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ABSTRACT
Linear analysis and Monte Carlo simulation are two well-

established methods for statistical tolerance analysis of

mechanical assemblies. Both methods have advantages and

disadvantages. The Linearized Method, a form of linear

analysis, provides fast analysis, tolerance allocation, and the

capability to solve closed loop constraints. However, the

Linearized Method does not accurately approximate nonlinear

geometric effects or allow for non-normally distributed input or

output distributions. Monte Carlo simulation, on the other hand,

does accurately model nonlinear effects and allow for non-

normally distributed input and output distributions. Of course,

Monte Carlo simulation can be computationally expensive and

must be re-run when any input variable is modified.

The second-order tolerance analysis (SOTA) method

attempts to combine the advantages of the Linearized Method

with the advantages of Monte Carlo simulation. The SOTA

method applies the Method of System Moments to implicit

variables of a system of nonlinear equations. The SOTA method

achieves the benefits of speed, tolerance allocation, closed-loop

constraints, non-linear geometric effects and non-normal input

and output distributions. The SOTA method offers significant

benefits as a nonlinear analysis tool suitable for use in design

iteration.

A comparison was performed between the Linearized

Method, Monte Carlo simulation, and the SOTA method.  The

SOTA method provided a comparable nonlinear analysis to

Monte Carlo simulation with 10
6
 samples.  The analysis time of

the SOTA method was comparable to the Linearized Method.

1. INTRODUCTION
Tolerance analysis is increasingly becoming an important

tool for mechanical design. This seemingly arbitrary task of

assigning tolerances can have a large effect on the cost and

performance of manufactured products.  With the increase in

competition in today’s marketplace, small savings in cost or

small increases in performance may determine the success of a

product.

This paper proposes a new second-order tolerance analysis

(SOTA) method. The development of the SOTA method was

motivated by the differences in capabilities between two well-

established tolerance analysis methods: the Linearized Method

and Monte Carlo simulation. The SOTA method specifically

addresses tolerance analysis of vector-loop tolerance models.

The following three sections introduce vector-loop tolerance

models, the Linearized Method and Monte Carlo simulation.

1.1 Vector-loop Tolerance Models
Vector loops can be used to model manufactured

assemblies.  Figure 1 shows an example of a two-dimensional

assembly described by three vector loops. A vector-loop

tolerance model mathematically establishes how the

manufactured lengths and angles of each component combine in

order to properly assemble together.  The vector loops are able

to model dimensional, form and kinematic variations.

Loop 2

Loop 1

Loop 3

Figure 1: Vector-loop Assembly Model

Vector-loop closure is an important condition for assembly

tolerance analysis.  Closure simply refers to the condition when

the beginning of the vector loop is the same position and

orientation as the end of the loop.  Loop closure is the

mathematical equivalent of an assembly fitting together with no
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clearance between parts.  The loop closure condition can be

written as the system of nonlinear equations:

h(x,u) = 0 (1)

where h is the system of loop equations, x is the set of vectors

representing manufactured component dimensions, and u is the

set of vectors representing unknown assembly lengths and

angles.  The unknown assembly lengths and angles are the

kinematic assembly dimensions that change as a function of the

component dimensions.

1.2 Linearized Method
The Linearized Method is a vector-loop-based method of

assembly tolerance analysis.  The method’s name comes from

the fact that the nonlinear equations of the vector-loop model

are linearized for the analysis.  The linearized equations

determine how small changes of the component dimensions,

form and contact affect an assembly.  For this method only one

assembly needs to be analyzed statistically.  Linear analysis is

extremely fast and allows for tolerance allocation and design

iteration.  It is, however, limited to normal component

distributions and cannot be applied to non-normal assembly

distributions.

When tolerances are small compared to the nominal

dimension, on the order of 1/100 to 1/1000, the Linearized

Method gives excellent results.  A comparison [Gao 1995]

between the Linearized Method and Monte Carlo simulation

found that the accuracy of the Linearized Method corresponded

to Monte Carlo simulation with a sample size of 30,000, for

quality levels near three sigma. However, for highly nonlinear

assemblies or highly skewed distributions, the Linearized

Method loses accuracy.

The Linearized Method expands the loop closure equation,

Equation 1, for small variations about the nominal by Taylor's

series expansion, retaining first order derivatives.  This

expansion yields:
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where dxj are the specified tolerances of the component

dimensions and duj are the resultant variations in the dependent

assembly dimensions.  This expression can be put in vector

form by forming the matrix A of partial derivatives 
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[ A ] {dx} + [ B ] {du} = { 0 } (3)

Solving for du:

{du} = -[ B-1] [ A ] {dx} (4)

Therefore, the product of the matrices -B-1A gives the

sensitivities of the dependent assembly dimension with respect

to the component dimensions.  Having established this

relationship, the Standard Deviation of the dependent assembly

dimension variations may be estimated by the root sum squares

expression:
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where 

j

i

x

u

∂
∂  are the elements of the -B-1A matrix.

The formulation of the Linearized Method allows the

implicit assembly dimensions in the loop equations to be

expressed as an explicit, statistical function of the component

dimensions.

2.

3.

4.

Calculate Standard
Deviation

Fit Normal Distribution

Calculate Rejects

1. Calculate Sensitivities

Figure 2: Steps of the Linearized Method

Figure 2 shows the steps of the Linearized Method. Step 1

is the calculation of the sensitivities, the elements of the -B-1A

matrix. Step 2 uses Equation 5 to calculate the Standard

Deviation. Steps 3 applies a Normal distribution assumption to

the Standard Deviation calculated in Step 2. Finally, Step 4

calculates the rejects given the Normal distribution and

specification limits.

1.3 Monte Carlo Simulation
Monte Carlo simulation is a random number based method

for performing assembly tolerance analysis. The manufacture of

an assembly is simulated, for example, by creating a set of

component dimensions with small random changes to simulate

natural process variations.  Next, the resulting assembly

dimensions are calculated from the simulated set of component

dimensions.  The number of rejects that fall outside the

specification limits are then counted. These three steps are

illustrated in Figure 3.

Sample sizes generally range between 5,000 to 100,000

based on the required accuracy of the simulation.  The accuracy
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of Monte Carlo simulation increases with larger sample sizes.

Obviously, the computational effort of large sample sizes can be

significant, but Monte Carlo simulation offers many advantages

because of its flexibility.  Monte Carlo simulation allows any

component distribution to be specified and will calculate the

resulting assembly distribution.

1.

2.

3.

For each sample

Randomly Change All
Model Variables

Evaluate Model Function

Count Rejects

Figure 3: Steps of Monte Carlo Simulation

Monte Carlo simulation and the Linearized Method provide

different capabilities.  The Linearized Method can perform an

analysis and a tolerance allocation quickly, so it is suitable for

design iteration. The Linearized Method is limited in that it

cannot output non-normal distributions or handle non-normal

component distributions. Also, the Linearized Method will not

be accurate for highly nonlinear assemblies.  Monte Carlo

simulation allows non-normal input distributions and a

nonlinear analysis.  However, Monte Carlo simulation is

computationally expensive and does not accommodate rapid

design iteration. For example, if a single input parameter is

modified, the entire Monte Carlo simulation must be re-run.

Table 1: Comparison of Method Features
Features Linearized

Method
Monte Carlo
Simulation

SOTA
Method

Speed √ √
Tolerance allocation √ √
Closed-loop constraints √ √
Nonlinear approximation √ √
Non-normal input
distributions

√ √

Non-normal output
distributions

√ √

Table 1 summarizes the features of the Linearized Method,

Monte Carlo simulation and the Second-Order Tolerance

Analysis (SOTA) method proposed in this paper. The SOTA

method attempts to combine the features of the Linearized

Method and Monte Carlo simulation.

The next section of this paper, Section 2, discusses research

related to the SOTA method. Section 3 presents the SOTA

method. Section 4 compares the results of the SOTA method

with the Linearized Method and Monte Carlo simulation for a

sample problem.

2. RESEARCH REVIEW

2.1 Linearized Method
The Linearized Method, explained in Section 1.2, provides

a quick way to perform nonlinear tolerance analysis for both

explicit and implicit assembly dimensions of a vector-loop

tolerance model.  Because of its speed, the Linearized Method

is ideal for design iteration and tolerance allocation.  Multiple

research studies have continued to refine the Linearized

Method, making it more general and accurate.

The Direct Linearization Method (DLM) [Marler 1988]

prescribed a systematic approach to vector-loop model

tolerance analysis.  DLM has enabled the Linearized Method to

be applied to a broad range of tolerance problems.  Most

importantly, DLM has allowed a general tolerance analysis

methodology to be incorporated into a computer program

suitable for integration with a CAD system.

More recently, the Global Coordinate Method [Gao 1993]

for determining the partial derivatives of the loop equations was

developed.  This method simplified the calculations of these

derivatives.  In the same paper, Gao benchmarked the

Linearized Method against a comparable Monte Carlo

simulation system.  The benchmark results showed that the

accuracy of the Linearized Method corresponds to Monte Carlo

simulation with a sample size of 30,000 for quality levels of

three sigma.

The Linearized Method has demonstrated its usefulness as

a design tool.  However, the method is inadequate for highly

nonlinear tolerance problems and non-normal input

distributions.

2.2 Monte Carlo Simulation
Generally, Monte Carlo simulation is applied to an explicit

function of random variables.  However, the variables of

interest in the equations of a vector-loop tolerance model are

inherently implicit.  McCATS, a Monte Carlo based tolerance

analysis method developed recently [Gao 1995], is able to

adequately handle the implicit equations of a vector-loop

tolerance model.

The McCATS system starts by generating random variates

for the assembly variables.  These random variates are sent to

an assembly function that then solves the nonlinear system of

loop equations iteratively for the dependent assembly

dimensions.  The assembly dimensions are stored, new random

variates are generated, and the assembly function is called

again.  This procedure is continued until the desired number of

assemblies has been simulated.  Solving the loop equations

iteratively for each assembly simulation is critical to the

accuracy of the tolerance model.

Including the capability for kinematic constraints in Monte

Carlo simulation enabled Monte Carlo methods to be applied to

a much broader range of design problems.  However, the

required iterative assembly function does add more calculations

to an already computationally intense method.
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2.3 Method of System Moments
The Method of System Moments (MSM) [Cox 1979,

Shapiro 1981] is a technique for estimating system output based

upon the relationship between input and output variables and

information about the distribution of the inputs.  MSM is also

known as nonlinear propagation of error and propagation of

moments. MSM estimates the first four moments of a function

of random variables. The first four statistical moments are show

in Figure 4.

First Moment: 

 
 
 

Second Moment: 
 
 

 
Third Moment: 
 

 
 
Fourth Moment:

mean - measure of location 
 
 
 
variance  - measure of spread 
 
 
 
skewness  - measure of symmetry 
 
 
 

kurtosis  - measure of peakedness
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Figure 4: First Four Statistical Moments

MSM is formulated by expanding the function of interest in

Taylor series about its mean values.  Retaining second-order

terms the expansion yields:
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The approximate system mean, the first distribution

moment, is calculated by taking the expected value of the above

expression, which gives:
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The number of terms in the expressions for the higher

moments increases dramatically.  For instance, the second, third

and fourth moments require that the expected value be found for

Equation 6 raised to the second, third and fourth power.  The

expressions for the higher moments are simplified if the origin

is shifted to the mean values. In terms of the new notation, the

first four moments of the assembly dimensions are

approximated by the following four equations:
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The term ( )ji xµ  represents the ith distribution moment of the

jth component dimension.

Equations 10 and 11 have been truncated significantly in

order to simplify the expressions.  The complete third moment

equation is lengthy, and the complete fourth moment equation is

formidable. The complete equations for the third and fourth

moments may be found in [Cox 1979].

After calculating Equations 8 through 11, the four moments

about the mean may be found from:
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To estimate the four moments of an assembly distribution

using the full quadratic model requires the first eight moments

of the component dimension distributions and the partial

derivatives 
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In a comparison of advanced tolerance analysis methods

[Greenwood 1987], the Method of System Moments was

recommended as the best method.

3. THE SOTA METHOD
The second-order tolerance analysis (SOTA) method is

proposed as a general analysis method for vector-loop tolerance

models.  The SOTA method is comprised of a nonlinear system

solver, finite difference approximations for the first and second

order partial derivatives, the Method of System Moments

(MSM), and a Generalized Lambda Distribution (GLD)

empirical fit.  The difference equations and nonlinear solver are

used together to supply MSM with the required relationships

between the component dimensions and the resultant assembly

dimensions.  MSM is then used to calculate the first four

moments of the assembly dimensions.  Finally, GLD is used to

fit the calculated moments and approximate the distribution of
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the assembly dimensions.  The SOTA method process is shown

in Figure 5.

1.

2.

4.

5.

6.

For each variable

Change One (or Two)
Model Variable(s)

Evaluate Model Function

Calculate Moments

Fit Distribution

Calculate Rejects

3. Calculate Sensitivity

Figure 5: Steps of the SOTA Method

3.1 Difference Formulas
In order to approximate the three sets of partial

derivatives, 
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, three separate difference

formulas are required.  The linear partial derivatives are

approximated by a central difference formula:
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For this notation, ui(x j
+ ∆x j , ui)  represents a function

evaluation for the implicit assembly dimensions u
i
, where the

component dimensions, x
j
, are at their nominal value except

for the jth dimension, which is perturbed by a value ∆x
j
.  So,

Equation 16 indicates two function evaluations for each

component dimension x
j
.  Note that each function evaluation

requires an iterative solution of a system of nonlinear equations.

A three-point difference formula is used for the

approximation of the quadratic partial derivatives [Burden

1993].
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Two of the function evaluations that appear in this three

point difference formula also appear in the central difference

formula, Equation 16.  Therefore, if there are n component

dimensions, 2n function evaluations can be avoided if the same

function evaluations are used for both difference Equations 16

and 17.  If this is done, the quadratic partial derivatives will

require 2n function evaluations plus one evaluation at the

nominal and, without any further evaluations, the linear partials

can also be obtained.

The approximation of the cross-derivatives is more

complicated.  These partial derivatives are found by using the

central difference of a central difference.
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For n component dimensions there are (n
2
-n)/2 unique

cross-derivatives. Four new function evaluations must be

performed for each derivative. Therefore, 2n
2
-2n evaluations

are required to obtain the cross-derivatives.  Together with the

2n+1 function evaluations for the linear and quadratic partial

derivatives, the total becomes 2n
2
+1 function evaluations.

Thus, with 2n
2
+1 function evaluations, the required partial

derivatives for the SOTA method are obtained.

3.2 Distribution Fit
The Generalized Lambda Distribution was chosen as the

best empirical model for fitting the statistical moments based on

ease of implementation.  The single form of the GLD make the

method of matching of moments easily applied to the moments

calculated by MSM, whereas, the Johnson and Pearson systems

require multiple distribution forms to cover a full range of

moments.  In addition, a GLD table, indexed by skewness and

kurtosis values, was readily available for use in a computer

program because of earlier research [Gao 1995].  The GLD's

range of coverage is smaller than the Johnson and Pearson

systems, however, it does cover most practical distribution

shapes likely to be encountered in mechanical assemblies.

4. EXAMPLE
The following One-Way Clutch example problem

illustrates the performance of the SOTA method compared to

Monte Carlo Simulation and the Linearized Method. The

example problem was analyzed using the SOTA method, the

Linearized Method and Monte Carlo simulation at four different

sample sizes. The four sample sizes were 30,000 samples,

100,000 samples, 10
6
 samples and 10

9
 samples.
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A one-way clutch transmits torque in a single direction.

The clutch assembly consists of the following components: a

hub, an outer ring, four rollers, and four springs.  When the hub

rotates in a counter-clockwise direction, the roller wedges

between the hub and the ring, locking these two parts together.

When the hub turns in a clockwise direction, the spring is

compressed by the roller, the roller slips, and the hub is allowed

to rotate freely.  The one-way clutch assembly and the single

vector loop used to model this assembly are shown in Figure 6.

Ring

Roller

Hub

Spring φφφφ

x
 Ring

Roller

A

B C

D

E

y

Hub

φφφφ2

1

Figure 6: One-Way Clutch Assembly

The function of the one-way clutch mechanism is governed

by the pressure angle φφφφ1. There are three manufactured

dimensions that control the pressure angle.  The mean values,

standard deviations and distribution types of these three

dimensions are shown in Table 2.  The vectors representing the

roller radius, vectors C and D, were treated as the same

variation source.  As the pressure angle, φφφφ1, is critical to the

function of the clutch, it was given specification limits as shown

in Table 3.

Table 2: Input Variables
Name Mean Standard Deviation Distribution

A 27.645 mm 0.01666 mm Normal
C, D 11.430 mm 0.00333 mm Normal
E 50.800 mm 0.00416 mm Normal

Table 3: Assembly Specification
Name Nominal Lower Limit Upper Limit

φ1 7.0184° 6.4184° 7.6184°

4.1 Analysis Results
The One-Way Clutch analysis results are displayed in Table

4 and Table 5. Table 4 shows the calculated values for the first

four statistical moments of the pressure angle. The One-Way

Clutch assembly was a good test problem since the pressure

angle exhibits nonlinear behavior. The results show the pressure

angle to be negatively skewed and slightly more peaked than a

Normal distribution. Because all the input distributions were

symmetric, this skewness indicates that the pressure angle is an

inherently nonlinear function. Of course, the skewness value

calculated by the linear analysis was zero since the linear

analysis cannot estimate this non-linearity.

Table 5 contains the predicted parts-per-million (PPM)

assemblies that fall outside of the specification limits of the

pressure angle. All the Total Rejects results were within 1000

PPM of the Monte Carlo simulation of 10
9
 samples.

Table 4: Statistical Moments Results
Analysis Mean Standard

Deviation
Skewness Kurtosis

MC 1e9 7.014953 0.219668 -0.09442 3.023816

MC 1e6 7.015373 0.219884 -0.09477 3.027695

MC 100k 7.015453 0.220172 -0.10168 3.021511

MC 30k 7.012982 0.220541 -0.09758 3.082748

SOTA 7.014968 0.219346 -0.09356 3.011671

Linear 7.018389 0.219292 0 3

Table 5: PPM Rejects Results
Analysis Lower Rejects Upper Rejects Total Rejects

MC 1e9 4406 2166 6572

MC 1e6 4467 2206 6673

MC 100k 4580 2080 6660

MC 30k 5000 2567 7567

SOTA 4196 2322 6518

Linear 3109 3109 6218

In order to compare the results of the six analyses, a

relative error measure was calculated for the estimates of the

statistical moments and the estimate of PPM rejects. Monte

Carlo Simulation with 10
9
 samples was assumed to be the most

accurate analysis and was, therefore, used as the baseline for the

relative error comparison.

Percent Error of the Mean

0.000%

0.005%

0.010%

0.015%

0.020%

0.025%

0.030%

0.035%

0.040%

0.045%

0.050%

MC 1e6 MC 100k MC 30k SOTA Linear

Figure 6: Error of the Mean

Figure 6 compares the error of the pressure angle mean

with respect to the Monte Carlo 10
9
 analysis. All five analyses

estimated the mean very accurately to within 0.05% error. The

SOTA method was the most accurate with only 0.0002% error.
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Figure 7 displays the error of the standard deviation. The

standard deviation values were also very accurate with the error

ranging from 0.10% for the Monte Carlo 10
6
 to 0.40% for the

Monte Carlo 30k. Both Figure 6 and Figure 7 clearly illustrate

how Monte Carlo Simulation should increase in accuracy as the

sample size increases.

Percent Error of the Standard Deviation

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

MC 1e6 MC 100k MC 30k SOTA Linear

Figure 7: Error of the Standard Deviation

The truncation of nonlinear terms of the linear analysis is

evident in the skewness results. With symmetric input

distributions, a linear analysis will always predict a skewness

value of zero. Figure 8 shows the absolute error of the

skewness. With the exception of the linear result all skewness

values are relatively accurate.

Error of the Skewness

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

MC 1e6 MC 100k MC 30k SOTA Linear

Figure 8: Error of the Skewness

The percent error of the kurtosis values is shown in Figure

9. With the exception of the Monte Carlo 30k result, all the

kurtosis values had errors under 1%.

The process of calculating rejects for an assembly

specification involves the four statistical moments and fitting a

distribution to these moments. The Generalized Lambda

Distribution was fit to the four moments in all six analyses. The

reject results are a composite result of all four statistical

moment estimates and, therefore, provide a good overall

measure of accuracy for an analysis.

Percent Error of the Kurtosis

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

MC 1e6 MC 100k MC 30k SOTA Linear

Figure 9: Error of the Kurtosis

Figure 10 shows the error of the upper, lower and total

PPM rejects relative to the Monte Carlo 10
9
 analysis. The linear

analysis predicted symmetric rejects: 3109 ppm for the lower

limit and 3109 ppm for the upper limit. The linear

appoximation of the nonlinear pressure angle function resulted

in an underestimate for the lower rejects and an overestimate for

the upper rejects.
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Figure 10: Error of the Rejects

The second-order approximation of the SOTA method

dramatically improved the estimate of rejects over the linear

approximation. While the SOTA method still slightly

underestimated the lower rejects and slightly overestimated the

upper rejects, the total rejects estimate was within 54 ppm of
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the Monte Carlo 10
9
 analysis, roughly equivalent to the Monte

Carlo 100k results.

4.2 Computational Effort
For the three methods, Monte Carlo simulation, the SOTA

method and the Linearized Method, a relative measure of effort

is easily formulated.  The common operation of these three

tolerance analysis methods is that each must perform a linear

solution of the loop equations.  For example, the SOTA method

and Monte Carlo simulation require a linear solution of the loop

equations for each iteration of Newton's method.  Of course the

Linearized Method only requires a single linear solution.  So, if

the Linearized Method is given an effort value of 1, the relative

effort of Monte Carlo simulation and the SOTA method may be

evaluated by the following expressions:

MC Effort = (sample size) x (average Newton iterations)

SOTA Effort = (2n
2
+ 1) x (average Newton iterations)

For the SOTA Effort expression the variable n is the

number of component dimensions.

It would be expected that the number of iterations of

Newton’s method be greater for Monte Carlo simulation than

for the SOTA method.  For each nonlinear solution, Monte

Carlo simulation changes the nominal value of all the

component dimensions, whereas the SOTA method only

changes one or two component dimensions for each solution.

Furthermore, the step size used by the SOTA method will

generally be very small compared to the variations required by

Monte Carlo.  The average number of Newton iterations along

with the effort metrics for the six analyses is shown in Table 6.

Table 6: Relative Computational Effort
Analysis Average

Iterations
Effort

MC 1e9 3.40 3,400,000,000
MC 1e6 3.40 3,400,000

MC 100k 3.40 340,000
MC 30k 3.41 102,300
SOTA 2.16 41
Linear 1 1

5. CONCLUSIONS
The SOTA method is a general, nonlinear tolerance

analysis method for vector loop tolerance models. The SOTA

method provides the benefits of speed, tolerance allocation,

closed-loop constraints, a nonlinear approximation and the

capability for non-normal input and output distributions.

For the One-Way Clutch example problem the SOTA

method shows a dramatic improvement in accuracy over the

linear approximation for the estimates of the four statistical

moments of the pressure angle. The estimate of total rejects

result for the SOTA method was comparable to the Monte Carlo

result using 10
6
 samples. This accuracy level is significant since

the computational effort of the SOTA method was five orders of

magnitude less than the Monte Carlo simulation with 10
6

samples.

Seven additional example problems were analyzed [Glancy

1994] and demonstrated similar results.

REFERENCES
 [Burden 1993] Burden, Richard L. and J. Douglas Faires,

Numerical Analysis Fifth Edition, PWS Publishing Co.,

1993

[Chase 1995] Chase, Kenneth W., J. Gao and S. P. Magelby.

“General 2-D Tolerance Analysis of Mechanical

Assemblies with Small Kinematic Adjustments.” J. of

Design and Manufacturing, 5 (1995): 263—274

[Cox 1979] Cox, N. D., “Tolerance Analysis by Computer”, J.

of Quality Technology, Vol. 11, No. 2, April 1979

[Cvetko 1997] Cvetko, Robert. “Characterization of Assembly

Variation Analysis Methods”, MS Thesis, Brigham Young

University, Dec. 1997

 [Dudewicz 1974] Dudewicz, E. J., J. S. Ramberg and P. R.

Tadikamalla, “A Distribution for Data Fitting and

Simulation”, An. Tech. Conf. Trans. A.S.Q.C., 28 (1974):

407—418

[Gao 1995] Gao, J., K. W. Chase and S. P. Magleby,

“Comparison of Assembly Tolerance Analysis by the

Direct Linearization Method and Modified Monte Carlo

Simulation Methods”, Proc. of the ASME Design

Engineering Tech. Conf., 1995, 353—360

[Glancy 1994] Glancy, Charles G., “A Second-Order Method

for Assembly Tolerance Analysis”, MS Thesis, Brigham

Young University, Dec. 1994

[Greenwood 1987] Greenwood, W. H., “A New Tolerance

Analysis Method for Designers and Manufacturers”,

Dissertation, Brigham Young University, 1987

[Marler 1988] Marler, Jaren D., “Nonlinear Tolerance Analysis

Using the Direct Linearization Method”, MS Thesis,

Brigham Young University, 1988

[Shapiro 1981] Shapiro, Samuel S., Alan J. Gross, Statistical

Modeling Techniques, Marcel Dekker, Inc., New York,

1981

[Ramberg 1979] Ramberg, J. S., P. R. Tadikamalla, E. J.

Dudewicz and E. F. Mykytha, “A probability distribution

and its uses in fitting data”, Technometrics, 21 (1979):

201—214


