [20] and Bardos, le Roux, and Nédélec [2]).

2.2. Mesh. Let {Kh}h>0 be a mesh family that we assume to be affine, conform-
ing (no hanging nodes), and shape-regular in the sense of Ciarlet. By convention, the
elements in Kh are closed in �d. We may have different reference elements, but always
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finitely many. For example, the mesh Kh could be composed of a mixture of triangles
and quadrangles in two space dimensions, or composed of a mixture of tetrahedra,
hexahedra, and prisms in three space dimensions. The reference elements are denoted
K̂, and the affine diffeomorphism mapping K̂ to an arbitrary element K ∈ Kh is
denoted ΦK : K̂ −→ K.

Our objective is to approximate the entropy solution of (2.1) with H1-conforming
finite elements. To this end we define the scalar-valued Lagrange finite element ap-
proximation space

(2.2) Xh = {v ∈ C0(Ω;�); v|K◦ΦK ∈ Q ∀K ∈ Kh},

where Q is a polynomial space that depends on the reference element K̂.
Let {ϕ1, . . . , ϕN} be the nodal Lagrange basis associated with the Lagrange nodes

of the mesh Kh, say, {a1, . . . ,aN}, i.e., ϕi(aj) = δij . We denote by Si the support of
ϕi and by |Si| the measure of Si, i = 1, . . . , N . We also define Sij := Si ∩ Sj as the
intersection of the two supports Si and Sj. Let E be a union of cells in Kh; we define
I(E) := {j ∈ {1, . . . , N}; |Sj ∩ E| 	= 0} as the set that contains the indices of all the
shape functions whose support on E is of nonzero measure.

Note that the polynomial degree of the approximation is unspecified, but it is
essential to assume that Xh is such that the mass matrix can be lumped and the
lumped mass matrix is positive definite. We formalize this hypothesis by introducing
the following notation and assumption for all K ∈ Kh:

(2.3) 0 < µmin
K := min

i∈I(K)

1

|K|

∫

K

ϕi(x) dx, µmax
K := max

i∈I(K)

1

|K|

∫

K

|ϕi(x)| dx.

Let nK be the number of vertices in K, i.e., nK = card(I(K)). Owing to the

mesh being affine, the quantities µmin
K , µmax

K , and nK depend only on K̂. Since the
number of reference elements defining the mesh family is finite, we now define

(2.4) λ := max
Kh

max
K∈Kh

µmax
K

µmin
K

< +∞.

Note that λ = 1 for any discrete setting with nonnegative shape functions—for exam-
ple, �1 approximation on simplices.

We define the local minimum mesh size hK for any K ∈ Kh as

(2.5) hK :=
1

maxi∈I(K) ‖∇ϕi‖L∞(K)

and the global minimum mesh size as h := minK∈Kh
hK . The parameters h and λ are

used to define the CFL number (see Theorem 3.1).

2.3. Viscosity bilinear form. It has been shown in Guermond and Nazarov
[13] that the viscosity bilinear form based on the operator −∇·(νh(u)∇), where νh(u)
is scalar-valued, fails in general to guarantee the maximum principle. In particular,
this form is not robust with respect to the shape of the cells. For instance, it fails
if the mesh does not satisfy the so-called acute angle condition assumption; see, e.g.,
Burman and Ern [5, Eq. (8)]. Moreover, the traditional definition of νh(u) is somewhat
questionable. For instance, using some one-dimensional argument based on uniform
grids, it is usual to take νh(u) = cM‖f ′‖L∞h, where cM is a user-defined constant and
h is the meshsize. One important question that then immediately arises in two and
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higher-space dimensions is that of a proper definition of the meshsize h on nonuniform
anisotropic meshes. Although many clever and reasonably well-justified ideas have
been proposed to address this nontrivial issue (see, e.g., Tezduyar and Osawa [31],
Tezduyar and Sathe [30], Campbell and Shashkov [7], and Dobrev, Kolev, and Rieben
[10]), to the best of our knowledge, none of them have yet led to a provable maximum
principle holding for every nonlinear flux f ∈ Lip(�,�d) and every mesh, even for
piecewise linear approximation. Once some meshsize h has been chosen, one then
runs into the problem of choosing the constant cM that multiplies h‖f ′‖L∞ to form
the viscosity. Although cM = 1

2 seems to be a reasonable choice justified by the one-
dimensional analysis on uniform meshes, we do not know of any rationale for tuning
this constant in two and three space dimensions on arbitrary grids besides heuristic
arguments and trial-and-error tests. Again, even though it is possible to establish
well-founded heuristic arguments to tune the constant (see, e.g., Tezduyar and Osawa
[31], Tezduyar and Sathe [30], and Guermond, Pasquetti, and Popov [17]), we do not
know of any argument yielding a provable maximum principle for every nonlinear flux
f and every mesh.

As proposed in Guermond and Nazarov [13], we abandon in this paper the PDE-
based definition of the viscosity (i.e., −∇·(νh(u)∇)) and adopt instead a graph-
theoretic approach. Let K be a cell in Kh; an artificial viscosity bilinear form is
defined on K following the key properties identified in Guermond and Nazarov [13]:

1. bK(ϕj , ϕi) = 0 if i 	∈ I(K) or j 	∈ I(K),
2. bK(ϕj , ϕi) ∼ −|K| if i 	= j, i, j ∈ I(K),
3. symmetry bK(ϕj , ϕi) = bK(ϕi, ϕj),
4. conservation

∑
j �=i bK(ϕi, ϕj) = −bK(ϕi, ϕi).

Recalling that nK := card(I(K)), we define ρ := minK∈Kh

1
nK−1 . Then the local

bilinear form bK defined as follows satisfies all the above requirements:

(2.6) bK(ϕj , ϕi) =

⎧
⎪⎨
⎪⎩

− 1
nK−1 |K| if i 	= j, i, j ∈ I(K),

|K| if i = j, i, j ∈ I(K),

0 if i 	∈ I(K) or j 	∈ I(K).

The global artificial viscosity bilinear form is then defined as

(2.7) b(uh, vh) =
∑

K∈Kh

∑

i,j∈I(K)

νKUjVibK(ϕj , ϕi),

where uh(x, t) =
∑N

i=1 Ui(t)ϕi(x), vh =
∑N

i=1 Viϕi, and νK is a viscosity constant
yet to be defined on each cell. Therefore, the semidiscretized and stabilized form of
problem (2.1) consists of finding uh ∈ C1([0, T ];Xh) so that the following holds for
any vh ∈ Xh:

(2.8)

∫

Ω

(∂tuh +∇·f(uh))vh dx+ b(uh, vh) = 0.

Remark 2.1. It is shown in Guermond and Nazarov [13] that

bK(ϕj , ϕi) = κ

∫

K

�T(∇ϕj)·�T(∇ϕi),

where � is the Jacobian matrix of the geometric transformation ΦK : K̂ −→ K when
K is a simplex and the shape functions are piecewise linear. In this case κ = 4

3 in two
space dimensions and κ = 3

2 in three space dimensions, and the effective viscosity, in
the traditional sense, is the tensor κνK��

T.
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3. Space and time approximation. We introduce in this section the time
approximation of (2.8), and we define the piecewise constant viscosity field νK . We
introduce in section 3.1 the first-order explicit Euler time stepping and a first-order
viscosity that guarantees the maximum principle. This technique is then extended to
higher order in space and time in section 3.2.

3.1. First-order viscosity. Let u0h ∈ Xh be an approximation of u0 that sat-
isfies the discrete maximum principle, i.e.,

(3.1) umin := inf
x∈Ω

u0(x) ≤ min
1≤i≤N

u0h(ai) ≤ max
1≤i≤N

u0h(ai) ≤ sup
x∈Ω

u0(x) := umax.

In order to define a CFL number, we need to estimate the maximum wave speed.
First we define the following subset of Xh:

(3.2) Bh = {vh ∈ Xh | umin ≤ min
1≤i≤N

vh(ai) ≤ max
1≤i≤N

vh(ai) ≤ umax}.

It can be shown that

(3.3) u∗
min := inf

{Kh}h>0

inf
vh∈Bh, x∈Ω

vh(x) and u∗
max := sup

{Kh}h>0

sup
vh∈Bh x∈Ω

vh(x)

are finite; in particular, there are constants cmin and cmax that depend only on the
collection of reference finite elements {(K̂, P̂ , Σ̂)}, such that cminumin ≤ u∗

min and
u∗
max ≤ cmaxumax. We then define the maximum wave speed to be

(3.4) β := sup
v∈[u∗

min
,u∗

max]

‖f ′(v)‖.

Let tn ≥ 0 be the current time, and let ∆tn > 0 be the current time step; i.e.,
tn+1 = tn +∆tn. Let un

h :=
∑N

j=1 U
n
j ϕj ∈ Xh be the approximation of u(·, tn). The

nodal values of the low-order solution un+1
h,L =

∑N
j=1 U

n+1
L,j ϕj ∈ Xh at time tn+1 are

evaluated as follows:

(3.5) Un+1
L,i = Un

i −∆tnm−1
i

∑

K⊂Si

(
ν
L,n
K bK(un

h, ϕi) +

∫

K

∇·(f(un
h))ϕi dx

)
,

where the mass matrix is lumped and mi :=
∫
Si

ϕi dx. Following Guermond and

Nazarov [13], the piecewise constant viscosity field is defined as follows on each cell
K ∈ Kh:

(3.6) ν
L,n
K = max

i�=j∈I(K)

max
(
0,
∫
Sij

(f ′(un
h)·∇ϕj)ϕi dx

)

∑
T⊂Sij

−bT (ϕj , ϕi)
.

The lower index L in Un+1
L,i and the upper index L in ν

L,n
K refer to the low-order

method. The justification for the above definition of νL,n
K is the following result.

Theorem 3.1 (Guermond and Nazarov [13]). In addition to the above assump-

tions on the mesh-family and on the flux, assume that the CFL number β∆tn

h
is such

that β∆tn

h
≤ 1

λ(1+ρ−1) . Then the solution to (3.5) satisfies the local discrete maximum

principle; i.e., umin ≤ minj∈I(Si) U
n
j ≤ Un+1

L,i ≤ maxj∈I(Si) U
n
j ≤ umax for all n ≥ 0.

Corollary 3.2. Under the assumptions of Theorem 3.1, the solution to (3.5)
satisfies the following L∞-estimates:

(3.7) cminumin ≤ un
h(x) ≤ cmaxumax ∀n ≥ 0, ∀x ∈ Ω.
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Moreover, if the space Xh is such that minℓ∈I(K) v(aℓ) ≤ v(x) ≤ maxℓ∈I(K) v(aℓ)
∀v ∈ Xh, ∀x ∈ K, ∀K ∈ Kh, then the following holds for all K ∈ Kh:

(3.8) min
i∈I(K)

min
j∈I(Si)

Un
j ≤ un+1

h (x) ≤ max
i∈I(K)

max
j∈I(Si)

Un
j ∀n ≥ 0.

Remark 3.1 (SSP extension). The result of Theorem 3.1 directly extends to
any higher-order strong stability preserving (SSP) time stepping (see, e.g., Gottlieb,
Shu, and Tadmor [11] for a review) since each step of any SSP method is a convex
combination of solutions of forward Euler substeps. We restrict ourselves in the rest
of the paper to the explicit Euler time stepping to simplify the presentation, but
everything that is said hereafter in this context regarding the maximum principle
extends to SSP methods.

Proposition 3.3 (conservation). The method is conservative in the sense that∫
Ω un+1

h,L dx =
∫
Ω un

h dx.

Proof. The definition (3.5) implies that

∫

Ω

(un+1
h,L − un

h) dx =

N∑

i=1

(Un+1
L,i − Un

i )

∫

Ω

ϕi dx =

N∑

i=1

mi(U
n+1
L,i − Un

i )

= −∆tn
∑

K⊂Kh

(
ν
L,n
K bK

(
un
h,

N∑

i=1

ϕi

)
+

∫

K

∇·(f (un
h))

N∑

i=1

ϕi dx

)
.

Then we conclude by using the partition of unity property
∑N

i=1 ϕi = 1, the conser-

vation property of bK , bK(ϕj ,
∑N

i=1 ϕi) = 0 ∀j ∈ {1, . . . , N}, and the assumptions on
the boundary conditions.

3.2. High-order viscosity. We now construct a higher-order method using the
notion of entropy viscosity introduced in Guermond and Pasquetti [15] and Guermond,
Pasquetti, and Popov [17]. Proceeding as in Guermond and Nazarov [13], the higher-
order viscosity is defined to be the minimum of the first-order viscosity defined in
(3.6) and an entropy residual. Let E ∈ Lip(�;�) be a convex entropy. Let K be a
cell in the mesh Kh. We define an entropy residual over K as follows:

(3.9) Rn
K(un

h, u
n−1
h ) = ‖ 1

∆tn−1 (E(un
h)− E(un−1

h )) + f ′(un
h)·∇E(un

h)‖L∞(K).

The L∞-norm overK is estimated by evaluating the residual at the quadrature points.
A first-order approximation of the time derivative ∂tE(u) is used here, but a second-
order or a higher-order approximation of the derivative of the entropy can easily be
constructed. For instance, the computation of the entropy residual can be embedded
within Runge–Kutta substeps; we omit the details for simplicity. Let F be a face of
K, and assume that F is an interface, i.e., F is not a boundary face. It is useful to
evaluate the entropy jump across the cell interfaces

(3.10) Jn
F (uh) = ‖f ′(un

h)·n[[∂nE(un
h)]]‖L∞(F ).

Let ν
L,n
K be the first-order viscosity defined in (3.6). The so-called entropy vis-

cosity is constructed as follows:

(3.11) ν
H,n
K = min

(
ν
L,n
K ,

cER
n
K(un

h, u
n−1
h ) + cJ maxF∈∂K Jn

F (u
n
h)

‖E(un
h)− E(un

h)‖L∞(Ω)

)
,
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where cE and cJ are user-defined parameters of order unity and E(un
h) is the mean

of E(un
h) over Ω (the index H refers to high-order). The key improvement over

earlier versions of the method (see, e.g., Guermond and Pasquetti [15] and Guermond,
Pasquetti, and Popov [17]) is that the definition (3.11) does not invoke any notion of

meshsize. All the quantities ν
H,n
K , νL,n

K , Rn
K , Jn

K scale like the inverse of a distance
to the square times a wave speed. The method is not yet parameter free due to the
presence of cE and cJ . We have observed that cE ∼ 1 and cJ ∼ 1 make the method
work satisfactorily in all the applications we have investigated.

3.3. Mass lumping versus consistent mass matrix. It is well known that
lumping the mass matrix induces high dispersion errors, as shown in, e.g., Christon [8],
Christon, Martinez, and Voth [9], Gresho, Sani, and Engelman [12], Voth, Martinez,
and Christon [32], Kuzmin [22], and Guermond and Pasquetti [16]. A cure for this
problem is to use the consistent mass matrix, but it is also known (see, e.g., Guermond
and Yang [18]) that the inverse of the consistent mass matrix is not maximum principle
preserving. Some remedies to this additional problem have been suggested in Kuzmin
[22]. We propose in this section an approach, slightly different from that of Kuzmin
[22], based on an idea from Guermond and Pasquetti [16] that leads to a simple and
robust algorithm.

Let MC and ML be the consistent and lumped mass matrices, respectively. The
entries of MC and ML are MC

ij :=
∫
Ω ϕi(x)ϕj(x) dx and ML

ij := δij
∫
Ω ϕi(x) dx,

respectively. Upon setting B = (ML−MC)(ML)−1, denoting I the identity matrix,
and observing that MC = (I − B)ML, the inverse of MC can formally be put into
the following form:

(MC)−1 = (ML)−1(I + B + B2 + . . .).

The Neumann series can be shown to be convergent. For instance, it is shown in Guer-
mond and Pasquetti [16] that the spectral radius of B is less than 3

4 for �1 Lagrange
finite elements in two space dimensions. It is also shown therein that approximating
(MC)−1 by (ML)−1(I + B) exactly corrects the dispersion error induced by mass
lumping for �1 elements.

Denoting G ∈ �N the column vector with entries

(3.12) Gi :=
∑

K⊂Si

(
ν
H,n
K bK(un

h, ϕi) +

∫

K

∇·(f (un
h))ϕi dx

)
,

we then define the high-order solution un+1
h,H :=

∑N
i=1 U

n+1
H,i ϕi as follows:

(3.13) Un+1
H = Un −∆tn(ML)−1(I + B)G.

Lemma 3.4. The following property holds:
∑

i∈I(Sj)
Bij = 0.

Proof. Using the definition B = (ML −MC)(ML)−1, we have

∑

i∈I(Sj)

Bij = 1−
∑

i∈I(Sj)

MC
ij

mj

= 1− mj

mj

= 0,

which completes the proof.
Corollary 3.5 (conservation). The algorithm Un −→ Un+1

H defined in (3.13)
is conservative in the sense that

∫
Ω
un+1
h,H dx =

∫
Ω
un
h dx.
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Proof. Proceeding as in the proof of Proposition 3.3, we have

∫

Ω

(un+1
h,H − un

h) dx =

N∑

i=1

mi(U
n+1
H,i − Un

i ) = −∆t

N∑

i=1

(
Gi +

N∑

j=1

BijGj

)
.

We conclude using Lemma 3.4 and the property
∑N

i=1 Gi = 0 which follows from the
conservation property of bK and the assumptions on the boundary conditions.

3.4. Flux correction. We are now going to adapt the Boris–Book–Zalesak flux
correction technique to un+1

H to ascertain that the solution at time tn+1 satisfies the
local maximum principle. This theory is purely algebraic and is recalled in Appendix
A for the reader’s convenience; we also refer the reader to Kuzmin, Löhner, and Turek
[23] for more details.

First we recast the definition of un+1
H in the form of (A.2). Denoting F ∈ �N the

column vector with entries

(3.14) Fi :=
∑

K⊂Si

(
ν
L,n
K bK(un

h, ϕi) +

∫

K

∇·(f (un
h))ϕi dx

)
,

the definition of un+1
h,L gives Un+1

L = Un − ∆tn(ML)−1F , which, together with the

definition of un+1
h,H (see (3.13)), in turn implies that

MLUn+1
H = MLUn −∆tn(I + B)G = MLUn −∆tnF −∆tn(G− F + BG)

= MLUn+1
L −∆tn(G− F + BG).

Using the conservation property of bK , the difference G− F can be rewritten as
follows:

Gi − Fi =
∑

K⊂Si

(νH,n
K − ν

L,n
K )bK(un

h, ϕi)

=
∑

i�=j∈I(Si)

∑

K⊂Si

(νH,n
K − ν

L,n
K )Un

j bK(ϕj , ϕi) +
∑

K⊂Si

(νH,n
K − ν

L,n
K )Un

i bK(ϕi, ϕi)

=
∑

i�=j∈I(Si)

∑

K⊂Si

(νH,n
K − ν

L,n
K )(Un

j − Un
i )bK(ϕj , ϕi).

We then define the sparse matrix A1 ∈ �N×N with entries

(3.15) A1
ij := ∆tn

∑

K⊂Si

(νL,n
K − ν

H,n
K )(Un

j − Un
i )bK(ϕj , ϕi).

Note that the sparsity pattern of A1 is the same as that of the consistent mass matrix;
i.e., assembling A1 can be done the same way the mass matrix is assembled.

Using Lemma 3.4 (which implies that Bii = −∑
i�=j∈Si

Bji) together with the
property that the matrix B has the same sparsity pattern as the consistent mass
matrix, we rewrite the product BG as follows:

(3.16) (BG)i =
∑

j∈Si

BijGj =
∑

i�=j∈Si

BijGj − BiiGi =
∑

i�=j∈Si

(BijGj − BjiGi).

We then define the second matrix A2 with entries

(3.17) A2
ij := −∆tn(BijGj − BjiGi).
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Finally, setting A := A1 + A2, the definition of Un+1
H can be recast into the

following form which is now suitable to apply the flux correction technique:

(3.18) miU
n+1
H,i = miU

n+1
L,i +

∑

j∈I(Si)

Aij .

Let Umin
i = minj∈I(i) U

n
i and Umax

i = maxj∈I(i) U
n
i , and denote Umin ∈ �N and

Umax ∈ �N the two vectors whose entries are Umin
i and Umax

i , 1 ≤ i ≤ N . Note that
Theorem 3.1 implies that

(3.19) Umin
i ≤ Un+1

L,i ≤ Umax
i ∀i ∈ {1, . . . , N}.

The flux correction limiter is defined as follows. First, compute the coefficients P+
i ,

P−
i , Q+

i , Q
−
i , R

+
i , and R−

i ∀1 ≤ i ≤ N :

P+
i :=

∑

j∈S(i)

max{0,Aij}, P−
i :=

∑

j∈S(i)

min{0,Aij}.(3.20)

Q+
i := mi(U

max
i − Un+1

L,i ), Q−
i := mi(U

min
i − Un+1

L,i ),(3.21)

R+
i :=

⎧
⎨
⎩
min{1, Q

+
i

P
+

i

} if P+
i 	= 0,

1 otherwise,
R−

i :=

⎧
⎨
⎩
min{1, Q

−

i

P
−

i

} if P−
i 	= 0,

1 otherwise.
(3.22)

Then define the limiting coefficients Lij ∀1 ≤ i, j ≤ N as follows:

(3.23) Lij :=

{
min{R+

i , R
−
j } if Aij ≥ 0,

min{R−
i , R

+
j } otherwise.

Finally, the flux-corrected high-order solution at tn+1 is defined by

(3.24) miU
n+1
i = miU

n+1
L,i +

∑

j∈I(Si)

LijAij .

In summary, given Un, the algorithm Un −→ Un+1 consists of the following steps:
(i) Compute the first-order solution Un+1

L defined in (3.5);
(ii) compute the entropy viscosity νH,n defined in (3.11);
(iii) compute the high-order right-hand side G defined in (3.12);
(iv) compute the matrices A1 and A2 defined in (3.15) and (3.17);
(v) compute the L matrix defined in (3.23);
(vi) update Un+1 by using (3.24).

We now formulate the main result of this section.
Theorem 3.6 (discrete maximum principle). In addition to the above assump-

tions, assume that β∆tn

h
≤ 1

λ(1+ρ−1) . Then the algorithm Un −→ Un+1 with Un+1

defined in (3.24) is conservative and satisfies the local discrete maximum principle,

i.e., umin ≤ minj∈I(Si) U
n
j ≤ Un+1

i ≤ maxj∈I(Si) U
n
j ≤ umax ∀n ≥ 0.

Proof. We start by verifying that the assumptions of Lemma A.2 hold. The
positivity condition (A.3) is satisfied by the assumption (2.3). The skew symmetry
of A1 is a consequence of the symmetry of bK (see definition of A1, (3.15)), and the
skew symmetry of A2 is evident by construction (see (3.17)); as a result, A satisfies
the skew symmetry assumption (A.4). The conservation properties (A.5) have been
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established in Proposition 3.3 and Corollary 3.5. We can now apply Theorem 3.1 and
Lemma A.2.

Corollary 3.7 (maximum principle). Under the assumptions of Theorem 3.6,
the solution to the algorithm Un −→ Un+1 with Un+1 defined in (3.24) satisfies the

following L∞-estimates:

(3.25) cminumin ≤ un
h(x) ≤ cmaxumax ∀n ≥ 0, ∀x ∈ Ω.

Moreover, if the space Xh is such that minℓ∈I(K) v(aℓ) ≤ v(x) ≤ maxℓ∈I(K) v(aℓ)
∀v ∈ Xh, ∀x ∈ K, ∀K ∈ Kh, then the following holds for all K ∈ Kh:

(3.26) min
i∈I(K)

min
j∈I(Si)

Un
j ≤ un+1

h (x) ≤ max
i∈I(K)

max
j∈I(Si)

Un
j ∀n ≥ 0.

Remark 3.2. Note that (3.26) holds for �1 and �1 finite elements, but only
(3.25) can be guaranteed for higher-order elements. Preliminary numerical results (not
reported here) using �2, �3, and �3 finite elements confirm the results of Corollary
3.7. In these tests, the coefficient λ defined in (2.4) is no longer equal to 1 and grows
with the polynomial degree, which in turns decreases the admissible CFL. A possible
way to overcome this obstacle is under investigation and will be reported in due time.

4. Numerical illustrations. In this section we present numerical illustrations
of the algorithm introduced above (see (3.24)). Henceforth, the “limiter solution” is
the result of (3.24), and the “entropy viscosity solution” is the result of (3.24) with
no limiter, i.e., Lij = 1. All the computations are done in two space dimensions using
continuous �1 finite elements for the space approximation and SSP RK3 to step in
time (see Gottlieb, Shu, and Tadmor [11]). The implementation is done with the
open source finite element library DOLFIN; see Logg and Wells [26]. We first solve in
section 4.1 a linear transport problem with smooth data to assess the accuracy of the
method; then we test the method on bounded variation initial data. In section 4.2,
we test the convergence properties of the algorithm by solving two nonlinear scalar
conservation equations.

4.1. Linear transport problem. Let us consider the two-dimensional rotation
field β(x) = 2π(−x2, x1) and the linear transport equation:

(4.1) ∂tu(x, t) + β(x)·∇u(x, t) = 0, u(x, 0) = u0(x).

In all the tests reported in this section the entropy viscosity is computed with cE = 1
and cJ = 1, and the entropy residual is computed with the entropy E(u) = − ln(|u(1−
u)|+ ǫ) with ǫ = 10−10. The CFL number is set to 0.3.

4.1.1. Smooth solution. We solve (4.1) up to t = 1 in �2 with the following
smooth initial data:

(4.2) u0(x) =
1
2

(
1− tanh

(
(x−x0)

2

r20
− 1

))
, with r0 = 0.25, x0 = (0.3, 0).

Two types of meshes are tested. First, the computational domain is restricted to
the unit disc, and we use unstructured triangular meshes in this domain. Second, the
computational domain is restricted to the unit square, [−1, 1]2, and we use structured
triangular meshes therein. The structured meshes are obtained by dividing the unit
square into small rectangles and by cutting each small rectangle in half from the top
left corner to the bottom right corner. For each of the above two mesh configurations,
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Table 1
Smooth data, unstructured �1 meshes, and convergence tests for entropy viscosity and limiter

solution.

h
�1 entropy viscosity

L1 rate L2 rate L∞ rate
0.1 9.78E-02 – 1.09E-01 – 2.65E-01 –
0.05 2.52E-02 2.02 3.09E-02 1.88 9.41E-02 1.54
0.025 4.33E-03 2.65 5.64E-03 2.56 1.91E-02 2.41
0.0125 7.38E-04 2.56 9.26E-04 2.61 5.48E-03 1.80
0.00625 1.52E-04 2.28 1.99E-04 2.22 2.38E-03 1.20

h
�1 limiter solution

L1 rate L2 rate L∞ rate
0.1 9.40E-02 – 1.05E-01 – 2.58E-01 –
0.05 2.40E-02 2.04 2.92E-02 1.91 8.68E-02 1.63
0.025 4.48E-03 2.53 5.84E-03 2.43 2.02E-02 2.20
0.0125 8.15E-04 2.46 1.02E-03 2.53 5.28E-03 1.94
0.00625 1.75E-04 2.22 2.31E-04 2.14 2.40E-03 1.13

Table 2
Smooth data, uniform �1 meshes, and convergence tests for entropy viscosity and limiter solution.

h
�1 entropy viscosity

L1 rate L2 rate L∞ rate
0.1 1.36E-01 – 1.48E-01 – 3.64E-01 –
0.05 3.91E-02 1.87 4.86E-02 1.67 1.28E-01 1.56
0.025 7.64E-03 2.40 1.09E-02 2.20 3.24E-02 2.02
0.0125 1.16E-03 2.74 1.73E-03 2.68 5.42E-03 2.60
0.00625 1.70E-04 2.78 2.50E-04 2.81 7.79E-04 2.81

h
�1 limiter solution

L1 rate L2 rate L∞ rate
0.1 1.32E-01 – 1.45E-01 – 3.64E-01 –
0.05 3.62E-02 1.93 4.47E-02 1.75 1.17E-01 1.70
0.025 7.58E-03 2.30 1.09E-02 2.08 3.25E-02 1.87
0.0125 1.16E-03 2.73 1.74E-03 2.66 5.44E-03 2.60
0.00625 1.72E-04 2.77 2.53E-04 2.80 1.41E-03 1.96

we test five meshsizes h = 0.1, 0.05, 0.025, 0.0125, and 0.00625. The L1-, L2-, and
L∞-norms of the error are evaluated at time t = 1, i.e., after one revolution. The
results for the unstructured meshes are shown in Table 1, and those for the structured
meshes are shown in Table 2.

The results from both the uniform and unstructured meshes indicate that the
entropy viscosity solution and the limiter solution achieve optimal convergence rates
in the L1- and L2-norms. The diagnostic in the L∞-norm is less clear; when compared
to the entropy solution it seems that the limiter solution on structured grids suffers
from a slight optimality loss in the L∞-norm. On the other hand, the errors in all
norms for the entropy viscosity solution and the limiter solution on unstructured grids
are almost identical; i.e., the effect of the limiter is unnoticeable.

Finally, we evaluate the effect of the mass lumping correction done in (3.13) by
performing two computations up to t = 4 (four revolutions) on an unstructured mesh
composed of 6773 �1 nodes. One computation is done with the mass lumping correc-
tion (see the middle panel in Figure 1), and the other is done without (see the right
panel in Figure 1). The dispersion effects of mass lumping and the correction thereof
are clearly visible. This test confirms the validity of our mass lumping correction
approach.
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Fig. 1. Rotation of smooth data, unstructured mesh, 6773 �1 nodes, t = 4. Exact solution (left),
limiter solution with lumped mass matrix correction (center), and limiter solution with lumped mass
matrix (right).

4.1.2. Three body rotation. The method is now evaluated on the transport
problem (4.1) with the following nonsmooth initial data which is commonly used in
the literature:

(4.3) u0(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ‖x− xd‖ ≤ r0 and (|x1| ≥ 0.05 or x2 ≥ 0.7),

1− ‖x−xc‖
r0

if ‖x− xc‖ ≤ r0,

g(‖x− xh‖) if ‖x− xh‖ ≤ r0,

0 otherwise,

where r0 = 0.3, g(r) := 1
4 [1 + cos(πmin( r

r0
, 1))], xd = (0, 0.5), xc = (0,−0.5), and

xh = (−0.5, 0). The graph of u0 consists of three bodies: a slotted cylinder of height
1, a smooth hump of height 1

2 , and a cone of height 1 (see leftmost panel in Figure 3).
Two series of tests are performed: one is done on structured meshes in the domain
[−1, 1]2; the other is done on unstructured triangular meshes; �1 elements are used
in both cases.

Fig. 2. Uniform mesh, 128×128, t = 1: First-order viscosity solution (left); Galerkin −0.422 ≤

u ≤ 1.36 (center left); entropy viscosity solution −3.2×10−8 ≤ u ≤ 0.978 (center right); limiter
solution 0 ≤ u ≤ 0.965 (right).

We first compare the performance of the algorithm presented in this paper with
that of the first-order viscosity method, the Galerkin method (i.e., no stabilization),
and the entropy viscosity method (i.e., no limiter). This test is done on the square
[−1, 1]2 using a uniform mesh composed of 128×128 �1 nodes. The first-order solution,
the Galerkin solution, the entropy viscosity solution, and the limiter solution at t =
1 are shown in Figure 2 from left to right. The first-order solution satisfies the
maximum principle but is clearly inaccurate. The Galerkin solution suffers from
spurious oscillations. The Galerkin solution is improved significantly by augmenting
it with the entropy viscosity; however, the local maximum principle is slightly violated.
The limiter corrects the small maximum principle violations of the entropy viscosity
method, as proven in the above theory.

We show in Table 3 convergence tests performed on five successively refined uni-
form meshes of the square [−1, 1]2. The convergence rates in the L1- and L2-norms
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Table 3
Three body rotation, convergence tests, uniform �1 meshes: Entropy viscosity and limiter solution.

h
�1 entropy viscosity �1 limiter solution

L1 rate L2 rate L1 rate L2 rate
0.1 3.94E-01 – 3.47E-01 – 4.05E-01 – 3.55E-01 –
0.05 2.37E-01 0.76 2.54E-01 0.47 2.42E-01 0.77 2.57E-01 0.48
0.025 1.34E-01 0.84 1.96E-01 0.38 1.37E-01 0.84 2.00E-01 0.37
0.0125 8.10E-02 0.74 1.48E-01 0.41 8.22E-02 0.74 1.49E-01 0.43
0.00625 4.89E-02 0.73 1.14E-01 0.38 4.93E-02 0.74 1.14E-01 0.39

are approximately 0.74 and 0.37, respectively; these rates are consistent with those
reported in Guermond, Pasquetti, and Popov [17, Table 3.4]. The best possible theo-
retical approximation rates on these types of meshes are 1 and 0.5, respectively. Note
again that the limiter does not degrade the accuracy of the entropy viscosity solution.

We now perform convergence tests on nonuniform meshes in the unit disc {x ∈
�2 | ‖x‖ ≤ 1}. We use �1 finite elements on five successively refined meshes: h = 0.1,
0.05, 0.025, 0.0125, and 0.00625. The graph of the limiter solution at t = 1 on
each of these meshes is shown in Figure 3. Again the algorithm converges without
showing distortions due to dispersion error. We have numerically verified that the local
maximum principle is indeed satisfied at each time step, as claimed in Theorem 3.6
(actually the verification is done at each SSP RK3 subtstep).

Fig. 3. Limiter solution on unstructured meshes, t = 1: 1789 nodes, 0.1×10−6 ≤ u ≤ 0.69
(left); 6773 nodes, 0 ≤ u ≤ 0.89 (center left); 26969 nodes, 0 ≤ u ≤ 0.989 (center right); 107696
nodes, 0 ≤ u ≤ 1 (right).

Table 4 presents the results for the above convergence tests on the unstructured
grids. The convergence rates are quite similar to what is observed on the structured
grids (see Table 3); i.e., the convergence rates in the L1- and L2-norms are 0.73 ∼ 0.76
and 0.37 ∼ 0.38, respectively. Note again that the limiter does not degrade the
accuracy of the entropy viscosity solution.

Table 4
Three body rotation, convergence tests, unstructured meshes: Entropy viscosity versus limiter

solution.

h
�1 entropy viscosity �1 limiter solution

L1 rate L2 rate L1 rate L2 rate
0.1 3.57E-01 – 3.35E-01 – 3.60E-01 – 3.36E-01 –
0.05 2.12E-01 0.77 2.48E-01 0.44 2.19E-01 0.74 2.57E-01 0.40
0.025 1.22E-01 0.84 1.82E-01 0.46 1.25E-01 0.85 1.85E-01 0.49
0.0125 6.97E-02 0.81 1.34E-01 0.44 7.11E-02 0.81 1.35E-01 0.46
0.00625 4.11E-02 0.76 1.03E-01 0.38 4.19E-02 0.76 1.03E-01 0.39D
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4.1.3. Conclusions. The above convergence tests confirm that the proposed
method is (at least) fully second-order and performs equally well on structured and
unstructured grids. The tests also confirm that the mass lumping correction as defined
in (3.13) is an important ingredient of the method (see Figure 1).

4.2. Nonlinear problems. In this section the method is tested for convergence
towards the entropy solution on two nonlinear scalar conservation equations. The
entropy used to compute the entropy residual for this problem is E(u) = 1

2u
2, and

the entropy viscosity is computed with cE = 1, cJ = 4. All the computations are
done with CFL = 0.3.

4.2.1. Burgers’ equation. Consider the two-dimensional Burgers’ equation:

(4.4) ∂tu+∇·
(
1
2βu

2
)
= 0, u(x, 0) = u0(x),

where β = (1, 1) and the initial condition u0 is given by

(4.5) u0 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−0.2 if x1 < 0.5 and x2 > 0.5,

−1 if x1 > 0.5 and x2 > 0.5,

0.5 if x1 < 0.5 and x2 < 0.5,

0.8 if x1 > 0.5 and x2 < 0.5.

The exact solution to this problem is available in Guermond, Pasquetti, and Popov
[17, eq. (4.3)]. The problem is solved in the square [0, 1]2 up to t = 0.5, and the com-
putational domain is triangulated using six successively refined unstructured meshes:
h = 0.1, 0.05, . . . , 0.003125.

Table 5 shows the convergence results for both the entropy viscosity solution and
the limiter solution. Observe that the convergence rates in the L1- and L2-norms are
close to the optimal rates, i.e., almost 1 and 1

2 , respectively.

Table 5
Burgers’ equation, convergence tests, unstructured meshes: Entropy viscosity versus limiter

solution.

h
�1 entropy viscosity �1 limiter solution

L1 rate L2 rate L1 rate L2 rate
0.1 1.06E-01 – 2.32E-01 – 8.49E-02 – 1.98E-01 –
0.05 5.68E-02 0.90 1.64E-01 0.50 3.73E-02 1.20 1.28E-01 0.64
0.025 2.92E-02 0.98 1.21E-01 0.44 2.10E-02 0.85 9.77E-02 0.39
0.0125 1.60E-02 0.89 9.39E-02 0.38 1.17E-02 0.86 7.72E-02 0.35
0.00625 7.91E-03 1.00 6.64E-02 0.50 5.64E-03 1.10 5.52E-02 0.49
0.003125 4.06E-03 0.97 4.85E-02 0.45 2.90E-03 0.96 4.04E-02 0.45

To have a better appreciation of the amount of maximum principle violation by
the entropy viscosity solution and visualize the action of the flux correction technique,
we show in Figure 4 a cross section along the line x2 = 1 − x1 of the graph of the
entropy viscosity and limiter solutions at t = 0.5 on four different meshes. The cross
section for the entropy solution is shown in the left panel, and that for the limiter
solution is shown in the right panel. Two regions are magnified to emphasize the slight
violations of the local maximum principle by the entropy viscosity solution. Using
the curvilinear abscissa s =

√
2x1, the first region is the rectangle (s, u) ∈ [1.35 ±

0.075]×[0.8 ± 7.5×10−4]; the second region is (s, u) ∈ [0.55 ± 0.3]×[−1 ± 7.5×10−4].
Observe that in both cases the over- and undershoots of the entropy solution are
barely noticeable and seem to diminish as the meshes are refined. Note also that the
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s =
√

2x1, x2 = 1− x1

Zoom, s = 1.35, u = 0.8

Zoom, s = 0.55, u = −1

2212 nodes
8572 nodes
34235 nodes
136028 nodes

Cut-plot, entropy viscosity solution
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34235 nodes
136028 nodes

Cut-plot, limiter solution

Fig. 4. Cross section: Burgers’ equation.

limiter solution definitely satisfies the maximum principle, and the convergence of the
limiter solution to the exact solution seems to be monotone.

4.2.2. KPP rotating wave. In this section we solve a two-dimensional scalar
conservation equation with a nonconvex flux:

(4.6) ∂tu+∇ · f(u) = 0, u(x, 0) = u0(x) =

{
14π
4 if

√
x2 + y2 ≤ 1,

π
4 otherwise,

where f(u) = (sinu, cosu). This test was originally proposed in Kurganov, Petrova,
and Popov [21]. It is a challenging test case for many high-order numerical schemes
because the solution has a two-dimensional composite wave structure. For example, it
has been shown in [21] that some central-upwind schemes based on WENO5, Minmod
2, and SuperBee reconstructions converge to nonentropic solutions.

The computational domain [−2, 2]×[−2.5, 1.5] is triangulated using nonuniform
meshes, and the solution is approximated up to t = 1 using �1 finite elements. The
graph of the limiter solution on four meshes (2208, 8560, 34268, and 135841 �1 nodes,
respectively) is shown in Figure 5. The helicoidal composite wave is clearly visible.

Fig. 5. Limiter solution on unstructured meshes: 2208 nodes (left); 8560 nodes (center left);
34268 nodes (center right); 135841 nodes (right).

To better evaluate the amount of maximum principle violation by the entropy
viscosity solution and visualize the action of the flux correction technique, we show in
Figure 6 a cross section along the line x2 = x1 of the graph of the entropy viscosity
and limiter solutions at t = 1 on four different meshes (2208, 8560, 34268, and 135841
�1 nodes, respectively). The cross section for the entropy solution is shown in the
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√
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Zoom, s = 1.2, u = π
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Cut-plot, entropy viscosity solution
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Fig. 6. Cross section: KPP problem.

left panel and that for the limiter solution is shown in the right panel. Two regions
are magnified to emphasize the slight violations of the local maximum principle by
the entropy viscosity solution. Using the curvilinear abscissa s =

√
2x1, the first

region is the rectangle (s, u) ∈ [1.2 ± 0.3]×[π4 ± 5×10−2], and the second region is
the rectangle (s, u) ∈ [4.7± 0.6]×[π4 ± 1×10−2]. Observe that in both cases the over-
and undershoots of the entropy solution are barely noticeable and seem to diminish
as the meshes are refined. Note again that the limiter solution satisfies the maximum
principle, and the convergence of the limiter solution to the exact solution seems to
be monotone.

4.2.3. Convergence to the entropy solution. It may be tempting to think
that limiting can be used directly on the Galerkin solution, i.e., using νH,n = 0 in
(3.12). This intuition is wrong since there is no mechanism in the limiter to add the
correct entropy-satisfying dissipation. To illustrate this phenomenon, we solve the
Kurganov–Petrova–Popov (KPP) problem on the three unstructured grids used in
the previous section (see Figure 5) using (3.24) with νH,n = 0. The results are shown
in Figure 7.

Fig. 7. KPP problem, Galerkin solution + limiter on unstructured meshes: 2208 nodes (left);
8560 (center left); 34268 nodes (center right); 135841 nodes (right).

Although the solution satisfies the local maximum principle at every grid point
and at every SSP RK3 substep, the approximate solution seems to converge to a weak
solution which is not the unique entropy solution. This observation is in agreement
with the experiments from Kurganov, Petrova, and Popov [21]. This observation also
shows that the high-order method in (3.24) must have the correct entropy dissipation
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for the present technique to converge properly. This justifies the entropy-viscosity
strategy that we have adopted. Note finally that this example illustrates well that
satisfying the local maximum principle does not imply total variation diminution.

4.2.4. Conclusions. In conclusion, the new limited entropy-viscosity method
presented in this paper is (i) higher-order accurate (at least second-order); (ii) max-
imum principle preserving; and (iii) convergent. Items (i) and (iii) are numerical
observations, and item (ii) is proved in Theorem 3.6 and Corollary 3.7. Note finally
that the modifications done by the limiter on the entropy viscosity solution are barely
noticeable in general. In the words of Babuška, it could be said that the limiter is the
validation stamp on the method certifying that it is maximum principle satisfying.
Note finally that while a proof that the whole algorithm converges to the entropy so-
lution is still missing, the first-order method does converge as described (Guermond,
Nazarov, and Popov [14]).

Appendix A. The Boris–Book–Zalesak theory. For the reader’s conve-
nience, we recall in this section the main feature of the limiter theory developed by
Boris and Book [3] and Zalesak [33]; we refer the reader to Kuzmin and Turek [24]
for a comprehensive review.

This theory is essentially algebraic. Let Un ∈ �N and assume that we have two
Markov processes Un → Un+1

L and Un → Un+1
H where we refer to Un+1

L and Un+1
H as

the low- and high-order solutions, respectively. We assume that the low-order solution
satisfies some minimum and maximum principle; say there are two vectors Umin ∈ �N

and Umax ∈ �N such that

(A.1) Umin
i ≤ Un+1

L,i ≤ Umax
i ∀i ∈ {1, . . . , N}.

For instance, Umin
i = minj∈I(i) U

n
i and Umax

i = maxj∈I(i) U
n
i are possible definitions

of Umin and Umax, where I(i) is a set of indices that depends on i (think of the indices
of the shape functions ϕj whose support has nonzero intersection with the shape
function ϕi). We assume also that j ∈ I(i) if and only i ∈ I(j). We furthermore
assume that Un+1

L and Un+1
H are related as follows:

(A.2) miU
n+1
H,i = miU

n+1
L,i +

∑

j∈I(i)

aij ,

where the coefficients mi and aij satisfy the following properties:

mi > 0, 1 ≤ i ≤ N,(A.3)

aij = −aji, 1 ≤ i, j ≤ N.(A.4)

We finally assume that the two processes Un → Un+1
L and Un → Un+1

H satisfy the
following additional conservation property:

(A.5)
∑

i

miU
n+1
L,i =

∑

i

miU
n
i ,

∑

i

miU
n+1
H,i =

∑

i

miU
n
i ∀n ≥ 0,

and we refer to the above identities by saying that the processes Un → Un+1
L and

Un → Un+1
H are conservative.

Since it is not guaranteed that Un+1
H satisfies the minimum and maximum princi-

ple, Boris and Book [3], Zalesak [33], and Kuzmin and Turek [24] propose to modify
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the high-order solution as follows:

(A.6) miU
n+1
i = miU

n+1
L,i +

∑

j∈I(i)

Lijaij ,

where the limiting coefficients Lij are computed using the following procedure. First,
compute the coefficients P+

i , P−
i , Q+

i , Q
−
i , R

+
i , and R−

i , 1 ≤ i ≤ N :

P+
i :=

∑

j∈S(i)

max{0, aij}, P−
i :=

∑

j∈S(i)

min{0, aij},(A.7)

Q+
i := mi(U

max
i − Un+1

L,i ), Q−
i := mi(U

min
i − Un+1

L,i ),(A.8)

R+
i :=

⎧
⎨
⎩
min{1, Q

+
i

P
+

i

} if P+
i 	= 0,

1 otherwise,
R−

i :=

⎧
⎨
⎩
min{1, Q

−

i

P
−

i

} if P−
i 	= 0,

1 otherwise.
(A.9)

Then define the limiting coefficients Lij that are used in (A.6) as follows:

(A.10) Lij :=

{
min{R+

i , R
−
j } if aij ≥ 0,

min{R−
i , R

+
j } otherwise.

Lemma A.1. The definitions (A.7), (A.8), (A.9), (A.10) imply the following

properties:

P−
i ≤ 0 ≤ P+

i , Q−
i ≤ 0 ≤ Q+

i , 0 ≤ R−
i , 0 ≤ R+

i ∀i ∈ {0, . . . , N},(A.11)

0 ≤ Lij ≤ 1, Lij = Lji ∀i, j ∈ {0, . . . , N}.(A.12)

Proof. The properties (A.11) follow immediately from the definitions (A.7), (A.8),
(A.9) and the assumption (A.1). The definitions of R+

i and R−
j imply that 0 ≤

Lij ≤ 1. Let us now prove that Lij = Lji. Assume that aij ≥ 0. Then aji =
−aij ≤ 0 owing to (A.4). The definition of Lij and Lji imply in turn that Lij =
min{R+

i , R
−
j } and Lji = min{R−

j , R
+
i }; i.e., Lij = Lji. The proof for the case aij ≤ 0

is identical.
The key property of the above limiting procedure is that it is conservative and

gives a local maximum principle.
Lemma A.2. Let Umin ∈ �N and Umax ∈ �N be such that (A.1) holds. Under

the above assumptions (A.3), (A.4), (A.5), the solution of the scheme (A.6) with Lij

defined as in (A.10) is conservative and satisfies

(A.13) Umin
i ≤ Un+1

i ≤ Umax
i , i = 1, . . . , N.

Proof. (1) We first prove conservation. It suffices to show that
∑N

i=1 mi(U
n+1
i −

Un+1
L,i ) = 0 to conclude that

∑N
i=1 mi(U

n+1
i − Un

i ) = 0. The symmetry properties of
Lij and aij imply that

N∑

i=1

mi

(
Un+1
i − Un+1

L,i

)
=

N∑

i=1

∑

j∈I(i)

Lijaij =
∑

i∈I(j),j∈I(i)

(Lijaij + Ljiaji)

=
∑

i∈I(j),j∈I(i)

(Lijaij − Lijaij) = 0.D
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The conclusion follows readily.
(2) We now prove the local maximum principle, i.e., (A.13). Let us assume that

P+
i 	= 0. By (A.6) and the definition of Lij , we have

mi(U
n+1
i − Un+1

L,i ) : =
∑

j∈I(i)

Lijaij ≤
∑

j∈I(i), 0≤aij

Lijaij =
∑

j∈I(i), 0≤aij

min{R+
i , R

−
j }aij

≤
∑

j∈I(i), 0≤aij

R+
i aij ≤

∑

j∈I(i), 0≤aij

Q+
i

P+
i

aij

=
Q+

i

P+
i

∑

j∈I(i)

max{0, aij} = Q+
i = mi(U

max
i − Un+1

L,i ),

which proves that Un+1
i ≤ Umax

i when P+
i 	= 0. If P+

i = 0, then mi(U
n+1
i −Un+1

L,i ) ≤
0 ≤ mi(U

max
i − Un+1

L,i ), which proves again that Un+1
i ≤ Umax

i . The lower bound,

Umin
i ≤ Un+1

i , is proved similarly.
Remark A.1. Note that the above maximum principle holds independently of

the definition of Umax
i and Umin

i provided that (A.1) holds.
Remark A.2. By Lemma A.2, it follows that if the low-order scheme satisfies

the maximum principle, (A.1), then the maximum principle also holds for the new
scheme (A.6).
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