
Noname manuscript No.
(will be inserted by the editor)

A Second-Order Method for Strongly Convex
`1-Regularization Problems

Kimon Fountoulakis and Jacek Gondzio

Technical Report ERGO-13-011

June 20, 2013

Abstract In this paper a second-order method for solving large-scale strongly
convex `1-regularized problems is developed. The proposed method is a Newton-
CG (Conjugate Gradients) algorithm with backtracking line-search embedded
in a doubly-continuation scheme. Worst-case iteration complexity of the pro-
posed Newton-CG is established. Based on the analysis of Newton-CG, worst-
case iteration complexity of the doubly-continuation scheme is obtained.

Numerical results are presented on large-scale problems for the doubly-
continuation Newton-CG algorithm, which show that the proposed second-
order method competes favourably with state-of-the-art first-order methods.
In addition, `1-regularized Sparse Least-Squares problems are discussed for
which a parallel block coordinate descent method stagnates.

Keywords `1-regularization · Strongly convex optimization · Second-order
methods · Iteration Complexity · Continuation · Newton Conjugate-Gradients
method

Mathematics Subject Classification (2000) 68W40, 65K05, 90C06,
90C25, 90C30, 90C51

J. Gondzio is supported by EPSRC Grant EP/I017127/1

Kimon Fountoulakis
School of Mathematics and Maxwell Institute, The University of Edinburgh, Mayfield Road,
Edinburgh EH9 3JZ, United Kingdom.
E-mail: K.Fountoulakis@sms.ed.ac.uk
Tel.: +44 131 650 5083

Jacek Gondzio
School of Mathematics and Maxwell Institute, The University of Edinburgh, Mayfield Road,
Edinburgh EH9 3JZ, United Kingdom.
E-mail: J.Gondzio@ed.ac.uk
Tel.: +44 131 650 8574, Fax: +44 131 650 6553

2 Kimon Fountoulakis and Jacek Gondzio

1 Introduction

We are concerned with the solution of the following optimization problem

minimize fτ (x) := τ‖x‖1 + ϕ(x), (1)

where x ∈ Rm, τ > 0 and ‖·‖1 is the `1-norm. The following three assumptions
are made:

– The function ϕ(x) is twice differentiable, and
– strongly convex, which implies that at any x its second derivative ∇2ϕ(x)

is uniformly bounded
λmI � ∇2ϕ(x) � λ1I, (2)

with 0 < λm ≤ λ1, where I is the identity matrix in appropriate dimension.
– The second derivative of ϕ(x) is Lipschitz continuous

‖∇2ϕ(y)−∇2ϕ(x)‖ ≤ Lϕ‖y − x‖, (3)

for any x, y, where Lϕ ≥ 0 is the Lipschitz constant of ∇2ϕ(x), ‖ · ‖ is the
`2-norm.

Recently there has been an increased interest in the solution of strongly
convex problems such as (1). Such problems can be found in well-established
scientific fields, for example, Regression [39] and Machine Learning [49]. Ad-
ditionally, there has been a number of efficient methods in the optimization
field [6,19,35,37,40–42,45,47] for the solution of problem (1). Observe, that all
approaches proposed in the previously cited papers are first-order methods.
There has been also a series of interesting papers which describe the adap-
tation of second-order methods to such problems [4,12,13,16,21–24,36] but
despite their author’s efforts they do not seem to compete favourably with
state-of-the-art first-order methods [48].

First-order methods rely on properties of the `1-norm to obtain the new
direction at each iteration. In particular, very often the direction of the solver
is obtained by minimizing exactly an upper bound of the objective function
in problem (1),

d := arg min
p

‖x+ p‖1 + ϕ(x) +∇ϕ(x)ᵀp+
Lϕ
2
‖p‖2,

where x is the current iteration and d is the direction [27]. Other first-order
methods use the decomposability of the former problem and solve it only for
some chosen coordinates [35]. In this case, the Lipschitz constant is replaced
by partial Lipschitz constants for each chosen coordinate. Another approach
exploits the replacement of the `1-norm by a first-order differentiable parame-
terized function which approximates the former [28]. These efficient techniques
of manipulating the non-smooth part, the `1-norm, in combination with the
strongly convex properties of the problem have settled first-order methods as
the prevalent approach. On the contrary, for second-order methods, examples
of the most commonly used techniques are

A Second-Order Method for Strongly Convex `1-Regularization Problems 3

– [11,36] in which the `1-norm, ‖x‖1, is replaced with

m∑
i=1

ui + vi, subject to: ui, vi ≥ 0 ∀ i = 1, 2, . . . ,m

and then the optimal x is recovered by x = u− v.
– [12] in which the direction at every iteration is obtained by approximately

solving

d := arg min
p

‖x+ p‖1 + ϕ(x) +∇ϕ(x)ᵀp+
1

2
dT∇2ϕ(x)d,

using a coordinate descent algorithm.

The drawback of these approaches is that in the first case the dimension of the
problem is doubled and additional simple constraints are introduced. Whilst,
in the second case, the convergence of the coordinate descent algorithm is
sensitive to the spectral properties of matrix ∇2ϕ(x). In this paper, our goals
are:

1. Keep the unconstrained nature of the problem, maintain the size of it
unchanged, while the consequences of the non-smoothness of the `1-norm
are weakened.

2. Employ a Newton-CG algorithm with backtracking line-search which is
embedded in a doubly-continuation scheme for further acceleration.

3. Give a complete analysis of Newton-CG with backtracking line-search, i.e.
proof of global convergence, global and local convergence rates results, local
region of fast convergence rate and worst-case iteration complexity, as in
standard analysis of the Newton algorithm with backtracking line-search in
[2]. Based on a range of published papers and a book [3,7,8,26,31,32], from
various fields in which Newton-CG with backtracking line-search is applied,
there has been no similar analysis. To be precise, the analysis in the previ-
ous citations provides global convergence guarantees for various globaliza-
tion techniques of Newton-CG. Additionally, local convergence rate results
are obtained assuming that the method is initialized in a neighbourhood
of the optimal solution which is not explicitly defined,

4. Provide worst-case iteration complexity of the doubly-continuation scheme
based on the iteration complexity of Newton-CG with backtracking line-
search. Continuation schemes are generally well-known among optimizers
[1,10,14,15,25,43,44,46], they can speed-up a good solver, unfortunately,
they are difficult to analyze. In particular, in the previously cited papers
there has been no iteration complexity results.

In order to meet the first goal, the `1-norm is approximated by a smooth
function which has derivatives of all degrees. Hence, problem (1) is replaced
by

minimize fµτ (x) := τψµ(x) + ϕ(x).

4 Kimon Fountoulakis and Jacek Gondzio

where ψµ(x) denotes the smooth function which replaces the `1-norm and µ
is a parameter which controls the quality of approximation. Then, a Newton-
CG algorithm embedded in a doubly-continuation scheme is applied to solve
approximately a sequence of the above approximate problems.

In what follows in this section we give a brief introduction of the pro-
posed approach. In Section 2, necessary basic results are given which will be
used to support theoretical results in Sections 4 and 5. In Section 3, the pro-
posed doubly-continuation scheme is discussed in details. In Section 4, the
convergence analysis of Newton-CG with backtracking line-search is studied.
In Section 5, worst-case iteration complexity of doubly-continuation Newton-
CG with backtracking line-search is presented. Finally, in Section 6, numerical
results are presented, in which we compare the proposed method with state-
of-the-art first-order methods on large-scale Sparse Least-Squares and Logistic
Regression problems.

1.1 Pseudo-Huber regularization

The non-smoothness of the `1-norm makes a straightforward application of the
second-order method to problem (1) impossible. In this subsection, we focus
on approximating the non-smooth `1-norm by a smooth function. To meet
such a goal, the first-order methods community replaces the `1-norm with the
so-called Huber penalty function

∑m
i=1 φµ(xi) [1], where

φµ(xi) =

{
1
2
x2
i

µ , if |xi| ≤ µ
|xi| − 1

2µ, if |xi| ≥ µ
i = 1, 2, . . . ,m

and µ > 0. The smaller the parameter µ of the Huber function is, the better the
function approximates the `1-norm. Observe that the Huber function is only
first-order differentiable, therefore, this approximation trick is not applicable
to second-order methods. Fortunately, there is a smooth version of the Huber
function, the pseudo-Huber function which has derivatives of all degrees [17].
The pseudo-Huber function parameterized with µ > 0 is

ψµ(x) = µ

m∑
i=1

(√
1 +

x2
i

µ2
− 1
)
. (4)

A comparison of the three functions `1-norm, Huber and Pseudo-Huber func-
tion can be seen in Figure 1.

The pseudo-Huber function is employed in design of an efficient second-
order method in this paper. In particular, the `1-regularization problem in (1)
is replaced with the following approximation

minimize fµτ (x) := τψµ(x) + ϕ(x). (5)

The advantages of such an approach are listed below.

A Second-Order Method for Strongly Convex `1-Regularization Problems 5

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

L1−norm
Huber
Pseudo−Huber

(a) `1-norm, Huber, Pseudo-Huber functions

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

µ=0.1

µ=0.01

µ=0.001

µ=0.0001

L1−norm
Pseudo−Huber

(b) Pseudo-Huber function for µ→ 0

Fig. 1 Comparison of the approximation functions, Huber and pseudo-Huber, with the `1-
norm in one dimensional space. Fig.1a shows the quality of approximation for the Huber
and pseudo-Huber functions. Fig.1b shows how pseudo-Huber function converges to the
`1-norm as µ→ 0

– Availability of second-order information owed to the differentiability of the
pseudo-Huber function.

– Avoiding the need to double problem dimensions.
– Opening the door to using iterative methods to compute descent directions.

There is an obvious cost which comes along with the above benefits, and that is
the approximate nature of the pseudo-Huber function. There is a concern that
in case that a very accurate solution is required, the pseudo-Huber function
may be unable to deliver it. In theory, since the quality of the approximation is
controlled by parameter µ in (4), see Figure 1, then the pseudo-Huber function
can recover any level of accuracy under the condition that sufficiently small
µ is chosen. In practise a very small parameter µ might cause instabilities in
the linear algebra of the solver. However, we shall show in Section 6 that even
when µ is set to small values, i.e. 1.0e−8, the proposed method is very efficient.

By replacing the initial problem (1) with the approximation (5) we obtain
a smooth strongly convex problem. Since problem (5) is unconstrained the
application of a Newton-CG algorithm [9,26,33] is a good fit for purpose. In
particular, a Newton-CG direction is calculated by solving the Newton linear
system

∇2fµτ (x)d = −∇fµτ (x) (6)

using the CG algorithm [18,20,38]. The CG algorithm is terminated prema-
turely, therefore, an approximation of the actual Newton direction is obtained.
Moreover, a backtracking line-search approach is used which guarantees global
convergence of the Newton-CG algorithm. To achieve a maximum practical
efficiency the Newton-CG algorithm is embedded into a doubly-continuation
scheme. By the term doubly-continuation, it is meant that continuation is ap-

6 Kimon Fountoulakis and Jacek Gondzio

plied on the parameters τ and µ of problem (5) simultaneously. Details for
this method will be discussed in Section 3.

2 Preliminaries

Throughout the paper the standard dot product, i.e. 〈y, x〉 = yᵀx is used.

Occasionally, the local norm ‖ · ‖x :=
√
〈·,∇2fµτ (x)·〉 will be employed. The

‖·‖∞ denotes the infinity norm. The operator diag(·) returns a diagonal matrix
with the diagonal components of the input square matrix or takes as input a
vector and creates a diagonal matrix with the input vector on the diagonal.
The operator [·]ij returns the element at row i and column j of the input
matrix, for vectors, the operator [·]j is used instead. Finally, d·e is the ceil
function.

2.1 Properties of pseudo-Huber function

The gradient of the pseudo-Huber function ψµ(x) in (4) is given by

∇ψµ(x) =
1

µ

[
x1

(
1 +

x2
1

µ2

)− 1
2

, . . . , xm

(
1 +

x2
m

µ2

)− 1
2
]
, (7)

and the Hessian is given by

∇2ψµ(x) = diag
(1

µ

[
(1 +

x2
1

µ2
)−

3
2 , . . . , (1 +

x2
m

µ2
)−

3
2

])
. (8)

The following lemma shows that the gradient of the function ψµ(x) is bounded.

Lemma 1 The gradient ∇ψµ(x) satisfies

−1m � ∇ψµ(x) � 1m.

where 1m is a vector of ones of length m.

Proof Since −
√
µ2 + x2

i ≤ xi ≤
√
µ2 + x2

i ∀ i = 1, 2, . . . ,m, we get −1 ≤

xi

(
µ2 + x2

i

)− 1
2 ≤ 1. The proof is complete.

The next lemma guarantees that the Hessian of the pseudo-Huber function
ψµ(x) is bounded.

Lemma 2 The Hessian matrix ∇2ψµ(x) satisfies

0I ≺ ∇2ψµ(x) � 1

µ
I

where I is the identity matrix in appropriate dimension.

A Second-Order Method for Strongly Convex `1-Regularization Problems 7

Proof The result follows easily by observing that 0 <
(

1 +
x2
i

µ2

)− 3
2 ≤ 1 for any

xi, i = 1, 2 . . . ,m. The proof is complete.

According to Lemma 2 all eigenvalues of the Hessian matrix of the pseudo-
Huber function are positive, thus, the function is strictly convex. The next
lemma shows that the Hessian matrix of the pseudo-Huber function is Lipschitz
continuous.

Lemma 3 The Hessian matrix ∇2ψµ(x) is Lipschitz continuous

‖∇2ψµ(y)−∇2ψµ(x)‖ ≤ 1

µ2
‖y − x‖.

Proof

‖∇2ψµ(y)−∇2ψµ(x)‖ =
∥∥∥∫ 1

0

d∇2ψµ(x+ s(y − x))

ds
ds
∥∥∥

≤
∫ 1

0

∥∥∥d∇2ψµ(x+ s(y − x))

ds

∥∥∥ds (9)

where
d∇2ψµ(x+s(y−x))

ds is a diagonal matrix with each diagonal component,
i = 1, 2, . . .m, given by[d∇2ψµ(x+ s(y − x))

ds

]
ii

=
−3(xi + s(yi − xi))(yi − xi)
µ3(1 + (xi+s(yi−xi))2

µ2)
5
2

.

Using the previous observation we have that∥∥∥d∇2ψµ(x+ s(y − x))

ds

∥∥∥ = max
i=1,2,...,m

∣∣∣[d∇2ψµ(x+ s(y − x))

ds

]
ii

∣∣∣ (10)

Moreover, we have∣∣∣[d∇2ψµ(x+ s(y − x))

ds

]
ii

∣∣∣ =
∣∣∣−3(xi + s(yi − xi))(yi − xi)

µ3(1 + (xi+s(yi−xi))2

µ2)
5
2

∣∣∣
=
∣∣∣ −3(xi + s(yi − xi))
µ3(1 + (xi+s(yi−xi))2

µ2)
5
2

∣∣∣|(yi − xi)| (11)

where the first absolute value in (11) has a maximum at µ−2xi
2(yi−xi) , which gives∣∣∣ −3(xi + s(yi − xi))

µ3(1 + (xi+s(yi−xi))2

µ2)
5
2

∣∣∣ ≤ 48

25
√

5µ2
<

1

µ2
. (12)

Combining (11) and (12) we get∣∣∣[d∇2ψµ(x+ s(y − x))

ds

]
ii

∣∣∣ ≤ 1

µ2
|yi − xi|. (13)

8 Kimon Fountoulakis and Jacek Gondzio

Replacing (13) in (10) and using the fact that ‖ · ‖∞ ≤ ‖ · ‖ we get∥∥∥d∇2ψµ(x+ s(y − x))

ds

∥∥∥ ≤ 1

µ2
‖y − x‖.

Replacing the above expression in (9) and calculating the integral we arrive
at the desired result. The proof is complete.

Now consider the gradient of pseudo-Huber function of a particular (fixed)
point x and consider a function of two parameters τ an µ defined as follows
ξx(τ, µ) = τ∇ψµ(x).

Lemma 4 Let ξx(τ, µ) = τ∇ψµ(x), then if τ ≥ τ̃ and µ > µ̃, the following
bound holds

‖ξx(τ̃ , µ̃)− ξx(τ, µ)‖ ≤ ω(τ̃ , µ̃, τ, µ)
√
m

where

ω(τ̃ , µ̃, τ, µ) = 2(τ − τ̃) +
|τ µ̃− τ̃µ|
µ− µ̃

log
µ

µ̃
.

In case that µ = µ̃, the following holds

‖ξx(τ̃ , µ)− ξx(τ, µ)‖ ≤ (τ − τ̃)
√
m.

Proof For simplicity of notation, let us define variables ζ = (τ, µ) and ζ̃ =
(τ̃ , µ̃). Then

‖ξx(ζ̃)− ξx(ζ)‖ =
∥∥∥∫ 1

0

dξx(ζ + s(ζ̃ − ζ))

ds
ds
∥∥∥

≤
∫ 1

0

∥∥∥dξx(ζ + s(ζ̃ − ζ))

ds

∥∥∥ds (14)

where

dξx(ζ + s(ζ̃ − ζ))

ds
=
dξx(ζ + s(ζ̃ − ζ))

d(ζ + s(ζ̃ − ζ))

d(ζ + s(ζ̃ − ζ))

ds
= ∇ψµ+s(µ̃−µ)(x)

−γ1(s)[∇ψµ+s(µ̃−µ)(x)]1
−γ2(s)[∇ψµ+s(µ̃−µ)(x)]2

...
−γm(s)[∇ψµ+s(µ̃−µ)(x)]m

[
τ̃ − τ
µ̃− µ

]
(15)

where

γi(s) =
(τ + s(τ̃ − τ))(µ+ s(µ̃− µ))

(µ+ s(µ̃− µ))2 + x2
i

Using Lemma 1 and (15) we get that∥∥∥dξx(ζ + s(ζ̃ − ζ))

ds

∥∥∥ ≤ (|τ̃ − τ |+ γ̄(s)|µ̃− µ|)
√
m, (16)

A Second-Order Method for Strongly Convex `1-Regularization Problems 9

where

γ̄(s) =
τ + s(τ̃ − τ)

µ+ s(µ̃− µ)

By replacing (16) in (14) and using τ ≥ τ̃ and µ > µ̃, we get the first result.
For the case that µ = µ̃, using Lemma 1 we get

‖ξx(τ̃ , µ)− ξx(τ, µ)‖ = (τ − τ̃)‖∇ψµ(x)‖ ≤ (τ − τ̃)
√
m.

The proof is complete.

2.2 Properties of function fµτ (x)

Having all necessary properties of pseudo-Huber function (4) we can present
basic properties of function fµτ (x) defined in (5). The gradient of fµτ (x) is given
by

∇fµτ (x) = τ∇ψµ(x) +∇ϕ(x)

where ∇ψµ(x) has been defined in (7). The Hessian matrix of fµτ (x) is

∇2fµτ (x) = τ∇2ψµ(x) +∇2ϕ(x).

where ∇2ψµ(x) has been defined in (8). Using (2) and Lemma 2 we get the
following bounds on the Hessian matrix of fµτ (x)

λmI ≺ ∇2fµτ (x) �
(τ
µ

+ λ1

)
I, (17)

where I is the identity matrix in appropriate dimension. Hence, the equivalence
of the Euclidean and the local norm is given by the following inequality

λ
1
2
m‖d‖ ≤ ‖d‖x ≤

(τ
µ

+ λ1

) 1
2 ‖d‖. (18)

Lemma 5 For any x and x∗, the minimizer of fµτ (x), the following hold

1

2
(
τ
µ + λ1

)‖∇fµτ (x)‖2 ≤ fµτ (x)− fµτ (x∗) ≤ 1

2λm
‖∇fµτ (x)‖2

and

‖x− x∗‖ ≤ 2

λm
‖∇fµτ (x)‖.

Proof The right hand side of the first inequality is proved in page 460 of [2].
The left hand side of the first inequality is proved by using strong convexity
of fµτ (x),

fµτ (y) ≤ fµτ (x) +∇fµτ (x)ᵀ(y − x) +

τ
µ + λ1

2
‖y − x‖2

10 Kimon Fountoulakis and Jacek Gondzio

and defining ỹ = x− 1
τ
µ+λ1

∇fµτ (x), we get

fµτ (x)− fµτ (x∗) ≥ fµτ (x)− fµτ (ỹ) ≥ 1

2
(
τ
µ + λ1

)‖∇fµτ (x)‖2.

The last inequality is proved in page 460 of [2]. The proof is complete.

The following lemma guarantees that the Hessian matrix ∇2fµτ (x) is Lipschitz
continuous. In this lemma, Lϕ is defined in (3).

Lemma 6 The function ∇2fµτ (x) is Lipschitz continuous

‖∇2fµτ (y)−∇2fµτ (x)‖ ≤ Lfµτ ‖y − x‖,

where Lfµτ := τ
µ2 + Lϕ.

Proof Using Lemma 3 and (3) we have

‖∇2fµτ (y)−∇2fµτ (x)‖ ≤ τ‖∇2ψµ(y)−∇2ψµ(x)‖+ ‖∇2ϕ(y)−∇2ϕ(x)‖

≤
(τ
µ2

+ Lϕ

)
‖y − x‖.

The Lipschitz constant of ∇2fµτ (x) is therefore Lfµτ := τ
µ2 + Lϕ.

The next lemma gives a useful bound for the function ∇fµτ (x) where its inde-
pendent variables are the parameters τ, µ and x is a constant.

Lemma 7 If τ ≥ τ̃ and µ > µ̃, then the gradient ∇fµτ (x) satisfies

‖∇f µ̃τ̃ (x)−∇fµτ (x)‖ ≤ ω(τ̃ , µ̃, τ, µ)
√
m

with ω(τ̃ , µ̃, τ, µ) as in Lemma 4. In case that µ = µ̃, the following holds

‖∇fµτ̃ (x)−∇fµτ (x)‖ ≤ (τ − τ̃)
√
m.

Proof The proof follows easily from Lemma 4 because ‖∇f µ̃τ̃ (x)−∇fµτ (x)‖ =
‖ξx(τ̃ , µ̃)− ξx(τ, µ)‖. The proof is complete.

Using the reverse triangular inequality on ∇fµτ (x) as a function of parameters
τ and µ we get

‖∇f µ̃τ̃ (x)‖ − ‖∇fµτ (x)‖ ≤ ‖∇f µ̃τ̃ (x)−∇fµτ (x)‖

and by applying Lemma 7 in the former we get

‖∇f µ̃τ̃ (x)‖ ≤ ‖∇fµτ (x)‖+ ω(τ̃ , µ̃, τ, µ)
√
m, (19)

and

‖∇fµτ̃ (x)‖ ≤ ‖∇fµτ (x)‖+ (τ − τ̃)
√
m, (20)

respectively. The next lemma shows how well the second-order Taylor expan-
sion of fµτ (x) approximates the function fµτ (x).

A Second-Order Method for Strongly Convex `1-Regularization Problems 11

Lemma 8 If qµτ (y) is a quadratic approximation of the function fµτ (x) at x

qµτ (y) := fµτ (x) +∇fµτ (x)ᵀ(y − x) +
1

2
(y − x)ᵀ∇2fµτ (x)(y − x),

then

|fµτ (y)− qµτ (y)| ≤ 1

6
Lfµτ ‖y − x‖

3.

Proof Using corollary 1.5.3 in [34] and Lemma 6 we have

|fµτ (y)− qµτ (y)| ≤ ‖y − x‖2
∫ 1

0

∫ t

0

‖∇2fµτ (x+ s(y − x))−∇2fµτ (x)‖dsdt

≤ ‖y − x‖2
∫ 1

0

∫ t

0

sLfµτ ‖y − x‖dsdt

=
1

6
Lfµτ ‖y − x‖

3.

The proof is complete.

2.3 Approximate Newton directions via Conjugate Gradients algorithm

In the case that pseudo-Huber regularization is performed, the direction at
every iteration is calculated by a Newton-CG algorithm. This implies that
the Newton system (6) is solved iteratively using the CG algorithm and the
process is truncated when a required accuracy is obtained. The result is an
approximate solution of the Newton system, which means that an inexact
Newton direction is calculated. For Newton-CG, the CG algorithm is always
initialized with the zero solution and the termination criterion is set to

‖rµτ (x)‖ ≤ η‖∇fµτ (x)‖, (21)

where rµτ (x) = ∇2fµτ (x)d+∇fµτ (x) is the residual in equation (6), 0 ≤ η < 1
is a user-defined constant and d ∈ Rm is the Newton-CG direction. In the
literature there has been extensive theoretical work regarding the termination
parameter η. The most efficient of the proposed approaches of setting η suggest
that the parameter should be varied from iteration to iteration starting from
a well-defined large value and steadily decreasing. According to [31], page 167,
if k is the iteration index of Newton-CG, then by setting

ηk = min{1

2
, ‖∇fµτ (xk)‖c0}, (22)

local super-linear convergence of Newton-CG algorithm is obtained for c0 = 1
2 ,

whilst, local quadratic convergence is obtained for c0 = 1. Although in practice
we have observed that by setting ηk =1.0e−1 results in very fast convergence
of the Newton-CG algorithm, it will be analyzed for ηk set as in (22) with
c0 = 1. The next lemma determines bounds on the norm of the Newton-CG
direction d as a function of ‖∇fµτ (x)‖.

12 Kimon Fountoulakis and Jacek Gondzio

Lemma 9 Let d ∈ Rm be the Newton-CG direction calculated by CG algo-
rithm which is terminated according to criterion (21) with 0 ≤ η < 1. Then
the following holds

1− η2

2(τµ + λ1)
‖∇fµτ (x)‖ ≤ ‖d‖ ≤ 2

λm
‖∇fµτ (x)‖

Proof By squaring (21) and making simple rearrangements of it we get

dᵀ(∇2fµτ (x))2d+ 2∇fµτ (x)ᵀ∇2fµτ (x)d+ (1− η2)‖∇fµτ (x)‖2 ≤ 0.

Using (17) in the above inequality we get

λ2
m‖d‖2 − 2

(τ
µ

+ λ1

)
‖∇fµτ (x)‖‖d‖+ (1− η2)‖∇fµτ (x)‖2 ≤ 0.

By dropping the quadratic term λ2
m‖d‖2 from the previous inequality and

making appropriate rearrangements we get

‖d‖ ≥ 1− η2

2(τµ + λ1)
‖∇fµτ (x)‖.

Which proves the left hand side of the result. For the right hand side, we
simply use the equality

d = ∇2fµτ (x)−1(−∇fµτ (x) + rµτ (x)).

By taking norms and using (21) and ‖∇2fµτ (x)−1‖ = 1
λm

we obtain the right
hand side of the result. The proof is complete.

The following property is shown in the proof of Lemma 2.4.1 in [20]. For
a CG algorithm that is initialised with the zero solution p0 = 0 the returned
direction di satisfies

di := arg min
p
{∇fµτ (x)ᵀp+

1

2
pᵀ∇2fµτ (x)p | p ∈ Ei},

where

Ei := span(∇fµτ (x),∇2fµτ (x)∇fµτ (x), . . . ,∇2fµτ (x)i−1∇fµτ (x)).

Therefore for every p ∈ Ei, at t = 0, we get

d(∇fµτ (x)ᵀ(di + tp) + 1
2 (di + tp)ᵀ∇2fµτ (x)(di + tp))

dt
=

(∇fµτ (x)ᵀ +∇2fµτ (x)di)
ᵀp = 0.

Since, di ∈ Ei, then

(∇fµτ (x)ᵀ +∇2fµτ (x)di)
ᵀdi = 0 ⇐⇒

dᵀi∇
2fµτ (x)di = −∇fµτ (x)ᵀdi. (23)

A Second-Order Method for Strongly Convex `1-Regularization Problems 13

As a termination criterion of the Newton-CG algorithm we will use an up-
per bound of the Newton decrement ‖dN‖x, where dN is the Newton direction
at a given point x,

‖dN‖x = inf{c1 | |∇fµτ (x)ᵀh| ≤ c1‖h‖x ∀h ∈ Rm}.

It is shown in [30], pages 15-16, that the optimal c1 = ‖dN‖x of the previous
minimization problem is given when h = dN . Therefore, for h = d, given by
CG, and due to (23) we have ‖dN‖x ≤ ‖d‖x. The measure ‖d‖x is inexpensive
to be calculated, because of the relation (23) and will be used as a termination
criterion of Newton-CG algorithm. For details about the Newton decrement
see page 15 in [30].

3 Doubly-Continuation Newton-CG

The pseudo-Huber regularization problem (5) to be solved is a smooth and
strongly convex problem. Therefore, one could directly apply an efficient and
simple Newton-CG algorithm. In this paper, we make a step further and
embed a Newton-CG algorithm with backtracking line-search in a doubly-
continuation scheme. Continuation schemes define a sequence of minimizers
as a function of a parameter. For `1-regularization problems as in (1), it is
common that this sequence depends on parameter τ . In such cases the con-
tinuation path, is constructed for decreasing values of τ to a user defined
constant. For the proposed method, the continuation path, consists of mini-
mizers of problem (5) for simultaneously decreasing parameters τ and µ, till
τ → τ̄ and µ → µ̄, where τ̄ and µ̄ are pre-defined parameters. This explains
the term “doubly-continuation”. The following two observations justify the
purpose of the doubly-continuation scheme.

– It is shown in [22] that problem (1) has the zero solution for any τ ≥
‖∇ϕ(0)‖∞. In case of problem (5), by setting µ to a relatively large value,
i.e. µ ≈ 1, the regularization effect of the `1-norm is weakened, see Figure
1b. Therefore, τ ≥ ‖∇ϕ(0)‖∞ is not a sufficient condition for the sub-
problem (5) to have the zero solution. However, our empirical experience
shows that Newton-CG is warm-started, i.e. Newton-CG converges in few
iterations, when the initial solution is set to zero and τ � ‖∇ϕ(0)‖∞.

– The linear algebra is favoured when τ = O(µ), since in this case the Hessian
matrices ∇2fµτ (x) are tightly bounded, see (17).

Briefly, large values of τ favour warm-starting, while a small ratio τ
µ assures

good numerical properties of linear systems to be solved. However, the pa-
rameters τ and µ have to be decreased to their pre-defined values eventually.
We propose a continuation approach which consists of gradual decreasing τ
and µ from their large initial values to the ones which determine an accurate
enough solution to the original problem (1). We expect that solving a sequence
of easier problems is much more efficient than giving one-shot to the actual

14 Kimon Fountoulakis and Jacek Gondzio

problem itself. The process of decreasing the τ, µ parameters follows the rule

τ l+1 = max{β1τ
l, τ̄} and µl+1 = max{β2µ

l, µ̄}, (24)

where 0 < β1, β2 < 1. Observe in (24) that the parameters τ and µ can be
decreased at every iteration arbitrarily. The former implies that the proposed
method is long-step depending on these parameters. Long-step, in the sense
that the reduction parameters β1 and β2 is not limited in order to guarantee
convergence of the doubly-continuation scheme.

The pseudo-code of the proposed doubly-continuation Newton-CG and the
backtracking line-search algorithms follow. In these pseudo-codes we redefine
the notation of the local inner product to distinguish among continuation

iterations, ‖ · ‖x,l =
√
〈·,∇2fµ

l

τ l
(x)·〉.

Algorithm dcNCG

1: Input Choose x0 and τ0, µ0, τ̄ , µ̄, ε > 0, 0 < β1, β2 < 1.

2: Set flag= 0.

3: For l = 0, 1, 2, . . . and k = 0, 1, 2, . . . generate τ l+1, µl+1 from τ l, µl and xk+1 from xk,
respectively, according to the iteration:

4: while flag< 2 do

5: for maximum Newton-CG iterations do

6: Use CG algorithm to approximately solve ∇2fµ
l

τl
(xk)dk = −∇fµ

l

τl
(xk), till (21) is

satisfied with η as in (22) and c0 = 1.

7: If ‖dk‖xk,l ≤ εl break for-loop.

8: Calculate 0 < αk ≤ 1 which satisfies fµ
l

τl
(xk + αkdk) ≤ fµ

l

τl
(xk) − c2αk‖dk‖2xk,l,

where c2 ∈ (0, 1
2

), by using backtracking line-search.

9: set xk+1 = xk + αkdk and k = k + 1

10: end for

11: τ l+1 = max{β1τ l, τ̄} and µl+1 = max{β2µl, µ̄}

12: If (τ l+1, µl+1) = (τ̄ , µ̄), then set εl = ε and flag=flag+1

13: l = l + 1

14: end while

The outer loop of the above algorithm is the doubly-continuation scheme on the
parameters τ, µ. The inner loop is the Newton-CG algorithm with backtracking

line-search that minimizes fµ
l

τ l
(x) for fixed parameters τ l, µl given from the lth

outer loop. Although, the termination criterion of CG algorithm is set as in
(22), in practise it can be relaxed to any 0 ≤ η < 1. Step 8 is the backtracking
line-search algorithm given below.

A Second-Order Method for Strongly Convex `1-Regularization Problems 15

Algorithm backtracking line-search

1: Input Given τ l, µl and an inexact Newton direction d for point x, calculated by CG in
step 6 of algorithm dcNCG and c2 ∈ (0, 1

2
), c3 ∈ (0, 1), then calculate a step-size α:

2: set α = 1

3: while fµ
l

τl
(x+ αd) > fµ

l

τl
(x)− c2α‖d‖2x,l do

4: α = c3α

5: end while

For more details about backtracking line-search the reader is referred to Chap-
ter 9 in [2]. The termination criteria of the inner loop in step 7 can be relaxed,
for example, ε1 ≤ ε0 and εl ≤ εl−1 ∀l > 0, since the subproblems (5) for given
τ l 6= τ̄ and µl 6= µ̄ do not have to be solved in high accuracy.

The analysis of Newton-CG algorithm, steps 5-10, without the continu-
ation scheme is presented in the next section. This analysis will provide us
with useful results that will be used for the proof of the worst-case iteration
complexity of the doubly-continuation scheme.

4 Convergence analysis of Newton-CG with backtracking
line-search

In this section we analyze the Newton-CG with backtracking line-search, steps
5-10, of algorithm dcNCG. In particular, we prove global convergence, we study
the global and local convergence rates and we explicitly define a region in
which Newton-CG has fast convergence rate. Additionally, worst-case iteration
complexity result of this Newton-CG is presented.

Since Newton-CG in this section does not depend on the continuation
scheme, the indexes τ and µ from function fµτ (x) are dropped. Moreover, the
upper bound of the largest eigenvalue of ∇2fµτ (x), shown in (17), is denoted

by λ̃1 =
(
τ
µ + λ1

)
, and the Lipschitz constant Lfµτ defined in Lemma 6,

is denoted by L. Finally, for this section, an upper bound of the condition

number of matrix ∇2f(x) for any x will be used, which is denoted by κ = λ̃1

λm
.

4.1 Global convergence rate of Newton-CG with backtracking line-search

In the following lemma the decrease of the objective function at every iteration
of Newton-CG with backtracking line-search is calculated. In this lemma the
constants c2 and c3 are defined in the backtracking line-search algorithm given
in Section 3.

Lemma 10 Let x ∈ Rm be the current iteration of Newton-CG, d ∈ Rm be the
Newton-CG direction calculated using the truncated CG algorithm described in
subsection 2.3. The parameter η of the termination criterion (21) of the CG

16 Kimon Fountoulakis and Jacek Gondzio

algorithm is set to 0 ≤ η < 1. If x is not the minimizer of problem (5),
i.e. ‖∇f(x)‖ 6= 0, then, the backtracking line-search algorithm will calculate a
step-size ᾱ such that

ᾱ ≥ c3
λm

λ̃1

.

For this step-size ᾱ the following holds

f(x)− f(x(ᾱ)) > c4‖d‖2x,

where c4 = c2c3
1
κ and x(ᾱ) = x+ ᾱd.

Proof For x(α) = x+ αd and from strong convexity of f(x) we have

f(x(α)) ≤ f(x) + α∇f(x)ᵀd+
α2

2
λ̃1‖d‖2.

If ‖∇f(x)‖ 6= 0, due to positive definiteness of ∇2f(x), see (17), the CG
algorithm terminated at the ith iteration returns the vector di 6= 0 which
according to (23) satisfies

dᵀi∇
2f(x)di = −∇f(x)ᵀdi.

Therefore, by setting d := di we get

f(x(α)) ≤ f(x)− α‖d‖2x +
α2

2
λ̃1‖d‖2.

Using (18) we get

f(x(α)) ≤ f(x)− α‖d‖2x +
α2

2

λ̃1

λm
‖d‖2x.

The right hand side of the above inequality is minimized for ᾱ = λm
λ̃1

, which

gives

f(x(ᾱ)) ≤ f(x)− 1

2

λm

λ̃1

‖d‖2x.

Observe, that for this step-size the exit condition of the backtracking line-
search algorithm is satisfied, since

f(x(ᾱ)) ≤ f(x)− 1

2

λm

λ̃1

‖d‖2x < f(x)− c2
λm

λ̃1

‖d‖2x.

Therefore, the step-size ᾱ returned by the backtracking line-search algorithm
is in worst-case bounded by

ᾱ ≥ c3
λm

λ̃1

,

which results in the following decrease of the objective function

f(x)− f(x(ᾱ)) > c2c3
λm

λ̃1

‖d‖2x = c2c3
1

κ
‖d‖2x.

The proof is complete.

A Second-Order Method for Strongly Convex `1-Regularization Problems 17

Standard convergence analysis treats the Newton algorithm with backtracking
line-search as a two phase method. For the first phase, which is of our interest in
this subsection, linear convergence rate is proved. In particular, convergence is
measured according to the decrease of the objective function at every iteration,
which is proved to be c4‖dN‖2x, where dN is the Newton direction, see page
490 in [2]. For the Newton-CG algorithm with backtracking line-search, which
is studied in this paper, it is proved in Lemma 10 that the decrease of the
objective function at every iteration of Newton-CG for the first phase is c4‖d‖2x,
where d is the inexact Newton direction returned by CG. Hence, Newton-CG
with backtracking line-search enjoys analogous global linear convergence rate
to that of Newton algorithm with backtracking line-search.

4.2 Region of fast convergence rate of Newton-CG

In this section we define a region based on ‖d‖x, in which, by setting parameter
η as in (22) with c0 = 1, the Newton-CG algorithm converges with fast rate. By
fast rate it is meant that when Newton-CG is initialized in this region, then the
worst-case iteration complexity result is of the form log2 log2

constant
required accuracy .

We will show in Subsection 4.4 that the rate of convergence which is proved in
this subsection for the explicitly defined region satisfies the previously stated
condition. The lemma below is crucial for the analysis in this subsection, it
shows the behaviour of the function f(x) when a step along the Newton-CG
direction is made.

Lemma 11 Let x ∈ Rm be the current iteration of Newton-CG, d ∈ Rm
be the Newton-CG direction calculated using the CG algorithm described in
subsection 2.3. The parameter η of the termination criterion (21) of the CG
algorithm is set to 0 ≤ η < 1. Then

f(x)− f(x(α)) ≥ α‖d‖2x −
α2

2
‖d‖2x −

α3

6

L

λ
3
2
m

‖d‖3x,

where x(α) = x+ αd and α > 0.

Proof Using Lemma 8 and setting y = x(α) = x+ αd we get

f(x(α)) ≤ f(x) + α∇f(x)ᵀd+
α2

2
dᵀ∇2f(x)d+

α3

6
L‖d‖3.

Using (18) and (23) we get

f(x(α)) ≤ f(x)− α‖d‖2x +
α2

2
‖d‖2x +

α3

6

L

λ
3
2
m

‖d‖3x.

The result is obtained by rearrangement of terms. The proof is complete.

18 Kimon Fountoulakis and Jacek Gondzio

Based on Lemma 11, a region is defined in the following lemma, in which
unit-step sizes are calculated by the backtracking line-search algorithm. Ad-
ditionally, for this region, ‖dk+1‖xk+1 is bounded as a function of ‖dk‖xk . In
this lemma the constants c2 and c3 have been defined in the backtracking
line-search algorithm, given in Section 3, moreover, xk+1 = xk + dk.

Lemma 12 If ‖dk‖xk ≤ 3(1− 2c2)λ
3
2
m

L , then the backtracking line-search algo-
rithm calculates unit step-sizes. Moreover, if the parameter ηk of the termina-
tion criterion (21) of the CG algorithm is set as in (22) with c0 = 1, then for
two consequent directions dk and dk+1 and points xk and xk+1 of Newton-CG
algorithm, the following holds

1

2

16λ̃2
1 + L

λ
3
2
m

‖dk+1‖xk+1 ≤
(1

2

16λ̃2
1 + L

λ
3
2
m

‖dk‖xk
)2

.

Proof By setting ᾱ = 1 in Lemma 11 we get

f(xk)− f(xk+1) ≥ 1

2
‖dk‖2xk −

1

6

L

λ
3
2
m

‖dk‖3xk =
(1

2
− 1

6

L

λ
3
2
m

‖dk‖xk
)
‖dk‖2xk .

if ‖dk‖xk ≤ 3(1− 2c2)λ
3
2
m

L we get

f(xk)− f(xk+1) ≥ c2‖dk‖2xk ,

which implies that ᾱ = 1 satisfies the exist condition of the backtracking line-
search algorithm. Let us define the quantity ∇f(x(t))ᵀh, where x(t) = xk+tdk

and h ∈ Rm, then we have

∇f(x(t))ᵀh = ∇f(xk)ᵀh+ t(dk)ᵀ∇2f(xk)h

+

∫ t

0

∫ u

0

∇3f(x(δ))[dk, dk, h]dδdu

≤ ∇f(xk)ᵀh+ t(dk)ᵀ∇2f(xk)h

+

∫ t

0

∫ u

0

∣∣∣∇3f(x(δ))[dk, dk, h]
∣∣∣dδdu

= ∇f(xk)ᵀh+ t(dk)ᵀ∇2f(xk)h

+

∫ t

0

∫ u

0

lim
δ→0

∣∣∣ (dk)ᵀ(∇2f(x(δ))−∇2f(xk))h

δ

∣∣∣dδdu
≤ ∇f(xk)ᵀh+ t(dk)ᵀ∇2f(xk)h

+ ‖dk‖‖h‖
∫ t

0

∫ u

0

lim
δ→0

∥∥∥1

δ
(∇2f(x(δ))−∇2f(xk))

∥∥∥dδdu
≤ ∇f(xk)ᵀh+ t(dk)ᵀ∇2f(xk)h+ ‖dk‖‖h‖

∫ t

0

∫ u

0

L‖dk‖dδdu

= ∇f(xk)ᵀh+ t(dk)ᵀ∇2f(xk)h+
t2

2
L‖dk‖2‖h‖.

A Second-Order Method for Strongly Convex `1-Regularization Problems 19

By taking absolute values and setting t = 1 we get

|∇f(xk+1)ᵀh| ≤ |∇f(xk)ᵀh+ (dk)ᵀ∇2f(xk)h|+ 1

2
L‖dk‖2‖h‖

From (18) and (21), by setting rk = ∇2f(xk)dk +∇f(xk), we get

|∇f(xk+1)ᵀh| ≤
(ηk
λ

1
2
m

‖∇f(xk)‖+
1

2

L

λ
3
2
m

‖dk‖2xk
)
‖h‖xk+1 .

Since, ηk is set according to (22), by using (18) and Lemma 9 we get

|∇f(xk+1)ᵀh| ≤
(4λ̃2

1

λ
3
2
m(1− (ηk)2)2

+
1

2

L

λ
3
2
m

)
‖dk‖2xk‖h‖xk+1

≤ 1

2

(16λ̃2
1 + L

λ
3
2
m

)
‖dk‖2xk‖h‖xk+1 .

The previous result holds for every h ∈ Rm, hence, by setting h = dk+1 and
by using (23) we prove the second part of this lemma. The proof is complete.

The following corollary states the region of fast convergence rate of Newton-
CG.

Corollary 1 If the parameter ηk in the termination criterion (21) of the CG
algorithm is set as in (22) with c0 = 1 and ‖dk‖xk < $, 0 < $ ≤ c5, where

c5 = min
{

3(1− 2c2)
λ

3
2
m

L
,

λ
3
2
m

16λ̃2
1 + L

}
,

then according to Lemma 12 Newton-CG convergences with fast rate.

4.3 Global Convergence of Newton-CG with backtracking line-search

The global convergence result of Newton-CG algorithm with backtracking line-
search, steps 5-10 of dcNCG algorithm, follows.

Theorem 1 Let {xk} be a sequence generated by Newton-CG algorithm with
step-sizes calculated by backtracking line-search. The parameter η of the ter-
mination criterion (21) of the CG algorithm is set to a value 0 ≤ η < 1. The
sequence {xk} converges to x∗, which is the minimizer of f(x) in problem (5).

Proof Let {xk} be a sequence generated by Newton-CG algorithm with step-
sizes ᾱk calculated by the backtracking line-search algorithm presented in
Section 3. The positive definiteness of ∇2f(x) at any x, see (17), and the
fact that 0 ≤ η < 1 in (21), imply that CG returns dk = 0 at a point xk

if and only if ∇f(xk) = 0. Hence, only at optimality CG will return a zero
direction. Moreover, from Lemma 10 we get that if ‖∇f(xk)‖ 6= 0, then ᾱk

is bounded away from zero and the function f(x) is monotonically decreasing

20 Kimon Fountoulakis and Jacek Gondzio

when the step ᾱkdk is applied. The monotonic decrease of the objective func-
tion implies that {f(xk)} converges to a limit, thus, {f(xk) − f(xk+1)} → 0.
Therefore, the sequence {xk} converges to a point x∗. Using Lemma 10 and
{f(xk)−f(xk+1)} → 0 we get that ‖dk‖x → 0, hence, due to strong convexity
of f(x), ‖dk‖ → 0. Moreover, from Lemma 9 we deduce that if ‖dk‖ → 0, then
‖∇f(xk)‖ → 0, therefore, x∗ is a stationary point of function f(x). Strong
convexity of f(x) guarantees that a stationary point must be a minimizer.
The proof is complete.

4.4 Worst-case iteration complexity of Newton-CG with backtracking
line-search

The following theorem shows the worst-case iteration complexity of Newton-
CG with backtracking line-search in order to enter the region of fast conver-
gence rate, i.e. ‖d‖x < $, where 0 < $ ≤ c5 and c5 has been defined in
Corollary 1. In this theorem the constant c4 has been defined in Lemma 10, c2
and c3 are constants of the backtracking line-search algorithm given in Section
3. Moreover, x∗ denotes the minimizer of f(x).

Theorem 2 Starting from an initial point x0, such that ‖d0‖x0 ≥ $, Newton-
CG with backtracking line-search and 0 ≤ η < 1 in the termination criterion
(21) of CG, requires at most

K1 = c6 log
(f(x0)− f(x∗)

c7$2

)
,

iterations to obtain a solution xk, k > 0, such that ‖dk‖xk < $, where

c6 =
2κ3

(1− η2)2c2c3
and c7 =

1

8κ2
.

Proof Let us assume an iteration index k > 0, then from (18), Lemmas 5 and
9 we get

f(xk)− f(x∗) ≥ 1

8κ2
‖dk‖2xk , (25)

and

f(xk−1)− f(x∗) ≤ 2κ2

(1− η2)2
‖dk−1‖2xk−1 . (26)

From Lemma 10 we have

f(xk) < f(xk−1)− c4‖dk−1‖2xk−1 . (27)

Combining (26), (27) and subtracting f(x∗) from both sides we get

f(xk)− f(x∗) <
(

1− (1− η2)2c4
2κ2

)
(f(xk−1)− f(x∗))

<
(

1− (1− η2)2c4
2κ2

)k
(f(x0)− f(x∗))

=
(

1− (1− η2)2c2c3
2κ3

)k
(f(x0)− f(x∗))

A Second-Order Method for Strongly Convex `1-Regularization Problems 21

From the last inequality and (25) we get

1

8κ2
‖dk‖2xk <

(
1− (1− η2)2c2c3

2κ3

)k
(f(x0)− f(x∗)).

Using the definitions of constants c6 and c7 we have

‖dk‖2xk <
(

1− 1

c6

)k 1

c7
(f(x0)− f(x∗)).

Hence, we conclude that after at most K1 iterations as defined in the preamble
of this theorem, the algorithm produces ‖dk‖xk < $. The proof is complete.

The following theorem presents the worst-case iteration complexity result
of Newton-CG to obtain a solution xl, of accuracy f(xl) − f(x∗) < ε, when
initialized at a point inside the region of fast convergence. The index l has
been used as an iteration counter of the doubly-continuation loop, however,
only for the next theorem it will be used as an iteration counter of Newton-CG
algorithm.

Theorem 3 Suppose that there is an iteration index k, such that ‖dk‖xk < $.
If η in (21) is set as in (22) with c0 = 1, then Newton-CG needs at most

K2 = log2 log2

(c8
ε

)
iterations to obtain a solution xl, l > k, such that f(xl)− f(x∗) < ε, where

c8 =
32κ2λ3

m

(16λ̃2
1 + L)2

.

Proof Suppose that there is an iteration index k such that ‖dk‖xk < $, then
for an index l > k, by applying Lemma 12 recursively we get

1

2

16λ̃2
1 + L

λ
3
2
m

‖dl‖xl ≤
(1

2

16λ̃2
1 + L

λ
3
2
m

‖dk‖xk
)2l−k

<
(1

2

)2l−k

. (28)

From (18), Lemmas 5 and 9 and ηk in (21) we get

f(xl)− f(x∗) ≤ 2κ2

(1− η2)2
‖dl‖2xl ≤ 8κ2‖dl‖2xl ,

By replacing (28) in the above inequality we get

f(xl)− f(x∗) <
32κ2λ3

m

(16λ̃2
1 + L)2

(1

2

)2l−k+1

.

Hence, in order to obtain a solution xl, such that f(xl)− f(x∗) < ε, Newton-
CG requires at most as many iterations as in the preamble of this theorem.
The proof is complete.

22 Kimon Fountoulakis and Jacek Gondzio

The following theorem summarizes the complexity result of Newton-CG
with backtracking line-search. The constants c6, c7 and c8 in this theorem are
defined in Theorems 2 and 3, respectively. A worst-case iteration complexity
result of the form in Theorem 4 below has been first obtained in [5], for an
inexact Newton method based on cubic regularization.

Theorem 4 Starting from an initial point x0, such that ‖d0‖x0 ≥ $, Newton-
CG with backtracking line-search requires at most

K3 = c6 log
(f(x0)− f(x∗)

c7$2

)
+ log2 log2

(c8
ε

)
iterations to converge to a solution xk, k > 0, of accuracy

f(xk)− f(x∗) < ε.

5 Worst-case iteration complexity of dcNCG with backtracking
line-search

First, let us remind the reader that in Section 4 the Newton-CG algorithm
has been analyzed independently of the doubly-continuation scheme, hence,
for simplicity of notation, the parameters τ and µ have been dropped. In this
section, it is necessary to introduce back the dependence on the parameters
τ l and µl for each continuation iteration l. In particular, when a reference to
results from Section 4 is made, then the usual notation which includes these
parameters will be used. Moreover, k denotes the iteration index of dcNCG
algorithm, xl is used to denote the initial solution of the lth inner loop or an

approximate minimizer of fµ
l−1

τ l−1 (x) for l > 0. For example, if the termination

criterion in step 7 is satisfied for xk and dk at the (l − 1)th continuation

iteration, then xl := xk. Finally, zl is the minimizer of fµ
l

τ l
(x) and z̄ is the

minimizer of f µ̄τ̄ (z̄).
We start by an intuitive explanation of the worst-case iteration complex-

ity result. For this, the following summary of doubly-continuation scheme is
helpful.

Summary of algorithm dcNCG

1: Outer loop: For l = 0, 1, 2, . . . , ϑ, produce sequences {τ l} and {µl}, where ϑ is the
number of continuation iterations.

2: Inner loop: Approximately solve the subproblem

minimize fµ
l

τl
(x)

using Newton-CG with backtracking line-search.

From the summary of the continuation scheme it is clear that the total
number of required steps is the sum of steps required for the approximate

A Second-Order Method for Strongly Convex `1-Regularization Problems 23

solution of each subproblem. In the previous section, we established the worst-
case iteration complexity of the inner loop, i.e. the approximate solution of the
subproblem by using Newton-CG with backtracking line-search. In particular,

to obtain fµ
l

τ l
(xl+1)−fµ

l

τ l
(zl) < ε for the lth problem, then from Theorem 4 we

have that at most Kl
3 iterations of Newton-CG with backtracking line-search

are required. Hence, if every lth problem is solved to accuracy fµ
l

τ l
(xl+1) −

fµ
l

τ l
(zl) < ε then the worst-case iteration complexity of the continuation scheme

is
∑ϑ
l=1K

l
3. However, it would be preferable to have a bound of this result

independent of the indexing l. For this reason, in this section we will show
that

ϑ∑
l=1

Kl
3 ≤ ϑ max

0≤l≤ϑ
Kl

3 < ϑK4,

where K4 is an upper bound of the worst-case Kl
3 ∀l. For convenience, let us

explicitly state Kl
3,

Kl
3 = cl6 log

(fµl
τ l

(xl)− fµ
l

τ l
(zl)

cl7($l)2

)
+ log2 log2

(cl8
ε

)
, (29)

where

cl6 =
2
(
τ l

µl
+ λ1

)3

(1− η2)2λ3
mc2c3

, cl7 =
λ2
m

8
(
τ l

µl
+ λ1

)2 ,

cl8 =
32
(
τ l

µl
+ λ1

)2

λm(
16
(
τ l

µl
+ λ1

)2

+
(

τ l

(µl)2 + Lϕ

))2

and c2 and c3 are constants of the backtracking line-search algorithm, which
do not depend on the continuation iteration index l. Moreover, according to
Corollary 1, the region of fast convergence of Newton-CG for the lth subprob-
lem is defined for ‖dk‖xk,l < $l, where $l ≤ cl5 and

cl5 = min
{

3(1− 2c2)
λ

3
2
m(

τ l

(µl)2 + Lϕ

) , λ
3
2
m

16
(
τ l

µl
+ λ1

)2

+
(

τ l

(µl)2 + Lϕ

)}.
In order to obtain the upper bound K4 one needs to calculate upper bounds

for the quantities cl6, cl8 and fµ
l

τ l
(xl) − fµ

l

τ l
(zl), and a lower bound for cl7 over

all l. Additionally, a lower bound of the quantity cl5 is required, which will be
used to obtain a tighter upper bound for $l over all l, as required by Corollary
1. The following remark will be used for this purpose.

Remark 1 The parameters β1, β2 and τ0, µ0 are set such that 0 < β1 ≤ β2 < 1
and dlogβ2

µ̄
µ0 e < dlogβ1

τ̄
τ0 e. Briefly, we require that the sequence of iterates

{µl} produced by (24) converges to µ̄ before the sequence {τ l} converges to τ̄ ,

24 Kimon Fountoulakis and Jacek Gondzio

although, {τ l} has a faster or similar rate of convergence. Then, according to
rule (24) the sequences {βl1} and {βl2} are generated for which 0 < βl1 ≤ βl2 ≤ 1
and

τ l+1 = βl1τ
l and µl+1 = βl2µ

l. (30)

Even though this assumption is not necessary for convergence of the doubly-

continuation scheme, it facilitates the proof of monotonic decrease of fµ
l

τ l
(x)

∀l, and it simplifies the calculation of some non-essential results.

Using Remark 1 it is easy to find upper bounds for the quantities cl6, cl8 and

lower bounds for cl5 and cl7. In particular, from Remark 1 we have τ̄
µ̄ ≤

τ l

µl
≤ τ0

µ0

∀l. Hence, the quantities cl5, cl6, cl7, cl8 are replaced with

c̃5 = min
{

3(1− 2c2)
λ

3
2
m(

τ0

µ0µ̄ + Lϕ

) , λ
3
2
m

16
(
τ0

µ0 + λ1

)2

+
(
τ0

µ0µ̄ + Lϕ

)},

c̃6 =
2
(
τ0

µ0 + λ1

)3

(1− η2)2λ3
mc2c3

, c̃7 =
λ2
m

8
(
τ0

µ0 + λ1

)2 ,

and

c̃8 =
32
(
τ0

µ0 + λ1

)2

λm(
16
(
τ̄
µ̄ + λ1

)2

+
(

τ̄
µ̄µ0 + Lϕ

))2 .

Having a lower bound of cl5 ∀l, we can tighten the conditions of Corollary 1,
which are replaced with

‖dk‖xk,l < $̃ and $̃ ≤ c̃5 ∀l. (31)

Another consequence of Remark 1 is the following lemma.

Lemma 13 For any x, if Remark 1 is satisfied, then

fµ
0

τ0 (x) > fµ
1

τ1 (x) and fµ
l−1

τ l−1 (x) > fµ
l

τ l
(x) ∀l > 0.

Proof For (30) we can rewrite functions fµ
1

τ1 (x) and fµ
l

τ l
(x) as f

β0
2µ

0

β0
1τ

0 (x) and

f
βl−1

2 µl−1

βl−1
1 τ l−1

(x), respectively. It is easy to show that fµ
0

τ0 (x) > f
β0

2µ
0

β0
1τ

0 (x) and

fµ
l

τ l
(x) > f

βl−1
2 µl−1

βl−1
1 τ l−1

(x). The proof is complete.

Therefore using Lemma 13, the fact that zl is the minimizer of function fµ
l

τ l
(x)

and x0 is the initial point of the continuation scheme we get

fµ
0

τ0 (x0) > fµ
0

τ0 (z0) > fµ
1

τ1 (z0) > fµ
1

τ1 (z1) > . . . > f µ̄τ̄ (z̄). (32)

A Second-Order Method for Strongly Convex `1-Regularization Problems 25

It remains now to find a bound for the distance ρl = fµ
l

τ l
(xl)− fµ

l

τ l
(zl). For

l = 0 using (32) we get

ρ0 < fµ
0

τ0 (x0)− f µ̄τ̄ (z̄). (33)

For l > 0 we proceed by adding and subtracting the term fµ
l

τ l
(zl−1) in ρl,

ρl = fµ
l

τ l
(xl)− fµ

l

τ l
(zl−1) + fµ

l

τ l
(zl−1)− fµ

l

τ l
(zl).

We shall analyze independently the following two quantities

ρl1 = fµ
l

τ l
(xl)− fµ

l

τ l
(zl−1) and ρl2 = fµ

l

τ l
(zl−1)− fµ

l

τ l
(zl)

First we start with the bound on ρl1. From strong convexity of fµ
l

τ l
(x), we have

that

ρl1 ≤ ∇f
µl

τ l
(xl)ᵀ(xl − zl−1)− λm

2
‖xl − zl−1‖2

≤ ‖∇fµ
l

τ l
(xl)‖‖xl − zl−1‖ − λm

2
‖xl − zl−1‖2. (34)

It is obvious that we need tight bounds for ‖∇fµ
l

τ l
(xl)‖ and ‖xl − zl−1‖. From

Remark 1, we distinguish two scenarios for the sequences {βl1} and {βl2}, first
0 < βl1 ≤ βl2 < 1, second 0 < βl1 ≤ 1 and βl2 = 1. For the first case by using
(30) and (19) in (34) we get

ρl1 ≤ (‖∇fµ
l−1

τ l−1 (xl)‖+ τ l−1
(

2− log(βl2)

1− βl2

)√
m)‖xl − zl−1‖ − λm

2
‖xl − zl−1‖2.

While if 0 < βl1 ≤ 1 and βl2 = 1, then using (30) and (20) in (34) we get

ρl1 ≤ (‖∇fµ
l−1

τ l−1 (xl)‖+ 2τ l−1
√
m)‖xl − zl−1‖ − λm

2
‖xl − zl−1‖2.

The upper bound of ρl based on these two cases is given by the first bound
and by replacing τ l with τ0 and βl2 with β2 = min

l
βl2,

ρl1 ≤ (‖∇fµ
l−1

τ l−1 (xl)‖+ ω̃
√
m)‖xl − zl−1‖ − λm

2
‖xl − zl−1‖2, (35)

where ω̃ = τ0
(

2− log(β2)
1−β2

)
. Using (18), Lemmas 5 and 9 and setting 0 ≤ η < 1

we have that

‖∇fµ
l−1

τ l−1 (xl)‖ ≤
2
(
τ l−1

µl−1 + λ1

)
1− η2

‖dl‖ ≤
2
(
τ l−1

µl−1 + λ1

)
(1− η2)λ

1
2
m

‖dl‖xl,l−1 (36)

and

‖xl − zl−1‖ ≤ 2

λm
‖∇fµ

l−1

τ l−1 (xl)‖ ≤
4
(
τ l−1

µl−1 + λ1

)
(1− η2)λ

3
2
m

‖dl‖xl,l−1. (37)

26 Kimon Fountoulakis and Jacek Gondzio

By replacing (36) and (37) in (35) we get

ρl1 ≤
(2
(
τ l−1

µl−1 + λ1

)
(1− η2)λ

1
2
m

‖dl‖xl,l−1 + ω̃
√
m
)4
(
τ l−1

µl−1 + λ1

)
(1− η2)λ

3
2
m

‖dl‖xl,l−1

−
8
(
τ l−1

µl−1 + λ1

)2

(1− η2)λ2
m

‖dl‖2xl,l−1

=
4ω̃
√
m
(
τ l−1

µl−1 + λ1

)
(1− η2)λ

3
2
m

‖dl‖xl,l−1 ≤
4ω̃
√
m
(
τ0

µ0 + λ1

)
(1− η2)λ

3
2
m

‖dl‖xl,l−1.

Notice that at termination of the (l−1)th inner loop of dcNCG algorithm, step
7, we have that ‖dl‖xl,l−1 ≤ εl−1. By considering a sequence of termination
tolerances ε1 ≤ ε0 and εl ≤ εl−1 ∀l > 0, then ‖dl‖xl,l−1 ≤ ε0, hence, we get

ρl1 ≤
4ω̃
√
m
(
τ0

µ0 + λ1

)
(1− η2)λ

3
2
m

ε0. (38)

Regarding ρl2, using (32) we get

ρl2 < fµ
0

τ0 (x0)− f µ̄τ̄ (z̄), (39)

which is a finite constant. We can now calculate the bound of ρl = ρl1 + ρl2,
for l > 0, through the bounds of ρl1 and ρl2, (38) and (39), respectively,

ρl = ρl1 + ρl2 <
4ω̃
√
m
(
τ0

µ0 + λ1

)
(1− η2)λ

3
2
m

ε0 + fµ
0

τ0 (x0)− f µ̄τ̄ (z̄) = ρ̃, (40)

which holds if every xl point satisfies ‖dl‖xl,l−1 ≤ ε0.
In the following theorem the worst-case iteration complexity of the doubly-

continuation scheme is given. Let us remind the reader that in this theorem, the
constants c̃5, c̃6, c̃7, c̃8 and ρ̃ have been defined in the beginning of this section,
the constant $̃ satisfies (31), 0 ≤ η < 1 is the tolerance of the termination
criterion (21) of the CG algorithm.

Theorem 5 If β1, τ0 are set according to Remark 1 and ε1 ≤ ε0, εl ≤ εl−1

∀l > 0 in step 7 of dcNCG algorithm, then the dcNCG algorithm initialized at
x0 requires at most

K5 =
(
c̃6 log

(ρ̃

c̃7$̃2

)
+ log2 log2

(c̃8
ε̃

))⌈
logβ1

τ̄

τ0

⌉
iterations to converge at a solution x̄ of accuracy

f µ̄τ̄ (x̄)− f µ̄τ̄ (z̄) < ε̃, where ε̃ =
λ2
m

8
(
τ0

µ0 + λ1

)2 (ε0)2.

A Second-Order Method for Strongly Convex `1-Regularization Problems 27

Proof According to Remark 1 the number of continuation iterations is ϑ =
dlogβ1

τ̄
τ0 e. A worst-case Kl

3 over all l, denoted at the beginning of this section

with K4, is given by replacing the quantities $l, cl5, cl6, cl7, cl8 and fµ
l

τ l
(xl) −

fµ
l

τ l
(zl) in (29) with appropriate bounds over all continuation iterations l, as it

has been shown previously in this section. First, cl5, cl7 and cl6, cl8 are replaced
with their lower and upper bounds c̃5, c̃7 and c̃6, c̃8, respectively, over all l. The
conditions ‖dk‖xk,l < $l and $l ≤ cl5 ∀l, of Corollary 1, are replaced by the

tighter conditions (31). For l = 0 we bound fµ
l

τ l
(xl)−fµ

l

τ l
(zl) by (33), while for

l > 0 we bound this distance by (40), which holds if ‖dk‖xk,l−1 ≤ ε0 in step 7 of
dcNCG. To guarantee the previous condition, sufficient iterations of Newton-
CG are performed at the continuation step l−1. In order to calculate a worst-
case iteration complexity such that ‖dk‖xk,l−1 ≤ ε0 two cases are distinguished
for the magnitude of ε0, first ε0 < $̃, second ε0 ≥ $̃. The worst case is

given for ε0 < $̃. If l = 0, according to Theorem 4, c̃6 log
(
fµ

0

τ0 (x0)−f µ̄τ̄ (z̄)

c̃7$̃2

)
+

log2 log2

(
c̃8
ε̃l

)
iterations are needed for Newton-CG to converge to a solution

xl+1 such that fµ
l

τ l
(xl+1) − fµ

l

τ l
(zl) < ε̃l and ‖dl+1‖xl+1,l < ε0, where ε̃l =

λ2
m

8

(
τl

µl
+λ1

)2 (ε0)2. The previous bound on ‖dl+1‖xl+1,l is obtained by using (18),

Lemmas 5 and 9, which give us

λ2
m

8
(
τ l

µl
+ λ1

)2 ‖d
l+1‖2xl+1,l ≤ f

µl

τ l
(xl+1)− fµ

l

τ l
(zl) < ε̃l ∀l.

Hence from (40) we get that ρ1 < ρ̃. If the previous statement holds, then

for l = 1, according to Theorem 4 and (40) by performing c̃6 log
(

ρ̃
c̃7$̃2

)
+

log2 log2

(
c̃8
ε̃l

)
iterations of Newton-CG, it is guaranteed that ‖dl+1‖xl+1,l < ε0

and ρ2 < ρ̃. In a similar way it is guaranteed that ρl < ρ̃ ∀l > 0. Additionally,
ρ0 < ρ̃, because the upper bound of ρ0 in (33) is smaller than ρ̃, therefore

ρl < ρ̃ ∀l. From Remark 1 we have τ̄
µ̄ ≤

τ l

µl
≤ τ0

µ0 ∀l, hence, ε̃ ≤ ε̃l ∀l. Notice

that the condition ‖dl+1‖xl+1,l < ε0 is preserved if we require accuracy ε̃ for
all l continuation iterations instead of ε̃l. We conclude that

max
0≤l≤ϑ

Kl
3 ≤ K4 = c̃6 log

(ρ̃

c̃7$̃2

)
+ log2 log2

(c̃8
ε̃

)
.

If K4 iterations of Newton-CG are performed for every lth continuation itera-

tion, then ‖dl+1‖xl+1,l < ε0 and fµ
l

τ l
(xl+1)− fµ

l

τ l
(zl) < ε̃ ∀l. By multiplying K4

with ϑ we obtain the result. The proof is complete.

28 Kimon Fountoulakis and Jacek Gondzio

6 Numerical experience

We illustrate the efficiency of dcNCG on synthetic `1-regularized Sparse Least-
Squares (S-LS) problems and `1-regularized Logistic Regression (LR) prob-
lems. The algorithm dcNCG is compared with the following state-of-the-art
first order methods.

– CDN (Coordinate Descent Newton) [48] is a coordinate descent method
which calculates one-dimensional Newton directions. It has been shown
in [48] that CDN is one of the most efficient implementations when the
required accuracy is not very high, which is the case for the problems of
our interest. This solver can be found as part of the LIBLINEAR pack-
age at http://www.csie.ntu.edu.tw/~cjlin/liblinear/. In this paper
the version 1.7 of the LIBLINEAR package has been used. This is be-
cause the newest version 1.93 of LIBLINEAR package, does not offer the
option to solve Logistic Regression problems with CDN algorithm. The ver-
sion 1.7 can be downloaded from http://www.csie.ntu.edu.tw/~cjlin/

liblinear/oldfiles/.
– RCDC (Randomized (block) Coordinate Descent Method) [35] is a ran-

dom parallel coordinate descent method. The published implementation
performs parallel coordinate updates, where the coordinates are chosen
randomly. This method is well-known for exploiting separability of the
problems, and its ability to solve huge-scale problems. This code can be
downloaded at http://code.google.com/p/ac-dc/.

6.1 Implementation details

All solvers are C or C++ implementations. All experiments are performed on
a Dell PowerEdge C6220 running Redhat Enterprise Linux with Quad 8 Core
Intel Xeon (Sandybridge) processors running in 64bit mode. For `1-regularized
LR problems the solvers CDN and dcNCG are serial implementations. For `1-
regularized S-LS problems, RCDC as a parallel solver exploits 24 cores, whilst,
for these problems we also exploit 24 cores by implementing a version of the
dcNCG with parallel linear algebra, i.e xᵀy, Ax and Aᵀy operations are per-
formed in parallel. Both parallel solvers are implemented using the openMP
protocol, for details see http://openmp.org/wp/. Finally, for dcNCG a diag-
onal preconditioner of the form P = diag(∇2f(x)) is used for all experiments
and preconditioned CG (PCG) is employed.

6.2 `1-Regularized Sparse Least-Squares

In this subsection we compare the dcNCG solver with RCDC. The comparison
is made on problems for which

ϕ(x) =
1

2
‖Ax− b‖2

A Second-Order Method for Strongly Convex `1-Regularization Problems 29

in (1), where x ∈ Rm, b ∈ Rn, A ∈ Rn×m with n ≥ m.

6.2.1 Benchmark Generators

The data A and b are synthetically generated using two different generators.
The first generator was introduced in [35] and published online at http:

//code.google.com/p/ac-dc/. This generator has been originally proposed
in [29] for producing `1-regularized dense Least-Squares problems. The ad-
vantage of this generator is that given τ = 1 in problem (1), the generator
produces such A and b with a known minimizer x∗ of problem (1), hence,
with known optimal objective function value. Additionally, one can control
the number of non-zero elements per column of matrix A. Let us state an
important observation about this generator. It produces problems that on av-
erage the diagonal of the matrix AᵀA has 99% of the mass of the whole matrix.
The published implementation of RCDC algorithm exploits this fact by bias-
ing each coordinate direction using information from the diagonal of matrix
AᵀA. In particular every coordinate direction is obtained by solving exactly

di := arg min
p

|xi + pi|+∇ϕi(x)pi +
σaᵀi ai

2
p2
i ,

where di, pi ∈ R, ϕi(x) is the ith partial derivative of ϕ(x) and ai is the ith

column of matrix A, all other coordinates of the direction are set to zero, see
Algorithm 4 in [35] for details. The constant σ ≈ 1 will be defined later. It
is clear that if the generated problem has massive diagonal elements in the
Hessian matrix AᵀA, then, these directions are biased by nearly perfect par-
tial second-order information. One could argue that for dcNCG this observed
property could be exploited by using PCG with a diagonal preconditioner,
P = diag(AᵀA). However, this is not entirely correct. In particular, in our
small scale experiments, which will be discussed later, we have observed that
the condition number of the matrix P−1AᵀA is of order 1.0e+5 to 1.0e+7.
Hence, diagonal preconditioning does not favour that much the dcNCG solver.
Fortunately, we will show that dcNCG converges fast even when the termi-
nation criterion of PCG is set to η = 0.9. Problems which have Hessian with
massive diagonal are trivial, therefore, we modify the generator such that the
mass of the matrix AᵀA is spread evenly on each elements. For such prob-
lems the approximation of the matrix AᵀA with its diagonal or any diagonal
preconditioner will not be as efficient. For simplicity we will refer to the first
version of this generator as BG1.1 and to the second version as BG1.2.

The second generator, which we will denote by BG2, can be implemented
by using standard MATLAB commands. The MATLAB command

A = sprand(m,n,density, rc),

which returns a sparse uniformly distributed random matrix A, with approx-
imately density · m · n nonzero elements randomly positioned, where 0 ≤
density ≤ 1, and rc is a vector of length m which determines the singular

30 Kimon Fountoulakis and Jacek Gondzio

values of matrix A when n ≥ m. One can create any optimal sparse solution
x∗ and obtain the vector b = Ax∗. Given A and b the optimal solution x∗ can
be reconstructed by solving problem (1) with τ set to a very small value, i.e.
1.0e−8. However, because the current implementation of RCDC only solves
problem (1) with τ = 1 we will set τ as such for both solvers, RCDC and
dcNCG.

6.2.2 Termination criteria and parameter tuning

Regarding the generators BG1.1 and BG1.2, given τ = 1 the optimal objec-
tive value f∗τ of problem (1) is known. First the dcNCG solver is employed
and an approximate optimal value of the objective function is found, denoted
by fτ (x). The optimal objective value is subtracted from the one obtained by
dcNCG to get an accuracy measure, i.e. fτ (x)−f∗τ . For these problems, at the
termination of dcNCG, the solver reported fτ (x)− f∗τ = O(1.0e−6). Then the
RCDC algorithm is employed till the required accuracy drops below the one
of the dcNCG solver. Since, for RCDC algorithm making function evaluations
is prohibited, because it is considered by its authors as a very expensive oper-
ation, we do not include the CPU time of making such operations in the total
CPU time.

The parameter tuning of dcNCG is as follows. Parameters µ̄ and µ0 are
set to 1.0e−6 and 1, respectively. Parameter τ0 is set to ‖Aᵀb‖∞ and the
initial solution x0 is set to the zero vector; this setting warm-starts Newton-
CG algorithm. Parameters β1 and β2 are set to 1.0e−1 and 3.0e−1, for BG1.1
and BG1.2, respectively. Parameter η is set to 0.9. The maximum number
of backtracking line-search iterations is fixed to 20. The tolerance is set to
εl =1.0e+6 for each subproblem (5). By setting the tolerance εl to such a large
value, the dcNCG algorithm performs one inexact Newton direction for each
lth continuation iteration; as shown in the numerical results in this section this
setting is sufficient for dcNCG to produce a highly accurate solution.

For problems generated by BG2, dcNCG is employed first. At termination
of dcNCG, the solver returned a solution of accuracy ‖d‖x = O(1.0e−8) for the
last sub-problem (5) of the algorithm. However, for these problems, given τ = 1
the optimal objective function value is unknown. Hence, only the obtained
approximate optimal objective value fτ (x) of dcNCG is calculated. The RCDC
algorithm is employed till the objective value at a particular iteration drops
below fτ (x).

For these problems, parameters µ̄ and µ0 are set to 1.0e−6 and 1, respec-
tively. Parameter τ0 is set to ‖Aᵀb‖∞ and x0 is set to the zero vector. Pa-
rameters β1 and β2 are set to the save values, 0.9 or 0.99 for well-conditioned
and ill-conditioned problems, respectively. Parameter η is set to 1.0e−1. The
maximum number of backtracking line-search iterations is fixed to 20. The
tolerance is set to εl =1.0e+6 for each subproblem.

The parameter σ of the RCDC algorithm is set to 1 + 23 ω−1
m−1 , where ω is

the maximum number of non-zero elements over all rows of matrix A.

A Second-Order Method for Strongly Convex `1-Regularization Problems 31

6.2.3 Three Experiments

For the generators BG1.1 and BG1.2, two classes of experiments are presented,
two experiments are performed per class, one for each generator. In the first
class of experiments our aim is to gradually increase the density of the gen-
erated matrix A. By gradually, increasing the density of matrix A we expect
that the sparsity of the Hessian matrix AᵀA will be affected. It is interesting
to find out how both solvers compared react to increased density of the Hes-
sian matrix. For this experiment, we fix m = 103, n = 2m. The number of
non-zeros per column of matrix A is varied from 1 to n with a step of plus
100. Ten trials are performed per generated experiment and average results
are reported. Since, these problems can be dense, we were not able to solve
large scale problems as will be done in the next experiment. The results are
shown in Figure 2. In these figures, “sparsity ratio” is the number of non-zeros
per column of matrix A over the number of rows n. Observe in Figures 2a and
2b that dcNCG was faster for both generators when the “sparsity ratio” was
more than 15%. However, we will show in the second experiment that this is
a very pessimistic scenario and dcNCG can be very competitive for smaller
“sparsity ratio” when the size n is very large. Notice, in Figures 2c and 2e
that generator BG1.1 indeed produces problems where the matrix AᵀA has a
massive diagonal, while, the condition number of P−1AᵀA is relatively high.
In Figure 2f we can see that the property of massive diagonal of matrix AᵀA
has been relaxed, and in Figure 2d it is shown that the condition number of
P−1AᵀA for BG1.2 is the same as BG1.1. It is important to mention that the
performance of dcNCG was unaffected by the “sparsity ratio” of the problem
or any diagonal property of matrix AᵀA, while, RCDC seems to be efficient
only for problems that are very sparse and have matrix AᵀA with massive
diagonal.

In the second class of experiments for generators BG1.1 and BG1.2 our aim
is to observe the efficiency of the solvers as the size of problem m increases.
For this experiment the size m is varied from 212 to 226 with a step of times
two. The number of rows is set to n = 2m and the number of non-zeros per
column of matrix A is set to 20. It is worth mentioning that this experiment
favours the RCDC solver, since the “sparsity ratio” is extremely small. Hence,
we expect that the problems are well-conditioned and have matrix AᵀA with
massive diagonal. As a consequence of this very small “sparsity ratio” these
problems tend to be separable, a property which is exploited by RCDC, since
the experiment is run on 24 cores. Despite this fact, it is shown that dcNCG
is more efficient for the large-scale realistic problems generated by BG1.2. The
results of these experiments are shown in Figure 3.

In the third experiment our aim is to observe the performance of the solvers
on problems where the mass of the diagonal of matrix AᵀA is small, the non-
zero components of x∗ are uniformly distributed random variables in (−1.0e+3,
1.0e+3) and the singular values of matrix A are uniformly distributed random
variables in (0.1, 1.0e+χ), where χ = 1, 2, 3, or one hundred singular values of
matrix A are set to 1.0e+5 and the rest to 1.0e−1. For this purpose, it is nec-

32 Kimon Fountoulakis and Jacek Gondzio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sparsity ratio

A
vg

. C
P

U
 t

im
e

Experiment 1, BG1.1

dcNCG
RCDC

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2

4

6

8

10

12

Sparsity ratio

Experiment 1, BG1.2

dcNCG
RCDC

(b)

10
−3

10
−2

10
−1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Sparsity ratio

A
vg

. c
on

d(
P

−1
A

T
A

)

BG1.1

(c)

10
−3

10
−2

10
−1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Sparsity ratio

BG1.2

(d)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Sparsity ratio

A
vg

. m
as

s
o

f
d

ia
g

(A
T
A

)
o

ve
r

m
as

s
o

f
A

T
A

BG1.1

(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

1

Sparsity ratio

BG1.2

(f)

Fig. 2 Experiment 1: Increasing density of matrix A. The first column, from the left, of
figures shows average results for BG1.1 and the second column shows average results for
BG1.2. The first row of figures, from the top, shows the comparison of the solvers in terms
of average CPU time against “sparsity ratio”. The second row of figures, shows the average
condition number of matrix P−1AᵀA against “sparsity ratio”. The third row of figures,
shows the average ratio of mass of the diagonal of matrix AᵀA over the mass of the whole
matrix against “sparsity ratio”

A Second-Order Method for Strongly Convex `1-Regularization Problems 33

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

m

A
vg

. C
P

U
 t

im
e

Experiment 2, BG1.1

dcNCG
RCDC

(a)

10
4

10
5

10
6

10
7

10
−1

10
0

10
1

10
2

m

Experiment 2, BG1.2

dcNCG
RCDC

(b)

Fig. 3 Experiment 2, comparison of solvers for increasing dimension m, using both genera-
tors BG1.1 and BG1.2

essary to employ BG2, as it allows a direct control of all previously mentioned
quantities. The parameters m and n are set to 212 and 2m, respectively, x∗

has only 50 non-zero elements and density=5.0e−3. The results of these ex-
periments are shown in Figures 4a, 4b, 4c and 4d, following the order of the
different settings of singular values that were mentioned previously. Figure
4a corresponds to a problem with condition number of matrix AᵀA of order
1.0e+4. Figure 4b corresponds to a problem with condition number of ma-
trix AᵀA of order 1.0e+8. Figure 4c corresponds to a problem with condition
number of matrix AᵀA of order 1.0e+12. Figure 4d corresponds to a problem
with condition number of matrix AᵀA of order 1.0e+12. As a last part of this
experiment, corresponding to Figure 4e, we set one hundred singular values
of matrix A to 1.0e+6 and the rest to 1.0e−1, the non-zero components of x∗

are uniformly distributed random variables in (−1.0e+4, 1.0e+4), the param-
eters m and n are set to 210 and 2m, respectively, x∗ has only 12 non-zero
elements and density is kept to 5.0e−3. For this problem the condition number
of matrix AᵀA is of order 1.0e+14. For all problems, the density of matrix
AᵀA was approximately between 5.0e−3 and 1.0e−2, the mass of the diagonal
of AᵀA over the mass of the whole matrix was approximately between 3.0e−1
and 5.0e−1. Observe that despite the sparse nature of the problem, which is a
property exploited by the parallelism of RCDC, the dcNCG solver was faster
and more robust. For the experiments in Figures 4c and 4d the RCDC al-
gorithm was terminated after ten million iterations, while for the experiment
in Figure 4e the RCDC algorithm was terminated after one billion iterations
which corresponds to more than 31 hours of CPU time.

34 Kimon Fountoulakis and Jacek Gondzio

10
−3

10
−2

10
−1

10
0

10
1

10
5

10
6

10
7

10
8

CPU time

O
b

je
ct

iv
e

fu
n

ct
io

n

dcNCG
RCDC

(a)

10
−1

10
0

10
1

10
2

10
3

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

CPU time

dcNCG
RCDC

(b)

10
−1

10
0

10
1

10
2

10
3

10
6

10
8

10
10

10
12

10
14

10
16

CPU time

O
b

je
ct

iv
e

fu
n

ct
io

n

dcNCG
RCDC

(c)

10
−1

10
0

10
1

10
2

10
3

10
6

10
8

10
10

10
12

10
14

CPU time

dcNCG
RCDC

(d)

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

CPU time

O
b

je
ct

iv
e

fu
n

ct
io

n

dcNCG
RCDC

(e)

Fig. 4 Experiment 3: Increasing condition number of Hessian matrix AᵀA and different
clustering of eigenvalues

A Second-Order Method for Strongly Convex `1-Regularization Problems 35

6.3 `1-Regularized Logistic Regression

In this subsection we compare the dcNCG solver with CDN on `1-regularized
LR problems. For `1-regularized LR the function ϕ(x) in (1) is set to

ϕ(x) =

n∑
i=1

log(1 + e−yiw
ᵀxi),

where xi ∈ Rm ∀i = 1, 2, . . . , n are called feature vectors and yi ∈ {−1,+1} are
the corresponding labels. Such problems are used for training a linear classifier
w ∈ Rm. Although in Linear Support Vector Machine (LSVM) literature there
are more alternatives for function ϕ(x), in this section we choose LR because it
is second-order differentiable. For more details about Support Vector Machine
(SVM) problems we refer the reader to [49]. For `1-regularized LR a collection
of LSVM problems can be downloaded from http://www.csie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/ as part of the LIBSVM Data package. From
this collection of problems we choose all 45 problems with binary labels. No
normalization is performed on the feature vectors xi, except if they have been
normalized by default. Since many of the problems do not provide testing
samples, we use the training data to measure the accuracy level of the obtained
linear classifier w for all problems. We do not perform any cross-validation for
the selection of parameter τ in (1), this parameter is set always to 1.

First, the problems are solved using CDN solver with default termination
criteria. Then the same problem is solved using the dcNCG algorithm until
approximately the same objective value to the one of CDN algorithm is ob-
tained. All other parameters of the CDN algorithm are set to their default
values. The parameter tuning of dcNCG is as follows. Parameter µ̄ is set to
1.0e−1 or 1.0e−2, parameter µ0 is set to 1. Parameter τ0 is set to ‖ϕ(0)‖∞.
Parameters β1 and β2 are set between 2.0e−1 and 7.0e−1. Parameter η is set to
1.0e−1. The maximum number of backtracking line-search iterations is fixed
to 20. The tolerance is set to εl =1.0e+3 or 1.0e+4 for each subproblem (5).

The results for these 45 problems are shown in Table 1. The dcNCG solver
was faster on 37 out of 45 problems. The problems for which dcNCG was faster
are denoted by italic font. Both solvers had the same level of accuracy.

7 Conclusion

We propose and implement a new second-order method for strongly convex `1-
regularized problems arising in many fields of optimization, i.e. Sparse Least-
Squares and Machine Learning. The proposed method is a Newton Conjugate
Gradients algorithm with backtracking line-search accelerated by a doubly-
continuation scheme. The continuation scheme allows warm-start of Newton
Conjugate Gradients and some control of the spectral properties of the Newton
systems which are solved approximately at every iteration. Worst-case itera-
tion complexity of Newton Conjugate Gradients with backtracking line-search

36 Kimon Fountoulakis and Jacek Gondzio

Table 1 Results on `1-regularized LR. The second and forth columns show the percentage of
the training data that the obtained linear classifier w separated correctly. The third and fith
columns show the CPU time, in seconds, that was required by the solvers for convergence.
If the CPU time is less than 1.00e-02 sec. then zero sec. is reported. The problems for which
dcNCG was faster are denoted by italic font

dcNCG CDN
Problem Accuracy CPU time Accuracy CPU time

a1a 85.05 % 2.00e−02 85.05 % 9.00e−02
a2a 83.22 % 3.00e−02 83.40 % 1.80e−01
a3a 84.58 % 3.00e−02 84.71 % 2.20e−01
a4a 84.96 % 6.00e−02 84.96 % 2.00e−01
a5a 84.89 % 8.00e−02 84.91 % 2.00e−01
a6a 84.61 % 1.70e−01 84.65 % 2.90e−01
a7a 84.82 % 2.50e−01 84.82 % 3.20e−01
a8a 84.75 % 4.10e−01 84.75 % 4.90e−01
a9a 84.89 % 6.10e−01 84.91 % 1.01e+00
australian 86.23 % 1.00e−02 85.51 % 0.00e+00
breast-cancer 94.88 % 3.00e−02 94.73 % 1.00e−02
cod-rna 93.37 % 3.80e−01 93.39 % 8.58e+00
colon-cancer 100.0 % 2.00e−02 100.0 % 1.00e−02
covtype 75.61 % 3.24e+01 75.35 % 3.80e+02
diabetes 69.66 % 0.00e+00 69.66 % 4.00e−02
duke 100.0 % 2.00e−02 100.0 % 3.00e−02
epsilon 90.04 % 2.34e+02 90.06 % 1.59e+03
fourclass 73.55 % 0.00e+00 73.55 % 1.00e−02
german 77.80 % 1.00e−02 77.50 % 4.00e−02
gisette 100.0 % 6.17e+00 100.0 % 1.12e+01
heart 86.30 % 0.00e+00 85.93 % 3.00e−02
ijcnn1 92.46 % 2.10e−01 92.46 % 1.81e+00
ionosphere 84.90 % 0.00e+00 86.61 % 2.00e−02
kdda 91.16 % 2.66e+03 90.44 % 2.51e+03
kddb 91.84 % 4.99e+03 91.18 % 8.22e+02
leu 100.0 % 2.00e−02 100.0 % 3.00e−02
liver-disorders 69.57 % 0.00e+00 69.57 % 1.00e−02
mushrooms 99.95 % 3.00e−02 100.0 % 7.00e−02
news20 92.46 % 9.67e+00 92.96 % 3.25e+00
rcv1 96.62 % 4.60e−01 96.93 % 7.30e−01
real-sim 96.93 % 1.08e+00 97.42 % 1.83e+00
sonar 84.13 % 0.00e+00 85.10 % 4.00e−02
splice 83.00 % 1.00e−02 83.10 % 2.00e−01
svmguide1 84.40 % 1.00e−02 84.33 % 3.00e−02
svmguide3 78.44 % 1.00e−02 79.08 % 7.00e−02
url 99.49 % 1.62e+03 99.49 % 2.09e+02
w1a 90.03 % 1.00e−02 90.03 % 2.00e−02
w2a 90.00 % 1.00e−02 90.32 % 2.00e−02
w3a 90.68 % 2.00e−02 90.61 % 6.00e−02
w4a 90.58 % 2.00e−02 90.56 % 1.20e−01
w5a 90.25 % 3.00e−02 90.54 % 1.40e−01
w6a 90.33 % 5.00e−02 90.57 % 3.70e−01
w7a 90.59 % 8.00e−02 90.74 % 5.50e−01
w8a 90.55 % 2.00e−01 90.63 % 2.52e+00
webspam 98.29 % 3.02e+03 99.17 % 5.79e+02

A Second-Order Method for Strongly Convex `1-Regularization Problems 37

and worst-case iteration complexity of the doubly continuation scheme are
established.

Computational experience presented in this paper shows that although for
`1-regularized problems the research community seems to favour first-order
methods, a specialized second-order method is very competitive.

38 Kimon Fountoulakis and Jacek Gondzio

References

1. S. R. Becker, J. Bobin, and E. J. Candés. Nesta: A fast and accurate first-order method
for sparse recovery. SIAM J. Imaging Sciences, 4(1):1–39, 2011.

2. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press New
York, NY, USA, 2004.

3. P. N. Brown and Y. Saad. Convergence theory of nonlinear Newton-krylov algorithms.
SIAM J. Optimization, 4(2):297–330, 1994.

4. R. H. Byrd, G. M. Chin, J. Nocedal, and F. Oztoprak. A family of second-order methods
for convex `1-regularized optimization. Unpublished: Optimization Center: Northwest-
ern University, Tech Report, June 2012.

5. C. Cartis, N. I. M. Gould, and P. Toint. Evaluation complexity of adaptive cubic
regularization methods for convex unconstrained optimization. Technical report, School
of Mathematics, Edinburgh University, 2010.

6. K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale
`2-loss linear support vector machines. Journal of Machine Learning Research, 9:1369–
1398, 2008.

7. R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM Journal
on Numerical Analysis, 19:400–408, 1982.

8. S. C. Eisenstat and H. F. Walker. Globally convergent inexact Newton methods. SIAM
J. Optimization, 4(2):393–422, 1994.

9. S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton
method. SIAM J. Sci. Comput., 17(1):16–32, 1996.

10. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse Problems. IEEE
Journal of Selected Topics in Signal Processing, 1(4):586–597, 2007.

11. K. Fountoulakis, J. Gondzio, and P. Zhlobich. Matrix-free interior point method for
compressed sensing problems. Technical Report ERGO 12-006, 2012.

12. J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Machine Learning Research, 9:627–650, 2008.

13. A. Galen and J. Gao. Scalable training of `1-regularization log-linear models. In ICML,
2007.

14. E. T. Hale, W. Yin, and Y. Zhang. A fixed-point continuation method for `1-regularized
minimization with applications to compressed sensing. Technical Report TR07-07, 2007.

15. E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for `1-minimization:
methodology and convergence. SIAM J. Optim., 19:1107–1130, 2008.

16. S. Hansen and J. Nocedal. Second-order methods for `1-regularized problems in machine
learning. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2012, pages 5237 –5240, march 2012.

17. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, ISBN: 0521540518, second edition, 2004.

18. M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49(6):409–436, 1952.

19. C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coor-
dinate descent method for large-scale linear SVM. Proceedings of the 25th international
conference on Machine Learning, ICML 2008, pages 408–415, 2008.

20. C. T. Kelly. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia,
PA., 1995.

21. J. Kim and H. Park. Fast active-set-type algorithms for `1-regularized linear regression.
In In Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics, 2010.

22. S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point method
for large-scale `1-regularized least squares. IEEE Journal on Selected Topics in Signal
Processing, 1(4):606–617, 2007.

23. S.-I. Lee, H. Lee, P. Abbeel, and A. Y. Ng. Efficient `1-regularized logistic regression.
In In AAAI, 2006.

24. C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for large-scale
logistic regression. Journal of Machine Learning Research, 9:627–650, 2008.

A Second-Order Method for Strongly Convex `1-Regularization Problems 39

25. D. M. Malioutov, M. Setin, and A. S. Willsky. Homotopy continuation for sparse sig-
nal representation. IEEE International Conference on Acoustics, Speech and Signal
Processing. Proceedings (ICASSP ’05)., 5:733–736, 2005.

26. S. G. Nash. A survey of truncated-Newton methods. Journal of Computational and
Applied Mathematics, 124(1-2):45–59, 2000.

27. Y. Nesterov. Introductory Lecture Notes On Convex Optimization. A Basic Course.
Kluver, Boston, 2004.

28. Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Program-
ming, 103(1):127–152, 2005.

29. Y. Nesterov. Gradient methods for minimizing composite objective function. CORE
Discussion Papers 2007076, September 2007.

30. Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex
Programming. SIAM Studies in Applied Mathematics, 1994.

31. J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2006.
32. R. P. Pawlowski, J. N. Shadid, J. P. Simonis, and H. F. Walker. Globalization techniques

for Newton-krylov methods and applications to the fully coupled solution of the navier-
stokes equations. Journal of Machine Learning Research, 48(4):700–721, 2006.

33. D. Pu and W. Tian. Globally convergent inexact generalized Newton’s method for
nonsmooth equations. Journal of Computational and Applied Mathematics, 138(1):37–
39, 2002.

34. J. Renegar. A Mathematical View of Interior-Point Methods in Convex Optimization.
MOS-SIAM Series on Optimization, Cornell University, Ithaca, New York, 2001.

35. P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 2012.

36. M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for `1-regularization:
A comparative study and two new approaches. In In Proceedings of European Confer-
ence on Machine Learning, pages 286–297, 2007.

37. S. Shalev-Shwartz and A. Tewari. Stochastic methods for `1-regularized loss minimiza-
tion. Journal of Machine Learning Research, 12(4):1865–1892, 2011.

38. J. R. Shewchuk. An introduction to the conjugate gradient method without the ago-
nizing pain. Technical report, Carnegie Mellon University Pittsburgh, PA, USA, 1994.

39. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Roy.
Statist. Soc., 58(1):267–288, 1996.

40. P. Tseng. Convergence of a block coordinate descent method for nondifferentiable min-
imization. Journal of Optimization Theory and Applications, 109(3):475–494, 2001.

41. P. Tseng. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM J. Optim., 22:341–362, 2012.

42. P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable
minimization. Math. Program., Ser. B, 117:387–423, 2009.

43. Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang. A fast algorithm for sparse reconstruction
based on shrinkage, subspace optimization and continuation. SIAM J. Sci. Comput.,
32(4):1809–1831, 2010.

44. Z. Wen, W. Yin, H. Zhang, and D. Goldfarb. On the convergence of an active set method
for `1-minimization. Optimization Methods and Software, 27(6):1127–1146, 2012.

45. S. J. Wright. Accelerated block-coordinate relaxation for regularized optimization.
SIAM Journal on Optimization, 22(1):159–186, 2012.

46. S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable
approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009.

47. T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression.
The Annals of Applied Statistics, 2(1):224–244, 2008.

48. G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A comparison of optimization
methods and software for large-scale `1-regularized linear classification. Journal of
Machine Learning Research, 11:3183–3234, 2010.

49. G. X. Yuan, C. H. Ho, and C. J. Lin. Recent advances of large-scale linear classification.
Proceedings of the IEEE, 100(9):2584–2603, 2012.

