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Abstract. A second-order, L-stable Rosenbrock method from the field of stiff ordinary dif­
ferential equations is studied for application to atmospheric dispersion problems describing photo­
chemistry, advective, and turbulent diffusive transport. Partial differential equation problems of 
this type occur in the field of air pollution modeling. The focal point of the paper is to examine 
the Rosenbrock method for reliable and efficient use as an atmospheric chemical kinetics box-model 
solver within Strang-type operator splitting. In addition, two W-method versions of the Rosenbrock 
method are discussed. These versions use an inexact J1tcobian matrix and are meant to provide 
alternatives for Strang-splitting. Another alternative for Strang-splitting is a technique based on 
so-called source-splitting. This technique is briefly discussed. 

AMS subject classifications. Primary, 65M06. G5M20; Secondary, G5Y05, 65Y20 

Key words. long range transport air pollution models, numerical methods, time-dependent 
advection-diffusion reaction, stiff ODEs, Rosenbrock methods, splitting, approximate factorization 

PII. Sl064827597326651 

1. Introduction. Photochemical dispersion modelH are lrned to enhance the un­

derstanding of the chemical composition of the atmosphere, in particular with regard 

to the relation between anthropogenic emissions and the resulting diHtributions of 

primary and secondary polluting species. Modern modelH arc based on masH balances 

in the form of systems of time-dependent, three-space dimensional, partial differential 

equations (PDEs) describing advective transport, turbulent difftrnive transport, cumu­

lus cloud convection, chemical reactions, ernisHions, and depoHitiorrn. Models are dis­

cretized on Eulerian grids over areas of different sizes, from urban to regional to fully 

global. Comprehensive dispernion models are computationally extremely expensive. 

After spatial discretization they lead to huge syHtems of ordinary differential equations 

(ODEs) containing stiff nonlinear terms from the photochemical reactions [32]. For 

the time integration of these ODEs one commonly useH Strang-type operator Hplit­

ting [15, 23], distinguishing mainly between transport and chemistry. The chemistry 

computation then amounts to repeatedly solving box-models (~ = f(c) at any of the 

spatial grid points. For this purpose dedicated explicit methods arc used [8, 11, 27, 30] 

or solvers from the stiff ODE field adjusted for exploiting sparsity in the Jacobian ma­

trix [16, 10, 18, 17, 29]. As a rule, black-box solvers are considered too coHtly. 

The accuracy demand for atmospheric dispersion problems is modest, so a low­

order method is a natural choice. Rosenbrock methods have already proven very 

effective for low to modest accuracies for a wide variety of Htiff problems [7]. When 

sparsity is exploited, their specific advantage for integrating atmospheric box-modeb 

has recently been demonstrated in [17], where the stiffly accurate solver RODAS3 
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came out as most competitive. This solver is a variable step size, third-order, four­

stage counterpart of the well-known fourth-order, six-stage solver RODAS from [7]. 

However, like most solvers, RODAS3 is quite sensitive to initial transients and there­

fore can require a rather small step size in the initial phase to start up the integration. 

For single ODE systems and long integration intervals, a small initial step renders no 

problem, as it hardly adds to the total work load. In the context of operator splitting 

the situation is different. The integration intervals are relatively short and usually 

small transients are encountered within any split step. These transients are insignif­

icant, and for efficiency reasons it is desirable to start up with an a priori described 

step size far greater than the smallest time constant. In addition, when running op­

erator splitting schemes on vector/parallel or massively parallel computers, a priori 

described step sizes everywhere seem more practical than truly variable ones. Vari­

able step size integration governed by local error control creates load imbalancing in 

parallel implementations [6] and interferes with vectorization over the horizontal grid 

dimension [10, 21]. 

These observations have led us to search for a more stable Rosenbrock formula 

which is capable of integrating with much larger a priori described step sizes. The 

result is a particular, L-stable, second-order, two-stage method. In what follows, 

this method will be called ROS2 (Rosenbrock, second order). The main difference 

between ROS2 and RODAS3 lies in the stability function and the internal stability 

functions. For ROS2 both these functions are positive along the negative real line, like 

the exponential. This does not hold for RODAS3. In this paper we provide strong 

numerical evidence that this simple positivity property significantly enhances the 

nonlinear stability for atmospheric chemical kinetic problems, thus rendering ROS2 

highly efficient for use within Strang-type operator splitting. Here lies the focal point 

of this paper. Another difference with RODAS3 is that for second-order consistency, 

ROS2 can be used with an inexact Jacobian matrix. This property can be exploited 

in different ways and we pay some attention to it in connection with alternatives for 

standard Strang-splitting. We note in passing that Rosenbrock methods using an 

inexact Jacobian are also called W-methods [7]. 

The contents of the paper are as follows. In section 2 we outline the main in­

tended application for ROS2 through a prototype model for three-dimensional (3D) 

spherical photochemical dispersion. This prototype model will be used as a test prob­

lem along with three different sets of atmospheric photochemical reactions from the 

actual practice. In section 3 we present ROS2, discuss the basic properties which 

render this Rosenbrock method suitable and highly competitive as an atmospheric 

box-model integrator, and provide numerical results to illustrate this. In section 4 we 

apply ROS2 within the context of Strang-splitting: Splitting chemistry is decoupled 

from transport, yielding a potential difficulty for the chemistry integration in that stiff 

transients can arise in any split step. These transients are artifacts of the splitting 

and require a robust and stable method. The main objective of this section is to show 

that ROS2 is well capable for this task. Two different second-order Strang-splittings 

are used. The first treats advection and diffusion explicit and coupled, the second 

treats advection explicit and vertical diffusion implicit but still coupled. At this stage 

we introduce a W-version of ROS2 as an advection-diffusion solver. We use this solver 

within Strang-splitting, but it is of obvious interest of its own. Section 5 is devoted 

to a complete alternative for Strang-splitting. Here we present a second application 

of ROS2 as a W-method, but now for the full advection-diffusion-chemistry problem. 

The approximate factorization approach is used here for the inexact Jacobian defini-
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tion. This approximate factorization ROS2 scheme has been introduced to provide 

a comparison with Strang-splitting for cases where there is large vertical turbulent 

diffusion. Standard Strang-splitting then yields larger splitting errors and compari­

son with alternatives is of numerical interest. The result of the present comparison is 

that the approximate factorization ROS2 scheme certainly is competitive, but since 

Strang-splitting is somewhat simpler for use in the actual practice, greater benefits 

must be shown to replace it. In section 6 we briefly discuss another alternative for 

Strang-splitting, which is called source-splitting. However, on theoretical grounds it is 

argued that Strang-splitting is more stable. The main conclusion of our investigations 

is formulated in the final section, section 7. 

2. Photochemical dispersion models. By way of illustration we first outline 

the spherical, global prototype model from [21], which later will serve as a test model. 

Let c = c(t, A,</!, r) denote a vector of m species concentrations with t representing the 

time, ,\ E [O, 27r] the longitude,</> E [-i, +i] the latitude, and 0:::; r :::; rH the height 

above the surface of the earth. Let a be the radius of the earth, p the density of the 

air, ( u, v) a horizontal wind field, and K a vertical subgrid-scale turbulent diffusion 

coefficient. Let f(c) be an m-dimensional vector function representing atmospheric 

(photo )chemical reactions, emission sources, and sink depositions. The mathematical 

formulation of the prototype model then reads 

(2.1) oc + _1_ [o(uc) + o('uc cos</>)]=!!_ ( K !!_ (::)) + f(c). 
ot a cos</> o>.. o<fi oT P or p 

The reaction term f(c) couples the m equations in the model. Without reactions 

the equations are not coupled, since u, v, p, and K are given expressions. Processes 

are time and space dependent. In real models the various meteorological parameters 

are updated every few hours, say. For numerical purposes we consider all processes 

constant in time over split intervals. At the surface and the top the no-flux boundary 
conditions 

(2.2) pK !!_ (:'.) = 0 
OT P 

are imposed. The model is completed by prescribing the initial values for c at the 

initial time t = to. The unit for the concentrations is number of molecules per cm3 

(mlc/cm3). The unit of time is seconds. 

2.1. Transport. In the prototype model the wind field (u, v) and the coefficient 

K are given analytic expressions. The wind field is a solid body rotation [20] with a 

maximum speed of about 125 km/hour defined by 

u = 27f K ( cos(3 cos</> + sin,6 sinq) cos,\), v = - 2m.,; sin,6 sin>.., 

where (3 = 45° and K = a/(14 * 24 * 3600) with a equal to 6378 km. The diffusion 

coefficient K is dependent on the height and takes on a maximum of 30 m2 /s in the 

lower troposphere. Adopting a parameterization given in [31, p. 24, Figs. 1-10], we 
used (K in m2 /s, z in km) 

K=30 

K = 0.2 

K = 0.2 + 0.32(z - 17.5) 
K = 10o.o5z-i.o 

if z ::::; 15, 

if 15 < z :::; 17.5, 

if 17.5 < z :::; 20, 

if z > 20. 
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The top of the model lies at 34.7 km. The density p is height dependent and chosen 

in close accordance with the U.S. Standard Atmosphere (1976) [31]. Its definition is 

in tabulated form, which is too long to specify. Real models also simulate transport 

by vertical advection, subgrid-scale turbulent horizontal diffusion, and subgrid-scale 

cumulus cloud convection. For a numerical study horizontal diffusion is not really 

essential. Horizontal diffusion can always be added and numerically integrated ex­

plicitly, in a similar manner as horizontal advection. In a similiar manner, vertical 

advection can often be treated explicitly. If not, it can be combined somehow with 

the implicit vertical diffusion computation. Whether the absence of cloud convection 

is essential is as yet not clear. In reality there is also orography. This makes models 

technically much more complicated, as this amounts to a coordinate transformation of 

the ideal sphere model (2.1). We believe, however, that with regard to time stepping 

the absence of orography is not essential either. 

2.2. Chemistry. Atmospheric photochemistry induces severe stiffness. Reac­

tion times may range from milliseconds or shorter (e.g., OH radical) to years (e.g., 

CH4). The photochemical nature complicates the numerical solution, since part of 

the reaction coefficients depends on the solar zenith angle, which depends on the time 

of the day and the location on earth. This dependence gives rise to constantly mov­

ing areas of rapid solution change coupled to sunset and sunrise. There also exists a 

dependence on the temperature and the pressure. This dependence is chosen in close 

accordance with the U.S. Standard Atmosphere (1976) [31]. In applications the num­

ber of species varies, between 20 and 100, say. In numerical illustrations presented 

later, we use three different sets of chemical reactions, all borrowed from the actual 

practice: 

• Chemistry model RIVM. The first set consists of 45 reactions between m = 17 

species and is used in actual long-term global studies, where it is referred to 

as methane chemistry. See the appendix of the preprint of [29]. 

• Chemistry model CBM-IV. The second set is based on the carbon bond mech­

anism IV consisting of m = 32 chemical species involved in 70 thermal and 

11 photolytic reactions. We also used this model in [17], but with a different 

solar zenith angle. To stress the numerical method, we have prescribed high 

emission values (the urban scenario from [17]). 
• Chemistry model WET. The third set contains m = 65 species involved in 

77 thermal and 11 photolytic gas-phase chemical reactions, 39 liquid-phase 

chemical reactions, and 39 gas-liquid mass transfer reactions. The gas-phase 

mechanism is based on the carbon bond mechanism IV, while the liquid-phase 

mechanism is based on a chemical scheme from [14]. We also used this model 

in [17], again with a different solar zenith angle, and we emphasize that it is 

the most difficult one from the three mentioned here due to the heterogeneous 

reactions. 

2.3. Spatial discretization. Model (2.1) is discretized on a 3D Eulerian grid 

spanning the entire globe. The longitude-latitude grid is uniform, except near the 

poles, where the grid is reduced (coarsened) in the longitude direction to alleviate the 

CFL restriction for explicit advection schemes caused by the pole singularity. The 

spatial advection scheme is based on a mass-conservative, cell-centered, flux-limited, 

third-order upwind discretization. Flux limiting is used for positivity. See [9] and [21] 

for details. 

The spatial vertical diffusion scheme is based on cell-centered three-point finite 

differences. The vertical grid is nonuniform. The prototype model has 15 layers. The 
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distribution of the cell vertical centers is a function of the pressure which is taken 

uniform over the globe. The lowest cell boundary lies at sea level (1000 hPa) and the 

highest at 38.2 km (0 hPa). The complete distribution of the cell centers reads 0.3, 

1.0, 2.2, 4.3, 6.5, 8.4, 10.0, 11.3, 13.0, 15.2, 17.6, 19.8, 22.5, 27.6, 34. 7 km. 

In [21] three different reduced longitude-latitude grids were used. Without grid 

reduction their dimensions are 64 x 32, 128 x 64, and 256 x 128, respectively. With 

grid reduction this leads to 1656, 6264, and 26104 horizontal grid points, so that com­

bined with the vertical grid totals of 24840, 93960, and 391560 grid points were used. 

Recall that for any grid point and any of the m species, a nonlinear ODE must be 

integrated in time, revealing the enormous computational scale of atmospheric dis­

persion modeling and the necessity of developing highly efficient, tailored algorithms. 

See also the recent monograph of Zlatev [32]. 

3. Solving box-models. In atmospheric dispersion modeling one frequently 

applies operator splitting and employs stiff ODE solvers to integrate resulting box­

models. In this section we therefore first consider the box-model 

(3.1) c = f(c) 

contained in (2.1). We will outline our specific choice of Rosenbrock method, discuss 

the basic properties which render this method suitable and highly competitive as an 

atmospheric box-model integrator, and provide numerical results to illustrate this. 

3.1. The ROS2 integration formula. Our starting point is a family of non­

autonomous two-stage Rosenbrock methods discussed on page 233 in [5]: 

(3.2) Cn+i = Cn + rb1k1 + rb2k2, 

ki = f(tn,Cn)+ryAk1, 

k2 = J(tn + 0:21T, Cn + T0:21k1) + 71'21A ki + 71'A k2, 

where Cn ~ c(t) at t = tn, T = tn+l - tn is the step size, and A is the Jacobian matrix 

f' (tn, en) or an approximation thereof. The method is second-order consistent for any 

A iff 

with 1' and b2 -:/=- 0 still free. We will use the autonomous form, and in this section 

we assume that A = f'(cn), which ensures conservation of mass. The parameter 1' 

appears in the stability function 

(3.3) ( ) 1 + ( 1 - 21') z + ( ~ - 21' + 1'2) z2 

Rz=-------=------
(1 -1'z)2 

This function is A-stable iff 1' :;::: 1/4. Since atmospheric chemistry models contain 

radicals with a very short life span we want L-stability, that is, R( oo) = 0. This is 

achieved by 1' = 1±1/-/2. Further, we select b2 = ~· Avoiding the matrix-vector 

multiplication in the second stage computation, and at the same time redefining k2 

by k2 - 2ki, we then rewrite the resulting autonomous ROS2 scheme in the form 

(3.4) Cn+1 = Cn + ~Tk1 + ~Tk2, 
(I -1'TA) ki = f(cn), 

(I -1'TA) k2 = f(cn + rk1) - 2k1. 
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Observe that the intermediate approximation Cn + Tk1 is first-order consistent at 

t = tn+l and hence can be used to provide a cheap local error estimation for step size 

control. In the present investigation we will not exploit this possibility since we focus 

on using a priori described step sizes as mentioned in the introduction. 

3.2. Stability and positivity. For 'Y we select the larger value 'Y+ = 1 + l/J2 

in spite of the fact that this gives a larger error coefficient in the leading local trunca­

tion error. Numerical tests have revealed that this yields a notably better nonlinear 

stability behavior for large step sizes. A balanced explanation fails, but we conjecture 

that the following linear property plays a role. If 'Y = 'Y+, then R(z) is positive for all 

real negative z, whereas this is not true for the smaller value 'Y- = 1-1 / J2. Positivity 

of R presumably has some advantage for nonlinear chemical kinetic systems 

where Pk(c) contains all production terms for the kth species and Lk(c)ck represents 

the losses for this species. Suppose that for a certain species, Pk and Lk are truly 

constant. Then, 

R(z) - 1 
Ckn+1=R(z)ckn+ TPk, z=-TLk:::;o. , , z 

If R(z) < 0, then Ck,n+l might become negative. On the other hand, if 0:::; R(z):::; 1, 

then ck,n+l ::::: 0 is guaranteed. This obviously proves nothing for truly nonlinear 

systems. However, in the atmosphere the so-called radicals react very fast and are 

always near to their steady state value Pk(c)/Lk(c). If the dependence of Pk,Lk on 

c is very weak, the above linear reasoning can come close to what happens in the 

Rosenbrock computation. Even a very small negative solution value can cause sign 

problems, because radicals occur in a multiplication with very large positive reaction 

constants. Another advantage of 'Y+ is that the internal stability function 

(3.5) () l+(l-1)z 
R1 z = -----

1 - "fZ 

associated with the first-stage approximation Cn + Tk1 also satisfies 0 < R1 (z) < 1 for 

all real negative z, something which does not hold for 'Y-. This property of internal 

stability has already been shown to be of practical interest for nonlinear stiff ODE 

problems in [26]. 

Of further interest is that 'Y+ is also to be preferred when solving the nonlinear 

scalar model problem 

(3.6) 

whose solution 

c(O) 
c(t) = 1 - ,\c(O)t 

remains positive if c(O) is positive. This simple model nicely reveals the danger of a 

negative solution value, since the scalar Jacobian 2,\c is positive if c is negative. In 

this situation the problem can thus become severely unstable and its solution may 

not even exist. 
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TABLE 1 

Sparsity data for the three sets of chemical reactions. 

Chemical reaction set WET CBM-IV RIVM 

Number of entries in F' 652 322 172 

Number of nonzeros in F' 506 276 100 
Number of nonzeros after sparse LU 629 300 107 

Denote z =TA. The approximations Cn + rk1 and Cn+1 then read 

and 

It easily follows that both are unconditionally positive for 'Y = "f+, whereas both can 

become negative if 'Y = 'Y-. For the intermediate approximation Cn + Tk1, the term 

(1 - 2'Y)zc~ in the numerator fails to be unconditionally positive and for Cn+i this is 

the case for the term ( ~ - 2'Y + 8"(2 - 8"(3 ) z3 c'fi. 

3.3. Clipping. For real photochemical systems positivity cannot be guaranteed. 

Because it is essential for stability, in the application of ROS2 positivity is enforced 

at both the stages by clipping. This means that when a component of Cn + rk1 

or Cn+l is negative, it is set equal to zero. Clipping interferes with the property 
of mass conservation. However, in our experiments we have not observed a notable 

loss in accuracy, presumably because in an actual integration ROS2 is clipping only 

occasionally if 'Y = 'Y+· In section 3.5 we will provide numerical evidence for this 

observation. Lest we miss the obvious, enforcing positivity by clipping does not 

guarantee stability. 

3.4. Workload and sparsity. Each time step with ROS2 requires an evalua­

tion of the Jacobian A= f'(cn), two linear system solutions accompanied with two 

derivative evaluations. The Jacobian update and the solution of the linear systems, 

requiring one matrix factorization (LU-decomposition) and two backsolves (forward­

backward substitutions), account for most of the CPU time. Fortunately, for large 

atmospheric chemistry models the number of zeros in the Jacobian is substantial. For 

very large models it readily amounts to ~ 903. This high level of sparsity can be 

exploited to significantly reduce the costs of these linear algebra calculations. For this 

purpose we use the symbolic preprocessor KPP [4, 16] in the same way as in [17]. 

KPP takes as input a set of chemical reactions and delivers the production and loss 

terms defining the ODE system c = f(c). Most important is that it also prepares a 

sparse matrix factorization with only a minimal fill-in and that it delivers a routine 
for the backsolve without indirect addressing. All together this means that the nu­

merical algebra can be handled very efficiently, leading to a substantial reduction of 

the workload for large chemical kinetic models. Table 1 shows sparsity data for the 
three models WET, CBM-IV, and RIVM. 

3.5. Numerical illustrations. Numerical results will be shown for three box­

models based on the reaction sets RIVM, CBM-IV, and WET. Starting from an 

arbitrary initial state far from chemical equilibrium, in all tests we simulate that we 
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605 

FIG. 1. The trajectory used in the box-model tests and one-dimensional tests. 

follow an air parcel from its release point east of Africa for 14 days along the trajec­

tory shown in Figure 1, picking up emissions along the way. After 14 days the air 

parcel returns at its release point. Because to a great extent the initial conditions 

are chosen arbitrarily, the first day is used as start-up time (integration over the first 

day is carried out nearly exactly using a very small step size). It should be noted 

that the trajectory passes the North Pole at day 7, in the neighborhood of which the 

photochemical reactions are weaker than elsewhere. This effect leads to a disturbance 

in the diurnal behavior which can be observed in the species solutions. Hourly frozen 

reaction coefficients were used with an update halfway between each hour interval. 

This renders the ODE systems autonomous and implies that the pressure, temper­

ature, and solar angle are taken piecewise constant rather than time-continuous. In 

actual practice one normally operates this way, one reason being that many of the 

coefficients are expensive to compute. 

We first present results of a stability test, comparing ROS2 for 'Y = I'+ and 

'Y = 'Y-· We have also included the related Rosenbrock method RODAS3 proposed 

in [17] in this test. RODAS3 is based on a stiffly accurate, embedded pair of order 

3(2). It has four stages and uses three function evaluations. In our stability test we 

have used only the third-order formula, which is given by 

(3.7) Cn+l = Cn + ~rk1 - irk2 - irk3 + ~Tk4, 
(I - ~r A) k1 = f (en), 

(I - ~rA)k2 = f(cn) +Ak1, 

(I - ~r A) k3 = f(cn + rk1) - tAk1 - tAk2, 

(I - ~rA) k4 = f(Cn + ~Tk1 - tTk2 + ~rk3) + 1 ~Ak1 + {2Ak2 - ~Ak3. 

In actual integrations we have experienced that this third-order, four-stage method is 

less stable than ROS2 when using fixed, large step sizes. As for ROS2 using/'= 'Y-, 
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we conjecture that lack of positivity of its stability function 

1- z + lz3 

R(z) = (1- ~z)4 

plays a role here. Further, from its three internal stability functions 

1 + lz 1 - lz - lz2 

R1(z) = 1, R2(z) = 1 _ ~z' R3(z) = (l ~ ~z) 4 3 , 

both R2 and R3 fail to be positive. As already mentioned in the introduction, this 

seems an important difference between RODAS3 and ROS2 using'"'(= '"'f+, the latter 

possessing both a positive stability function and a positive internal stability function 

along the negative real line. 

Table 2 shows maximal step sizes for which integrations were found stable. The 

integrations cover 13 days and start at day 2 from the chemical equilibrium as outlined 

above. The table gives clear evidence of the superior stability of ROS2 for the larger 

'"Y· Starting from the arbitrary initial states of day 1 far away from the chemical 

equilibrium shows even greater differences. See the italic numbers in Table 2. The 

table also reveals that the result of clipping may lead to a smaller step size rather 

than to a larger one, as happens for ROS2(1+) applied to RIVM. However, in all 

other cases clipping indeed does allow larger step sizes. Of further interest is that, 

with respect to stability, RODAS3 performs notably better than ROS2h-) but worse 

than ROS2('"Y+)· However, the difference between the latter two is much less. We 

believe that RODAS3 owes this to its higher order of consistency, which results in 

more accuracy. More accuracy will eventually lead to positive solutions and hence to 

a more stable process. 

For this specific test an integration has been called i:;table if during the whole in­

tegration period a certain relative error remains below 10. The precise error definition 

is not so important, nor is the threshold 10. We used the error expression 

1 m 

-'LERk, 
m k=l 

where 

and 

10-4 N 

:h = {O:::;; n:::;; N: ck(tn) 2 ak}, ak = NL Ck(ti)· 
i=l 

The solution values ck(tn) represent accurate reference solutions at every full hour 

value tn, computed in high precision with the third-order code RODAS3. Recall that 

m equals the number of species. For the kth species, ERk is a temporal error for which 

the set .:h has been introduced to remove very small solution values in the relative 

measurement. This means that ak acts as a threshold which serves to eliminate very 

small values in the relative error measurement. The integer N equals here 14 * 24, 

being the number of output times taken into consideration. 
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TABLE 2 

Box-model stability test. The numbers are step sizes in seconds with and without clipping. Italic 

nmnbers belong to the start point outside chemical equilibrium. 

Method WET CBM-IV RIVM 

ROS2 b+) 3600 - 3600 3600 - 1800 1200 - 1800 

3600 - 1800 3600 - 150 1200 - 1800 

ROS2 b-) 150 - 90 212 - 156 400 - 200 

< 5 - < 5 133 - 36 400 - 133 

RODAS3 1800 - 400 1800 - 514 1200 - 900 

1800 - <5 1800 - 133 1200 - 900 

We proceed with presenting results obtained for the actual box-model integrations 

by ROS2 and TWOSTEP. The latter is a two-step BDF solver using nonlinear Gauss­

Seidel iteration instead of modified Newton for the nonlinear BDF relations [27]. 

The use of Gauss-Seidel iteration renders this solver effectively explicit and hence 

cheap. TWOSTEP is capable of solving gas-phase chemistry more efficiently than 

other dedicated explicit solvers, e.g., QSSA [11, 18]. But like all other explicit solvers it 

cannot handle heterogeneous reactions as in WET. Therefore, results for TWOSTEP 

only concern the models RIVM and CBM-IV (see also [17]). 

For the two species 0 3 and HN03 , Figures 2 and 3 show concentrations in 

mlc/cm3 versus time in hours for day 2 up to day 14. The figures contain a highly 

accurate reference solution and the two computed solutions using a fixed step size of 

10 min. and 20 min., respectively. Such fixed step sizes are very large for atmospheric 

chemistry integrations. Observe that in many applications advection step sizes are 

also in this range. 

The Rosenbrock method can be seen to perform very satisfactorily. With the 

smallest step size it computes 0 3 and HN03 for WET up to plotting accuracy. For T = 
20 min., a mild error growth occur:; for this model. Applied to CBM-IV and RIVM, 

the Rosenbrock method delivern excellent results for both step sizes. TWOSTEP also 

solves CBM-IV accurately with the smallest step size, but generates significant errors 

for T = 20 min. When applied to RIVM this explicit code clearly requires a smaller 

::;tep size than the Rosenbrock method. 

Noteworthy is that the accuracy for TWOSTEP can be improved by spending 

more Gauss Seidel iterations. Only a fixed number of 2 iterations has been used 

here, as in [17]. This makes it very cheap in CPU. The CPU time needed by ROS2 

for CBM-IV and RIVM is only about a factor 2 higher, revealing the efficiency of 

this linearly implicit solver. In part we owe this to the use of KPP and the sparsity. 

However, the main advantage of ROS2 over TWOSTEP and related dedicated explicit 

solvers is that it can deal with different kinds of reactions, including heterogeneous 

ones as in WET. 

4. ROS2 within Strang-type operator splitting. The Rosenbrock solver 

ROS2 is primarily meant for efficient use in standard, Strang-type operator splitting 

codes. In this section we will illustrate that the solver is capable of this task by 

showing results for the prototype model from section 2. Our findings obviously also 

apply to different models. Adopting the method of lines approach, let 

( 4.1) ?11 = F(w) = Fr(w) + Fn(w), Fr(w) = FA(w) + FD(w) 

denote the ODE system that originates from spatial discretization of the photochemi­

cal transport model. Hence w(t) stands for a grid function, and the vector function Fr 
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FIG. 2. Box-model test, T = 10 min. Concentrations of HN03 (left) and 03 (right) in 

mlc/cm3 versus time in hours for WET (top), GEM-IV (middle), and RIVM (bottom). Thick 

solid l·ines represent the reference solution, thin solid lines the R082 solution, and dotted lines the 

TWOSTEP solution. TWOSTEP has not been applied to WET. 

is supposed to contain the sernidiscrete transport contributions from ad vection and 

diffusion, represented here by FA and FD, respectively. Likewise, FR sterns from the 

chemical reactions, emissions, and depositions. For any grid point the terms in FR are 

simply the box-model expressions contained in f. We will discuss two second-order 

Strang-splittiugs, one treating vertical diffusion explicitly and one with an implicit 

vertical diffusion part. 

4.1. Vertical diffusion explicit. For system ( 4.1) second-order Strang-splitting 

can be organized in many ways. We consider the combination 
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FIG. 3. Box-model test, T = 20 min. Concentrations of HN03 {left) and 03 (right) 'in 

mlc/cm3 versus time in hours for WET (top), CBM-IV (middle), and RIVM {bottom). Thick 

solid lines represent the reference solution, thin solid line the ROS'2 solution, and dotted lines the 

TWOSTEP solution. TWOSTEP has not been applied to WET. 

(4.2) Wo = Wn, 

W1 = Wo + irFr(Wo) + irFT(Wo + ~TFT(Wo)), 
W2 = W1 + ~rk1 + ~rk2, 
W3 = W2 + irFT(W2) + irFT(W2 + ~rFr(W2)), 

Wn+l = W3, 

where k1 and k2 are given by 
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and A= F_R(W1). Hence the reaction part is treated with ROS2 and the transport 

part by the explicit trapezoidal rule. We note in passing that this rule derives from 

ROS2 by substitution of the zero matrix for A. By standard operator splitting we 

thus solve transport and chemistry in a sequential, symmetric manner such that the 

chemistry computation becomes completely decoupled from the transport. An advan­

tage of standard splitting is that it amounts to chemistry box-model computations 

over the space grid and that it is easy to implement and is memory efficient. A disad­

vantage is that the decoupling can result in stiff transients within any split step as the 

decoupled transport cnanges the solution values for the chemistry integration. These 

stiff transients are a numerical artifact and may complicate the chemistry integration. 

4.1.1. Stability. By using the explicit trapezoidal rule for the advective-diffusive 

transport, we tacitly assume that this does not lead to severe stability restrictions 

on the time step. In [9] and [21] stability of the explicit trapezoidal rule has been 

discussed for pure advection when using third-order upwind discretization with flux 

limiting. A CFL number of ~ was shown to lead to a stable and positive advection 

computation. For practical purposes this is quite satisfactory. When vertical diffusion 

is also included, the following is necessary: 

(4.3) 
4K 

T max (Ar) 2 ~ 1.0. 

For our model (2.1) this condition allows sufficiently large step sizes. For example, 

substitution of the values for K and Ar given in section 2 yields T ~ 7002 / ( 4 x 30) ~ 

4IOO seconds. In cases of much finer vertical meshes or much larger values for K, the 

explicit trapezoidal rule will no longer be efficient and must be replaced to obtain an 

implicit vertical diffusion computation. 

4.1.2. lD results. We first show numerical results for the one-dimensional (ID) 

diffusion-reaction system 

( 4.4) 8c 8 ( 8 (c)) 
8t = or pK 8r p + j(c), 

obtained from (2.I) for zero velocities. These results arc of interest in their own as 

they enable a comparison between the ID Strang-splitting scheme and ROS2 directly 

applied to the semidiscrete 1D problem w = F(w) = FD(w) + Fn(w) using the full 

Jacobian matrix. Needless to say, in 3D this is not feasible. 

The same three chemistry models are used as in the box-model tests, now sim­

ulating the evolution of an air column along the trajectory of Figure I. The initial 

values for c are chosen such that the mixing ratios c/ p are independent of r, while 

the initial values at ground level are the same as for the box-models. Step sizes are 

chosen in the same way as in the box-model tests, i.e., T = 10 min. and 7 = 20 min. 

during day 2 up to day 14. 

We found that for all three chemistry models the lD ROS2 scheme and the lD 

Strang-splitting scheme ( 4.2) are very close in accuracy. In fact, all computed solutions 

are in excellent agreement with the reference solution being the Hemidiscrete solution 

at ground level computed in high time step accuracy. Figure 4 shows the evolution 

of 03 and HN03 along the trajectory at ground level for the reference solution and 

the two numerical methods using 7 = 20 min. One can see that overall the agreement 

is almost up to plotting accuracy. This indicates that for the current ID problem 

Strang-splitting has no adverse effect on accuracy whatsoever for step sizes smaller 

than or equal to 20 min. 
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FIG. 4. lD test, r = 20 min., Kmax = 30 m2 /s. Ground level concentrations of HN03 (left) 

and 03 (right) in mlc/cm3 versus time in hours for WET (top), CBM-IV (middle), and RIVM 

(bottom). Thick solid lines are the reference solution, thin solid lines the Strang-splitting solution 

(4.2), and dashed lines the lD ROS2 solution. 

It is stressed that when there are a large number of species, the use of the full 

banded Jacobian in ROS2 is not advocated in real practice, as this involves a consid­

erable numerical algebra overhead (see also [28]). For WET, CBM-IV, and RIVM the 

Strang-splitting computation is less expensive in CPU time by factors of roughly 19, 

6, and 4, respectively. 

4.1.3. 3D results. In 3D the Strang-splitting method (4.2) has been applied 

only for the chemical reaction set RIVM. The test is similar to the one carried out 

in [21] on the coarsest reduced 64 x 32 horizontal space grid, yielding a total of 24840 
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grid cells in 3D. The same initial distribution was used. On this grid an accurate, 

semidiscrete reference solution has been determined to furnish the initial values for 

the actual integration starting at day 2, as well as to assess the accuracy at the final 

time at day 14. We again successfully used fixed step sizes of 10 and 20 min. These 

step sizes are allowed for the advection computation since on the chosen grid the 

critical step size for a stable advection computation is about 20 min. Note that in 

(4.2) the step size T is halved in the transport steps. 

The results clearly indicate that also in a 3D Strang-splitting code ROS2 is able 

to integrate the chemical kinetic equations with large step sizes. For an accuracy as­

sessment we refer to Figure 5. This figure shows ground level profiles of 03, H02 N02 , 

and HN03 , plotted along the horizontal SW-NE grid diagonal of Figure 1 at the final 

time at day 14. The integers below the horizontal axis refer to the location on the 

diagonal; O points to the SW corner and 128 to the NE corner. For each species two 

profiles were plotted, the computed one and the reference profile. Only for H02N02 

are the errors notable. 

4.2. Vertical diffusion implicit. It is of numerical interest to examine a test 

case which requires an implicit vertical diffusion computation. For this purpose we 

have artificially increased the diffusion coefficient K in the prototype model by a 

factor of 100 so that the maximum value has become 3000. The explicit trapezoidal 

rule is then no longer efficient for use in (4.2) and must be replaced. We have replaced 

it by a new scheme which also keeps the advective and diffusive transport coupled. 

The new transport scheme is derived from ROS2 and exploits the fact that this 

Rosenbrock method is second-order consistent for any choice of the Jacobian approx­

imation A. Specifically, we apply ROS2 to the transport problem w = Fr(w) ::: 

FA(w) + FD(w) and choose A= F[;(wn) to obtain 

(4.5) Wn+l = Wn + ~Tk1 + 1Tk2, 

(I - "(TFi:J(wn)) k1 = Fr(wn), 

(I - "(TFi:J(wn)) kz = Fr(wn + Tki) - 2k1. 

Hence a<lvection is still treated explicitly while, owing to the lD nature of F[;, the 

computation of the stage vectors k1, k2 now requires the solution of tridiagonal linear 

systems, one for each species and each horizontal grid point. With re8pect to CPU this 

scheme is therefore almost as cheap per step as the explicit trapezoidal rule. Replacing 

the explicit trapezoidal rule in (4.2) with (4.5) gives the second-order Strang-splitting 

scheme 

(4.6) Wo =wn, 

W1 - Wio + ~Tk(l) + 2Tk(l) 
- 4 1 4 2 ' 

W.2 - W + ~Tk( 2 ) + 2Tk(2 ) 
-121 22' 

V\f.3 = W.2 + ~Tk(a) + 2Tk(3 ) 
4 1 4 2 ' 

where W1 and Wa are computed by (4.5) and W 2 is obtained in the same way as in 
(4.2). 

4.2.1. Stability. Using an approximation for the Jacobian in the Rosenhrock 

method does of course affect the stability. Following the standard way of reasoning, 



A SECOND-ORDER ROSENBROCK METHOD 1471 

FIG. 5. 3D test, T = 10 min. (left), T = 20 min. (right), Kmax = 30 rn? /s. Ground level 

concentrations of HN03 (top), 03 (middle), and H02N02 (bottom) plotted in mlc/cm3 along the 

SW-NE diagonal for the final time at day 14. Thick solid lines are the reference solution and thin 

solid lines the Strang-splitting solution (4.2). 

for the advection-diffusion scheme (4.5) we examine the stability for the scalar, linear 

test model 

(4.7) w = AAW+ADW· 

Through an eigenvector-eigenvalue decomposition this scalar model is derived from 

the constant coefficient linear system 
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where JA,JD represent "frozen" Jacobians F~(wn),Ff;(wn)· Hence, AA represents a 

complex-valued eigenvalue of the advection Jacobian F~ (wn)· Likewise, Ao represents 

a real, nonpositive eigenvalue of the diffusion Jacobian Ff;(wn). The eigenvector­

eigenvalue decomposition is valid if the matrices share the same eigensystem, in which 

case it can also be carried through for the Rosenbrock approximations. Assuming 

spatial discretization on a uniform grid, this decomposition holds for problems with 

constant coefficients and periodic boundary conditions. 

Denote ZA = 'TAA and zo ='TAD. The stability function of (4.5) then is 

(1 + ZA + ~z~) + (1 - 21)(1 + ZA)ZLJ 

R(zA, zo) = (l )2 ' 
-1zv 

(4.8) 

which reduces to the stability function R(zA, 0) = 1 + ZA + ~ z~ of the explicit trape­

zoidal rule for zo = 0 and to (3.3) for ZA = 0. Because we assume that advection 

can be computed explicitly, we tacitly assume that zA = 0(1). As a consequence, 

R(zA, zo) ___, 0 for zv ___, -oo. Thus the damping at infinity property of the origi­

nal L-stable stability function (3.3) is maintained for the large and negative diffusion 

eigenvalues. 

LEMMA 1. IR(zA, zo) I S 1 whenever zo S 0 is real and I 1 + ZA + ~ z~ I S 1. 

Proof Denote 8 = (21' - l)h = ±/2. Using the notation z = /'ZD, o: = 

1 + ZA + !z~, and f3 = 8(1 + ZA), we can write 

a - /3z 
R(zA,ZD) = (1- z)2. 

Suppose z = -t S: 0. Then 

IR( )12 = lal 2 +1]i + l/3! 2t 2 

ZA,ZD (l+t)4 
T/ =ex(~+ c\fJ = 2 Re(n/9). 

So, if lad = 1, we have IR(zA, zo) I S 1 for all t 2: 0 iff 

ri + l/32 It s 4 + 6t + 4t2 + t3 for all t 2: n. 

Below it will be shown that lo:! = 1 implies 

(4.9) and 11112 s: 6, 

which proves the lemma. 

To verify the inequalities in ( 4.9), let ( = 1 + ZA. Then o = ~ ( 1 + ( 2 ), (3 = B(, 

and 

1'/ = B(l + 1(1 2 ) R.e (. 

We consider values of ZA such that lo:I = 1. Hence ll + (21 = 2, and it easily follows 

that 1/31 2 = 21(1 2 ::; 6. Further, any (satisfying ll + (2 1 = 2 can be parameterized as 

(=cosifJ+i~sinp, /'C= 1+2lsin1JI 1. 

By some calculations we thus arrive at ri = W( 1 + I sin </JI) c0s 1/; aud tlw maximum 

value for 1J is found to be ~./6. 0 

This lemma proves unconditional stability for all real, rwnpositive ZTJ as loug as 

the complex number ZA lies in the stability region of the explicit trapezoidal rule. 

Hence, for the linear model problem the critical step size for stability is equal to the 

critical step size for advection. The advection-diffusion :,;olvcr ( 4.5) is therefore of 

interest itself and can also prove useful in other applications. 
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4.2.2. lD results. We have repeated the lD test for problem (4.4) with the 100 

times larger diffusion coefficient K, again comparing the lD Strang-splitting scheme 

( 4.6) to the lD ROS2 scheme for T = 10, 20 min. Figure 6 shows the 0 3 and HN03 

profiles at ground level in the same manner as in the previous lD Figure 4. We see 

that for all three chemistry models the accuracy of the splitting scheme is still good 

but has become lower, especially for T = 20 min. This is due to the much larger 

value for K. The lD ROS2 scheme performs equally well and accurately for WET 

and RIVM. However, it has become unstable for the chemistry model CBM-IV. This 

happens for both step sizes. This instability is odd in view of the fact that splitting 

gives a fairly accurate, stable result. For the CBM-IV model the lD ROS2 plot has 

been omitted. 

4.2.3. 3D results. Figure 7 shows results of the 3D test using the 100 times 

larger diffusion coefficient K. The new Strang-splitting scheme ( 4.6) can be seen to 

solve the problem well for both step sizes of 10 and 20 min. (In Figure 7 results 

are also included for a different method that will be discussed in section 5.) We do 

encounter larger errors, however, compared with those of the previous 3D figure. The 

error is very large for H02N02, but for the most important species 0 3 it remains 

within acceptable bounds. 

It is emphasized that the larger errors are due to the splitting and that the 

transport and chemistry schemes themselves hardly contribute to the observed errors. 

In other words, replacing these two schemes by the exact solution operators for the 

transport problem 'W = Fr(w) and the chemistry problem w = FR(w), within the 

framework of Strang-splitting, will not annihilate the error. 

The splitting error has also been observed in related 3D tests carried out in [21], 

where a completely different chemical integrator based on TWOSTEP has been used. 

Because we artificially increased the expression for K from [31] by a factor of 100, 

we must admit that we are not sure whether this 3D test is really meaningful for 

the actual practice of computational air quality modeling. On the other hand, it 

is a sound numerical test which has confirmed the accuracy and robustness of the 

Rosenbrock method ROS2 as an efficient chemical integrator within Strang-splitting. 

5. ROS2 applied with approximate factorization. The main idea behind 

operator splitting is to avoid the complications of solving the huge systems of linear 

and nonlinear algebraic equations encountered when applying implicit or linearly im­

plicit time integration methods. Somehow related to splitting is the notion of approx­

imate factorization, where a form of splitting is performed at the numerical algebra 

level rather than at the operator level. See [1, 2, 3, 25] for examples of approximate 

factorization. By splitting at the numerical algebra level the operator splitting error 

is avoided. In this section we will therefore briefly examine whether for our 3D pho­

tochemical dispersion problem the Rosenbrock method ROS2 applied with a certain 

approximate factorization can offer a viable alternative to Strang-splitting for prob­

lems with large vertical diffusion. The same approximate factorization approach for 

the same Rosenbrock method has been proposed independently in [19]. In this thesis 

no actual results are presented. 

As before we consider the ODE system 

w = F(w) = FA(w) + Fv(w) + FR(w) 

for which ROS2 reads 

(5.1) 
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FIG. 6. lD test, T = 20 min., Kma1: = 3000 m2 /s. Ground levd 1:rJnc1"T1.trr1.tion.o of HN03 

(left) and 03 (right) in mlc/cm3 ver·sus time in ho·urs for WET (top), CIJM-JV (m:iddle), and 

RIVM (bottom). Thick solid lines are the reference sol1.ttfon, thin solid hnr:s /.he Strang-splitting 

solution ( 4.6), and dashed lines the lD ROS2 solution. 

(I - 1rA) k1 = F(wn), 

(I - IT A) k2 = F(wn + rk1) - 2k:1. 

Approximate factorization is applied by defining A such that. I -- {TA is factorized 

into 

(5.2) 

The computation of the two stage vectors k1, k2 then amounts to a normal F-evaluation 

and two sequential linear system solutions, one for the verti('al diffusion and one for 
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FIG. 7. 3D test, T = 10 m:in. (left), T = 20 min. (right}, Kmax = 3000 m 2 /s. Ground level 

concentrations of HN03 (top), O:i (middle), and H02N02 (bottom) plotted in mlc/crn3 along the 

SW-NE d·iagonal for the final time at day 14. Thick solid lines are the reference solut'ion, thin .rnl·id 

line8 the 8tmng-8phtt·ing solution (4.fi), and dashed hnes the factorized R082 solatfon (5.1) (5.2). 

the chemistry. Owing to the box-model structure of F~ and the tridiagonal struc­

ture of Fb (observe the resemblance with (4.5)), these linear systems solutions can 

be carried out efficiently. The normal F-evaluation avoids the decoupling of operator 

splitting, and the two linear system solutions are introduced for stability reasons. The 

order in the factorization is important. If we reverse the order, i.e., first solve for the 

chemistry, the numerical performance will decrease. 

5.1. Stability. Similar to (4.5), a separate stability investigation of (5.1) is re­

quired. For that purporie we again consider the standard scalar test model, now in 

the form 
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FIG. 8. On the left is the zwstability boundary for the factorized stability fimction (5.4). On 

the right is the magnified subregion near the origin. 

(5.3) 

Denote ZA = r AA, etc. and z = ZA + ZD + ZR· The stability function of the factorized 

ROS2 scheme can then be written as 

(5.4) 

1 2 2z 2 z - z 
R(zA,ZD,ZR) = 1 + (l ) (l ) + (l )2 (l )2 · 

- /ZD - ''(ZR - /ZD - /ZR 

Observe that due to the factorization there is no longer damping at infinity. For 

zv = ZR = O the stability function of the explicit trapezoidal rule is recovered. 

We are interested in stability whenever ZD < 0 is real and the explicit trapezoidal 

rule stability function satisfies ll+zA +~z~I ::::; 1. This leads to a stability region for ZR 

which we have determined numerically; see Figure 8. The figure reveab A( a)-stability 

for ZR· Recall that a method is said to be A( a)-stable if the Hector 

{z: I 7r - arg(z) I <a, Re(z) < O} 

lies in the stability region. A careful inspection near the origin revealed that the 

angle a is very close to 39°. This angle probably is sufficiently large since eigenvalues 

with a large imaginary part do not seem to occur in atmm;pheric chemistry models. 

With a weaker condition on ZA a larger angle will be found. In conclusion, with 

respect to stability for the linear model problem, the critical step size is equal to that 

of the explicit trapezoidal rule for the advection computation. This means that with 

respect to model problem stability, the factorized ROS2 scheme has the same stability 

characteristics as the two previous Strang-splitting schemes. 

5.2. 3D results. We have compared the factorized ROS2 scheme (5.1) (5.2) to 

the Strang-splitting scheme (4.6) by repeating the 3D prototype model test with the 

100 times larger diffusion coefficient K. Results are shown in Figure 7 in the same 

way as for the Strang-splitting scheme. As we anticipated, the huge error in H02N02 

is now absent. On the other hand, for 03 the errors are cornparabk and for HNO:i the 

Strang-splitting solution is even slightly more accurate. Hence the factorized ROS2 

scheme offers an improvement, but less than expected. In this respect it is emphasized 

that factorization as in (5.2) also introduces errors, as splitting does. By factorization 
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we do use an approximation to the true Jacobian matrix F'(wn)- Approximating 

F'(wn) in a Rosenbrock method leads to terms in the local truncation error different 

from the elementary differentials. The contribution of such new terms to the local 

truncation error is hard to predict, but it is most likely that they will increase the local 

error. With regard to CPU time the two schemes are comparable, but Strang-splitting 

is somewhat more convenient for economical memory use. 

6. Source-splitting. During our investigations we have examined another alter­

native to Strang-splitting, which we call source-splitting. Source-splitting is advocated 

in [12, 13, 22, 24]. The underlying idea is to treat the transport term as a constant 

source within the chemistry integration, so that a change of the solution values as 

happens in Strang-splitting is avoided. Similar to Strang-splitting, the idea can be 

implemented in different ways. Adopting it for ROS2 as chemistry scheme and the 

explicit trapezoidal rule as transport scheme for the system w = Fr(w) +FR(w) yields 

(6.1) 3 1 
Wn+l = Wn + 2Tk1 + 2Tk2, 

(I - "fT A) k1 = FR(wn) +Fr, 
(I - "fTA) k2 = FR(Wn + Tk1) +Fr - 2k1, 

where A= FR_(wn) and the source term Fr is defined by 

(6.2) 

This scheme shares the implementational advantages of the related splitting scheme 

( 4.2), but it is only of first order. 

Treating transport as a source term requires a separate stability investigation. 

The stability function for the test model 'W = >-rw + ARW reads 

(6.3) ( ) _ (1 + zr + ~zf) + (1 - 2"f)ZR + ~(1- 4-y)zR(zr + ~zf) 
R zr, ZR - (l )2 . 

- ''(ZR 

We have found that with respect to stability the method is less stable than (4.2). 

Below we prove that IR(zT, ZR)I :<:'. 1 whenever ZR :<:'. 0 is real and ll + ZT + ~zf I:<:'. 1, 
but that no positive angle a exists for which this stability function is A( a)-stable with 

respect to z R uniformly for zr in the stability region of the explicit trapezoidal rule. 

In other words, unlike the Strang-splitting method (4.2), the source-splitting method 

does not simultaneously maintain the stability provided by the explicit trapezoidal 

rule for advection-diffusion and the L-stability of ROS2 for the chemistry. 

LEMMA 2. IR(zT, ZR)I :<:'. 1 whenever ZR::; 0 is real and ll + ZT + ~z~I::::; l. 

Proof Put 1 + zr + ~z} = ei<P. Then 

(6.4) 

Suppose ZR = -t, t;::::: 0 and write a= 1 - ~(1- 4-y)t. Then 



1478 J. G. VERWER, E. J. SPEE, J. G. BLOM, AND W. HUNDSDORFER 

A straightforward calculation now shows that IR(zr, ZR)I ~ 1 for all t 2 0 and all</>. 

The result of the lemma then follows from the maximum modulus theorem. D 

LEMMA 3. No positive angle n: exists for which the source-splitting stability func­

tion (6.3) is A(a}-stable with respect to ZR uniformly for zr in the stability region of 

the explicit trapezoidal rule. 

Proof. Letting ZR sufficiently small in (6.4) yields 

R(zR, zr) = ei<f> + ~zR(l + eic/J) + O(z~). 

Substitution of ZR = a + ib with a ~ 0 and ei</> = cos c/> + i sin c/> yields 

IR(zR, ZT)l 2 = 1 + a(l +cos</>)+ bsinc/> + ~(a 2 + b2 ) (1 +cos</>)+ O(z~). 

Hence, in first approximation we can write 

IR(zR, zr }1 2 = 1 + a(l +cos</>)+ b sin c/>. 

Choose <fa = 7r + e with E > 0 and also arbitrarily small. Then, again in first approxi­

mation, 

IR(zR, zr )1 2 = 1 - be+ ~ae 2 + O(e3 ). 

We see that 1- bE + ~ae 2 > 1 if b < ~ae. Hence for any sufficiently small real part a, 

an arbitrarily small imaginary part b exists such that IR(zR,zr)I > l, showing that 

no positive angle n: exists defining A( n: )-stability. D 
Numerical experiments with method (6.1)-(6.2) applied to the 3D prototype 

model using Kmax = 30 revealed instability. In a similar vein we have studied a 

source-splitting counterpart of the Strang-splitting method ( 4.6). For this alternative 

source-splitting method, using the implicit-explicit transport solver ( 4.5) instead of 

the explicit trapezoidal rule, essentially the same restrictive linear stability results do 

hold as for (6.1)-(6.2). Surprisingly, applied to the 3D problem with the 100 times 

larger vertical diffusion coefficient, the alternative method based on (4.5) was stable 

and in fact equally accurate as the approximate factorization ROS2 method (5.1)­
(5.2). As yet our findings on source-splitting are therefore inconclusive. Apparently, 

the precise meaning of the lack of A( a)-stability for ZR must be reconsidered, as well 

as the use of the implicit-explicit transport solver ( 4.5) versus the explicit trapezoidal 

rule. 

7. Main conclusion. Until now Strang-type operator splitting seemed the meth­

od of choice for time stepping in global air quality modeling in spite of the occurrence 

of splitting errors. We have found it reliable and it provides flexibility, both for model 

and code development. Within splitting, one of the most time-consuming computa­

tions is the stiff chemistry integration. Due to artificial transients introduced at the 

beginning of split intervals, a highly stable solver is required. This solver should be 

able to use large time steps in the order of minutes, being far greater than the smallest 

time constants, which are in the order of milliseconds and even smaller. In addition, 

for convenient code design on vector/parallel and massively parallel computers, this 

solver should be able to cope with such large step sizes equally distributed over the 

whole space grid, or large parts thereof, under widely inhomogeneous spatial and tem­

poral conditions. For three different sets of chemical reactions we have demonstrated 

that the sparse Rosenbrock solver ROS2 is an excellent candidate. An open question 

still is how ROS2 will perform under even more difficult real atmospheric and mete­

orological conditions. Likewise, it is of interest to examine the role of the splitting 
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error under such conditions. Finally, ROS2 can of course also prove useful for use in 

related reactive-flow computations where Strang-splitting is used. 
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