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Abstract. The problem of segmentation of a given image using the active contour technique
is considered. An abstract calculus to find appropriate speed functions for active contour models
in image segmentation or related problems based on variational principles is presented. The speed
method from shape sensitivity analysis is used to derive speed functions which correspond to gradient
or Newton-type directions for the underlying optimization problem. The Newton-type speed function
is found by solving an elliptic problem on the current active contour in every time step. Numerical
experiments comparing the classical gradient method with Newton’s method are presented.
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1. Introduction. Identifying curve-like objects in images is one of the funda-
mental tasks in image analysis. In image segmentation we are interested in finding
boundary curves for regions with approximately constant color or gray values. These
curves usually represent boundaries of objects in the image. Image segmentation is
therefore often the starting point for the treatment of other, more involved problems
in image analysis such as automatic object recognition or image registration.

In recent years, image segmentation has been greatly influenced by two differ-
ent ideas. On the one hand, global energy principles which should be satisfied for
the optimal contour have been introduced and successfully applied. On the other
hand, deformable (active) contours, which are represented as zero level sets of a time-
dependent function u : R

2 × [0, T ] → R, have been used to describe the geometric
variable. Kass, Witkin, and Terzopoulos [22] introduced parametrized curves (now
referred to as classical snakes) which evolve in such a way that the sum of an internal
energy, comprising an elasticity and a rigidity term, and an external energy, indicat-
ing the presence of edges in the image, is minimized. Caselles, et al. [6] introduced a
geometrically intrinsic (parametrization-independent) formulation of active contours,
treating the propagating curve as the zero level set of a function u : R

2 × [0, T ] → R.
The propagation of the level set function u is driven by an appropriate speed function
F : R

2 → R, which occurs in the level set equation

ut + F |∇u| = 0 on R
2.(1.1)

The speed function F proposed in [6] is given by

F = g
(

div

(

∇u

|∇u|

)

+ ν
)

,(1.2)
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A SECOND ORDER LEVEL SET APPROACH 443

where g : R
2 → R is an edge detector and ν is a constant. The edge detector is

chosen in such a way that g = 0 at ideal edges of the image and g > 0 otherwise.
The construction of the speed function F is such that the active contour propagates
according to a curve-shortening mean curvature flow (see, e.g., [19]) with an additional
constant deflation velocity ν. The motion of the curve is stopped at points which are
located on (strong enough) edges where g ∼ 0. Thus, g functions as a stopping
criterion.

Several authors (see, e.g., [8, 26, 27, 37, 30]) have observed that a similar speed
function, given by

F = div

(

g
∇u

|∇u|

)

= g div

(

∇u

|∇u|

)

+
1

|∇u|
〈∇g,∇u〉,(1.3)

can be interpreted as the gradient direction for the cost functional

J(Γ) =

∫

Γ

g dS(1.4)

with respect to the contour Γ, where S denotes the arclength measure on Γ. The
flow in the negative gradient direction with respect to the cost functional (1.4) can
therefore be considered as a geodesic flow with respect to the Riemannian metric
g : R

2 → R. Thus, the intrinsic curve propagation (1.1) with speed function (1.3)
can also be derived from variational principles. In fact, it can be proved (see [8, 4])
that minimizing the classical snake model and the geodesic model (1.4) are (in some
sense) equivalent.

It has turned out to be useful to add a domain integral term to the cost functional
(1.4) to speed up the propagation. A corresponding cost functional has the form

J(Γ) =

∫

Γ

g dS + ν

∫

Ω

g dx.(1.5)

Many variants of the speed functions (1.2) and (1.3) or their corresponding vari-
ational principle have been considered in the literature, including affine invariant
geodesic flow [30, 29], generalizations to three-dimensional situations [25, 9], region-
based active contours [31, 20, 21], segmentation of moving objects [7], and active
contour models based on the Mumford–Shah functional [13, 11, 12, 10]. We also re-
fer to the recent monographs [5, 32], which treat the image segmentation problem
extensively and provide numerous references to further literature on the subject.

Usually, in the image processing literature, parametrized contours and methods
from classical calculus of variations (see [8, 37, 4]) are used to derive the Euler–
Lagrange equation for a cost functional of type (1.4), even if the propagation of the
contour is treated in the intrinsic level set formulation. We propose (and advertise)
the use of an alternative technique with which we can calculate sensitivities with
respect to geometric variables on a purely intrinsic basis. We shall use the speed
method, which is commonly applied for the sensitivity analysis of shape optimization
problems but, as it seems, is not very well known in the image processing community.
The speed method has several advantages over the use of parametrized curves (or
surfaces). It is intrinsic, i.e., independent of the chosen parametrization, it can treat
the case where the current contour consists of several disjoint closed curves in a unified
way, and it has (via the Hadamard–Zolésio structure theorem [15, sect. 3.3, p. 348])
a very natural link to the level set formulation of curve propagation. We also stress
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444 MICHAEL HINTERMÜLLER AND WOLFGANG RING

the fact that the Euler–Lagrange equations for many of the cost functionals discussed
in the references, which we listed in the previous paragraph, can be easily derived
using the speed method. Application of Lemmas 1 and 3 will do the job for most
cases. Most of the results related to shape sensitivity calculus (with the exception of
the usage of the shape derivative of the signed distance function) can be found in the
book by SokoElowski and Zolésio [36] and in the new book by Delfour and Zolésio [15].
The advantage of utilizing shape sensitivity analysis in combination with the level set
method as motivated above was previously observed in [24] in the context of inverse
problems.

We also want to stress the nature of the segmentation problem as a (nonlinear)
optimization problem. It is our goal to find the optimal contour in the least possible
number of time steps and to achieve maximal descent in each individual step. This
objective is quite different from aiming for a smooth propagation of a contour, which
is often the focus of attention for level set–based propagating interface problems. For
this reason, we propose applying and adapting ideas from nonlinear programming to
active contour propagation. In the following we shall employ line search methods and
preconditioning of the gradient direction. To realize the latter idea, we calculate a
Newton-type speed function for the level set formulation of the variational problem
(1.4). It turns out that the calculation of the Newton-type speed function involves
the solution of an elliptic equation on the active contour Γ. That is, we have to track
the zero level set at every step of the propagation, and we have to assemble appro-
priate (geometry-dependent) stiffness and mass matrices. This implementational and
computational effort is repaid by a significant reduction of the number of iterations.

The structure of the paper is the following. In section 2, we recall basic facts
and formulas from shape sensitivity analysis. Section 3 deals with the calculation
of certain useful identities concerning the shape derivative of the signed distance
function of a smooth open domain. These identities will prove to be very helpful
in section 5. In section 4, we explain how the gradient of a shape functional of
the form (1.4) can be interpreted as a normal vector field to the boundary of the
current shape via the Hadamard–Zolésio structure theorem and how a connection
to the level set formulation can be drawn. In this section, we also introduce the
concept of second order (Newton-type) preconditioning of the shape gradient. Section
5 deals with the calculation of the Newton direction for a shape functional of type
(1.4). In this context it turns out that, if we restrict our consideration to a certain
class of possible speed functions, we get a symmetric shape Hessian, which depends
only on intrinsic properties of the current contour. Moreover, this restricted class of
speed functions has desirable properties for the stable propagation of the level set
function according to the level set equation (1.1). In section 6, we derive the elliptic
equation on the actual contour which defines the Newton-type speed function. This
equation involves the Laplace–Beltrami operator. The Newton-type algorithm and
its numerical realization are the subject of section 7. Also, a numerical technique for
relaxing the CFL-condition for the time step size in the level set equation is considered.
Finally, in section 8, a report on numerical test runs of the new algorithm and a
comparison with the method based on the negative gradient as the speed function are
given.

2. Shape sensitivity analysis via the speed method. We briefly recall the
speed method from shape optimization, which can be used to calculate sensitivities of
a functional with respect to a geometric variable such as a domain or the boundary
of an open domain. Our main references for this section are the books [15, 36]. This
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A SECOND ORDER LEVEL SET APPROACH 445

section also contains basic facts from tangential calculus on smooth boundaries of
open sets.

In image analysis, sensitivities with respect to geometric objects such as contours
are usually calculated using parametrized curves and techniques from classical calculus
of variations as, e.g., in [8, 37]. We now present a technique for sensitivity analysis
which works on boundaries of open sets instead of parametrized curves.

Let Γ = ∂Ω be the boundary of an open set Ω ⊂ R
2. We call such a boundary Γ

a contour in R
2. Suppose V : R

2 → R
2 is a given smooth vector field with compact

support in R
2. We consider the initial value problem

{

X′(t) = V
(

X(t)
)

,

X(0) = x,
(2.1)

with x ∈ R
2 given. The flow (or time-t map) with respect to V is defined as the

mapping Tt : R
2 → R

2, with

Tt(x) = X(t),(2.2)

where X(t) is the solution to (2.1) at time t. If Γ is a contour, we define

Γt = {Tt(x) : x ∈ Γ} = Tt(Γ).(2.3)

In an analogous way, we define Ωt = Tt(Ω) for an arbitrary open set Ω. Note that, if
V ∈ Ck

0 (R
2,R2), then Tt ∈ Ck(R2,R2); thus, smoothness properties of Γ are inherited

by Γt, provided that the vector field V is smooth enough.
Suppose we are given a functional J : G → R, where G is an appropriate set of

contours. We define the Eulerian derivative of J at a contour Γ in the direction of a
perturbation vector field V by

dJ(Γ;V ) = lim
t↓0

1

t

(

J(Γt)− J(Γ)
)

.(2.4)

Let B be a Banach space of perturbation vector fields. We say that the functional
J is shape differentiable at Γ in B if dJ(Γ;V ) exists for all V ∈ B and the mapping
V �→ dJ(Γ;V ) is linear and continuous on B. We use the analogous definition for
functionals J(Ω) which depend on an open set Ω as an independent variable instead
of on a contour Γ.

We now present a series of lemmas which cover some results from shape calculus
which will become useful later on. We start with the Eulerian derivative of a domain
integral.

Lemma 1. Suppose φ ∈ W
1,1
loc (R

2) and Ω ⊂ R
2 is open and bounded. Then, the

functional

J(Ω) =

∫

Ω

φdx

is shape differentiable for perturbation vector fields V ∈ C1
0(R

2;R2). The Eulerian
derivative of J is given by

dJ(Ω;V ) =

∫

Ω

div (φV ) dx.(2.5a)
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446 MICHAEL HINTERMÜLLER AND WOLFGANG RING

If Γ = ∂Ω is of class C1, then

dJ(Ω;V ) =

∫

Γ

φ 〈V,n〉 dS,(2.5b)

where n denotes the exterior unit normal vector to Ω, 〈·, ·〉 the inner product on R
2,

and dS the arclength measure on Γ.
Proof. See Propositions 2.45 and 2.46 in [36, p. 77].
For a vector field V ∈ C1

0(R
2;R2) and an open set of class C2 with boundary Γ,

we define the tangential divergence of V by

div ΓV = (div V − 〈DV · n,n〉)
∣

∣

Γ
,(2.6)

where DV denotes the Jacobian matrix of V . If the vector field V is defined only on
Γ, we can still define the tangential divergence of V as the tangential divergence of
an arbitrary extension of V . It can be shown (cf. [36, Prop. 2.51, p. 82]) that the
definition does not depend on the particular choice of the extension. With this, we
are able to state the following result on boundary integrals.

Lemma 2. Suppose φ ∈ W
2,1
loc (R

2) and Γ is a contour of class C1. Then, the
functional

J(Γ) =

∫

Γ

φdS(2.7)

is shape differentiable for perturbation vector fields V ∈ C1
0(R

2;R2) with

dJ(Γ;V ) =

∫

Γ

(

〈∇φ, V 〉+ φdiv ΓV
)

dS.(2.8)

Proof. See sections 2.18 and 2.19 in [36].
Using tangential calculus (see sections 2.19 and 2.20 in [36] or the results in [16]),

we can simplify the expression (2.8). We define the tangential gradient of a function
h ∈ C2(Γ) as

∇Γh = ∇h̃
∣

∣

Γ
−

∂h̃

∂n
n(2.9)

on Γ, where h̃ denotes an arbitrary smooth extension of h. It can be shown that the
definition (2.9) does not depend on the specific choice of the extension. We have the
following Green’s formula on Γ.

Proposition 1 (Green’s theorem on Γ). Suppose Γ is a contour of class C2,
h ∈ C2(Γ), and V ∈ C1

0(R
2;R2) with 〈V,n〉 = 0 for every point x ∈ Γ. Then, we have
∫

Γ

〈∇Γh, V 〉 dS = −

∫

Γ

h div ΓV dS.(2.10)

Remark 1. Green’s formula also holds for functions h in the Sobolev space H1(Γ).
In this case, (2.10) acts as a definition for the tangential gradient ∇Γh.

Suppose we are given a smooth vector field V . We set Vτ = V − 〈V,N〉N as the
tangential component of V with respect to Γ. Here N denotes an extension of the
normal vector field n on Γ. We have

div ΓV = div ΓVτ + div Γ

(

〈V,N〉N
)

= div ΓVτ +
(

div
(

〈V,N〉N
)

−
〈

D
(

〈V,N〉N
)

· N ,N
〉) ∣

∣

Γ

= div ΓVτ +
(

〈V,N〉
(

divN − 〈DN · N ,N〉
)) ∣

∣

Γ

= div ΓVτ + 〈V,N〉 div ΓN
∣

∣

Γ
.
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The term div ΓN|Γ is usually denoted by κ and is called the curvature of Γ. Thus,
we find

div ΓV = div ΓVτ + κ〈V,n〉

on Γ. We thus obtain an equivalent expression for the Eulerian derivative of the cost
functional (2.7). We have

dJ(Γ;V ) =

∫

Γ

(

〈∇φ, V 〉+ φdiv ΓV
)

dS

=

∫

Γ

(

〈

∇Γφ+
∂φ

∂n
n, V

〉

+ φdiv Γ(Vτ ) + φκ 〈V,n〉

)

dS

=

∫

Γ

(∂φ

∂n
+ φκ

)

〈V,n〉 dS +

∫

Γ

(

〈∇Γφ, Vτ 〉+ φdiv Γ(Vτ )
)

dS.

The last integral is zero due to Proposition 1. We therefore obtain the following
lemma.

Lemma 3. Under the assumptions of Lemma 2 the Eulerian derivative of the cost
functional (2.7) is equivalently given by

dJ(Γ;V ) =

∫

Γ

(∂φ

∂n
+ φκ

)

〈V,n〉 dS.(2.11)

It is also useful to be able to calculate sensitivities for more general functionals
of the form

J(Ω) =

∫

Ω

φ(Ω,x) dx(2.12)

or

J(Γ) =

∫

Γ

ψ(Γ,x) dS(x),(2.13)

where the functions φ(Ω) : Ω → R and ψ(Γ) : Γ → R themselves depend on the
geometric variables Ω and Γ, respectively. In this case, formulas (2.5) and (2.11) have
to be corrected by terms which take care of the derivatives of φ and ψ with respect to
Ω or Γ. We define the following two variants of derivatives of a geometry-dependent
function with respect to the geometry.

Definition 1. Suppose ψ(Γ) ∈ B(Γ) for all Γ ∈ G, where B(Γ) is some appropri-
ate Banach space of functions on Γ, and let V ∈ C1

0(R
2,R2). We set ψt = ψ(Γt)◦Tt(V )

and ψ0 = ψ(Γ), and we assume that ψt ∈ B(Γt) for all 0 < t < T with some T > 0.
If the limit

ψ̇(Γ;V ) = lim
t↓0

1

t

(

ψt − ψ0
)

(2.14)

exists in the strong (weak) topology on B(Γ), then ψ̇(Γ;V ) is called the strong (weak)
material derivative of ψ at Γ in direction V .

The analogous definition holds for functions φ(Ω) which are defined on open sets
and not on contours.

The material derivative is the derivative of φ (or ψ) with respect to the geometry
for a moving (Lagrangian) coordinate system. Let us first consider the case of a
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448 MICHAEL HINTERMÜLLER AND WOLFGANG RING

domain function φ : Ω → R. It is easily seen that, for the special case where φ is
independent of Ω, we find

φ̇(Ω;V ) = φ̇(V ) = 〈∇φ, V 〉.

For a function which does not depend on Ω, any reasonable derivative with respect
to Ω in a fixed (Eulerian) coordinate system must be 0. It is therefore natural to
subtract the term 〈∇φ, V 〉 from φ̇ to define a derivative of φ with respect to Ω in a
stationary coordinate system. This is the idea of the following definition.

Definition 2. Suppose that the weak material derivative φ̇(Ω;V ) and the ex-
pression 〈∇φ(Ω), V 〉 exist in B(Ω). Then, we set

φ′(Ω;V ) = φ̇(Ω;V )− 〈∇φ, V 〉(2.15)

and we call φ′(Ω;V ) the shape derivative of φ at Ω in direction V .
Note that

φ′(Ω;V ) = φ′(V ) = 0

for any function φ which does not depend on Ω.
For boundary functions ψ(Γ) : Γ → R, the expression 〈∇ψ, V 〉 does not make

sense. In this case, we define the shape derivative as

ψ′(Γ;V ) = ψ̇(Γ;V )− 〈∇Γψ, V 〉
∣

∣

Γ
.(2.16)

With these definitions we are able to calculate the Eulerian derivatives for the
shape functionals (2.12) and (2.13).

Proposition 2. Suppose φ = φ(Ω) is given such that the weak L1-material
derivative φ̇(Ω;V ) and the shape derivative φ′(Ω;V ) ∈ L1(Ω) exist. Then, the cost
functional (2.12) is shape differentiable and we have

dJ(Ω;V ) =

∫

Ω

φ′(Ω;V ) dx+

∫

Γ

φ 〈V,n〉 dS.(2.17)

For boundary functions ψ(Γ) we get, under the same technical assumptions for
the cost functional (2.13),

dJ(Γ;V ) =

∫

Γ

ψ′(Γ;V ) dS +

∫

Γ

κψ 〈V,n〉 dS.(2.18)

If ψ(Γ) = φ(Ω)
∣

∣

Γ
, then we have

dJ(Γ;V ) =

∫

Γ

φ′(Ω;V )
∣

∣

Γ
dS +

∫

Γ

(∂φ

∂n
+ κφ

)

〈V,n〉 dS.(2.19)

Suppose that φ(Ω) satisfies φ(Ω)|Γ = 0 for all (admissible) domains Ω, and let
ϑ ∈ D(R2) be given. We define the cost functional

J0(Γ) =

∫

Γ

ϑφ(Ω) dS = 0

for arbitrary Γ. Thus,

0 = dJ0(Γ;V ) =

∫

Γ

ϑφ′(Ω, V ) dS +

∫

Γ

∂

∂n

(

ϑφ(Ω)
)

〈V,n〉 dS.
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A SECOND ORDER LEVEL SET APPROACH 449

If we choose ϑ such that

∂ϑ

∂n
= 0 on Γ(2.20)

and if we use the fact that the set of test functions which satisfy (2.20) is dense in
L2(Γ), we get

φ′(Ω;V )
∣

∣

Γ
= −

∂φ

∂n
〈V,n〉

∣

∣

Γ

on Γ. We have therefore proved the following lemma.
Lemma 4. Suppose that φ(Ω) ∈ H

3

2
+ǫ(Ω) satisfies φ(Ω)|Γ = 0 for all (admissible)

domains Ω and that the shape derivative φ′(Ω;V ) exists in H
1

2
+ǫ(Ω) for some ǫ > 0.

Then, we have

φ′(Ω;V )
∣

∣

Γ
= −

∂φ

∂n
〈V,n〉

∣

∣

Γ
.(2.21)

Remark 2. The Hadamard–Zolésio structure theorem [15, Thm. 3.6 and Cor. 1,
p. 348f] states that the Eulerian derivative of a domain or boundary functional always
has a representation of the form

dJ(Ω;V ) =
〈

G, 〈V,n〉
〉

C−k(Γ),Ck(Γ)
=

〈

Gn, V
〉

C−k

2
(Γ),Ck

2
(Γ)

;(2.22)

that is, the Eulerian derivative is concentrated on Γ and can be identified with the
normal vector field Gn on Γ. We set

DΓJ(Ω) = Gn,(2.23)

and we call this expression the shape gradient of J at Ω.

3. Shape derivative of the signed distance function. The signed (or ori-
ented) distance function is a useful tool in shape analysis. Many differential geometric
quantities such as the normal vector field of a contour Γ or its curvature can be easily
expressed in terms of the signed distance function bΓ of Γ. We shall now apply the
techniques introduced in the previous section to calculate the shape derivative of the
signed distance function of a given (open, bounded) set Ω. This will be helpful later
on when we have to calculate Eulerian derivatives of functionals which depend also
on geometric properties of Γ such as normal direction or curvature. The following
definitions and facts are taken from [15, Chap. 5]. The distance function dA of a
subset A ⊂ R

2 is defined as

dA(x) = inf
y∈A

|y − x|.(3.1)

The signed distance function bΩ of a bounded open set Ω ⊂ R
2 is defined as

bΩ(x) = dΩ(x)− dR2\Ω(x).(3.2)

If we set Γ = ∂Ω, we can express dΩ in terms of Γ. We have

bΩ(x) =











dΓ(x) for x ∈ int(R2 \ Ω),

0 for x ∈ Γ,

−dΓ(x) for x ∈ Ω.

(3.3)D
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450 MICHAEL HINTERMÜLLER AND WOLFGANG RING

We shall use the notation bΓ = bΩ. Note in particular that

bΓ
∣

∣

Γ
= 0.(3.4)

It can be shown that bΓ is uniformly Lipschitz continuous on R
2 and hence, by

Rademacher’s theorem, differentiable a.e. on R
2 with |∇bΓ| = 1 a.e. on R

2 \ Γ. If
meas(Γ) = 0, then we have

|∇bΓ|
2 = 1 a.e. on R

2.(3.5)

If Γ is smooth and compact (C1,1 is enough), then ∇bΓ is Lipschitz continuous, and
we have ∇bΓ(x) = n(pΓ(x)) for all x in some neighborhood of Γ, where pΓ denotes the
projection onto Γ. Thus, ∇bΓ can be considered as an extension of the unit normal
vector field n onto a neighborhood of Γ, and we have

∇bΓ
∣

∣

Γ
= n.(3.6)

Moreover, the second fundamental form of Γ can be expressed in terms of bΓ. For a
C2-submanifold Γ ⊂ R

2 we have

∆bΓ
∣

∣

Γ
= κ.(3.7)

See [15, p. 369] for the last relation. Taking the gradient on both sides of the Eikonal
equation (3.5) yields

D2bΓ · ∇bΓ = 0 on Γ.(3.8)

Let W ∈ C1
0(R

2,R2) be a given perturbation vector field. We shall derive certain
properties of the shape derivative b′Γ = b′Γ(Γ;W ) of the signed distance function.
The signed distance function satisfies the Eikonal equation (3.5) together with the
boundary condition (3.4). The weak form of (3.5) is given by

∫

R2

|∇bΓ|
2 ψ dx =

∫

R2

ψ dx(3.9)

for all test functions ψ ∈ D(R2). Taking the Eulerian derivative on both sides of (3.9)
and using (2.17), we get

2

∫

R2

〈∇b′Γ,∇bΓ〉ψ dx = 0(3.10)

for all ψ ∈ D(R2). Note that, since the functional (3.9) is defined on a fixed domain
and depends on Γ only via bΓ in the integral, the boundary term in (2.17) vanishes.
This can be see by writing

∫

R2

|∇bΓ|
2 ψ dx =

∫

Ω

|∇bΓ|
2 ψ dx+

∫

R2\Ω

|∇bΓ|
2 ψ dx

and applying (2.17) to both terms on the right-hand side. The boundary integrals
from both contributions sum up to zero. Equation (3.10) implies that

〈∇b′Γ,∇bΓ〉 = 0.(3.11)
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A SECOND ORDER LEVEL SET APPROACH 451

Equation (3.11) holds at least on some neighborhood of Γ on which bΓ is smooth
enough to guarantee the existence of a (weak) material derivative and hence the
applicability of (2.17).

If we apply Lemma 4 to bΓ and use (3.5), we get b
′
Γ|Γ=−∂bΓ

∂n
〈V,n〉|Γ=−〈∇bΓ,∇bΓ〉

· 〈V,n〉 = −〈V,n〉 by (3.5). With vn = 〈V,n〉, we obtain

b′Γ
∣

∣

Γ
= −vn.(3.12)

Since ∇b′Γ is orthogonal to n by (3.11), we have

∇b′Γ = ∇Γb
′
Γ = −∇Γvn on Γ.(3.13)

Moreover, we have ∆b′Γ
∣

∣

Γ
= div (∇b′Γ)

∣

∣

Γ
= div Γ(∇Γb

′
Γ)+〈D2b′Γ·∇bΓ,∇bΓ〉

∣

∣

Γ
. Because

0 = ∇〈∇b′Γ,∇bΓ〉 = D2b′Γ · ∇bΓ + D2bΓ · ∇b′Γ and since D2bΓ is symmetric, we can
conclude that 〈D2b′Γ · ∇bΓ,∇bΓ〉 = −〈D2bΓ · ∇b′Γ,∇bΓ〉 = 〈∇b′Γ, D

2bΓ · ∇bΓ〉 = 0 due
to (3.8). Therefore, we obtain

∆b′Γ
∣

∣

Γ
= −∆Γvn.(3.14)

4. Gradient and Newton-type level set flow for a shape optimization

problem. For the numerical solution of a shape optimization problem one can use
shape sensitivity information to move the geometric variable step by step in the direc-
tion of the negative gradient. Alternatively, one can use some other descent direction,
which can be obtained from the gradient by applying a Newton-type preconditioner
to the negative gradient. Like the shape gradient, the descent direction should have
the form of a normal vector field on Γ (see Remark 2). Suppose F n is such a descent
direction, where F : Γ → R is a scalar function which depends on Γ. If we embed the
discrete iterative optimization procedure in a continuous flow Γ(t) which propagates
in direction F n, we get the following propagating front formulation for Γ(t):

ẋ(t) = F
(

x(t),Γ(t)
)

n(x(t)) for x(t) ∈ Γ(t).(4.1)

An equivalent formulation is given by the level set equation

ut + F̃ |∇u| = 0 on R
2 × (0, T ),(4.2)

where the propagating front is the zero level set of the function u, i.e.,

Γ(t) = {x ∈ R
2 : u(x, t) = 0}.(4.3)

In (4.2), the scalar function F̃ : R
2 × [0, T ) → R is chosen such that F̃ |Γ(t) = F (Γ(t)).

See [35] for an extensive exposition of propagating front problems and their analytical
and numerical treatment in the level set context. Note that by the Hadamard–Zolésio
structure theorem (see Remark 2), the shape gradient DΓJ can always be interpreted
as a scalar speed function G on Γ, which can be used in the level set formulation.
Thus, shape sensitivity analysis and the level set method can be combined in a very
natural way.

We want to use a speed function F : Γ → R, which represents a Newton-type
descent direction for the shape optimization problem (1.4). This function is deter-
mined in the following way. Let F : Γ → R and G : Γ → R be given functions.
We now establish a one-to-one correspondence between scalar speed functions and a
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452 MICHAEL HINTERMÜLLER AND WOLFGANG RING

certain class of perturbation vector fields. Let F̃ and G̃ denote extensions of F and
G, respectively, which are constructed as solutions to the transport equations

〈∇F̃ ,∇bΓ〉 = 0 on R
2, F̃

∣

∣

Γ
= F,(4.4)

and

〈∇G̃,∇bΓ〉 = 0 on R
2, G̃

∣

∣

Γ
= G.(4.5)

Note that Γ is noncharacteristic with respect to the transport equation; thus, (4.4)
and (4.5) have unique solutions, at least locally in some neighborhood of Γ, which is
small enough such that the characteristics of (4.4) (which are straight lines) do not
intersect. With these solutions, we define the vector fields

VF = F̃ ∇bΓ and VG = G̃∇bΓ(4.6)

on some neighborhood of Γ on which F̃ , G̃, and ∇bΓ are smooth. Outside this
neighborhood we assume that VF and VG are extended in some smooth way. Note
that the construction of VF and VG is such that

〈VF ,n〉 = F and 〈VG,n〉 = G on Γ.(4.7)

Now we consider a cost functional of type (1.4). Let d2J(Γ;V ;W )=d(dJ(Ω;V ))(Ω;W )
be the second Eulerian derivative of the cost functional (1.4). In general, the second
Eulerian derivative is not symmetric in the two arguments V and W and does not
depend only on V |Γ andW |Γ. From the subsequent computation we shall see, however,
that for perturbation vector fields of the form (4.6), the second Eulerian derivative is
symmetric in (VF , VG) and depends only on F and G.

We propose the following optimization algorithm. We define a Newton-type speed
function F : Γ → R as the solution to

d2J(Γ;VF ;VG) = −dJ(Γ;VG) for all G : Γ → R.(4.8)

We then find the extension F̃ of F onto some neighborhood of Γ by solving the
transport equation (4.4). Finally, we use F̃ as speed function for one time step in the
level set equation

ut + F̃ |∇u| = 0.(4.9)

The step size is chosen such that some line search criterion is satisfied. With the
updated geometry, we start the procedure over again until some stopping criterion is
reached.

5. Calculation of the Newton-type speed function. In this section, we
calculate the second Eulerian derivative for shape functionals of the form

J1(Γ) =

∫

Γ

φdS(5.1)

and

J2(Ω) =

∫

Ω

φdx(5.2)

for some fixed φ ∈ W
2,1
loc (R

2). For the following calculations we assume that Γ is of class
C2, which implies that bΓ ∈ C2 on some neighborhood of Γ (see [15, Thm. 4.3, p. 219]).
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A SECOND ORDER LEVEL SET APPROACH 453

When it is clear from the context, we omit “|Γ.” We start with the calculation for J1.
Using (2.11), (3.6), and (3.7), we obtain

dJ1(Γ, VF ) =

∫

Γ

(∂φ

∂n
+ φκ

)

〈VF ,n〉 dS

=

∫

Γ

(

〈∇φ,∇bΓ〉+ φ∆bΓ
)

〈VF ,∇bΓ〉 dS.(5.3)

In this section, we consider only perturbation vector fields VF , which satisfy (4.6).
Note that dJ1(Γ;VF ) (for fixed VF ) is a shape functional of type (2.13). Therefore, the
second Eulerian derivative can be calculated by applying formula (2.19) to dJ1(Γ;VF ).
With b′Γ = b′Γ(Γ;VG) we get

d2J1(Γ;VF ;VG) =

∫

Γ

∂

∂n

[

(

〈∇φ,∇bΓ〉+ φ∆bΓ
)

〈VF ,∇bΓ〉
]

〈VG,n〉 dS

+

∫

Γ

κ
(∂φ

∂n
+ φκ

)

〈VF ,n〉 〈VG,n〉 dS

+

∫

Γ

(

〈∇φ,∇b′Γ〉+ φ∆b′Γ
)

〈VF ,n〉 dS

+

∫

Γ

(∂φ

∂n
+ φκ

)

〈VF ,∇b′Γ〉 dS

= I1 + I2 + I3 + I4.

Using (4.7), (3.13), (3.14), and Green’s formula (2.10), the integral I3 simplifies to

I3 = −

∫

Γ

(

〈∇φ,∇ΓG〉+ φ∆ΓG
)

FdS

= −

∫

Γ

(

〈∇φ,∇ΓG〉F − 〈∇Γ(φF ),∇ΓG〉
)

dS

=

∫

Γ

φ 〈∇ΓF,∇ΓG〉 dS.(5.4)

Now let us consider I1. We have

I1 =

∫

Γ

(∂2φ

∂n2
+

∂φ

∂n
κ+ φ〈∇(∆bΓ),∇bΓ〉

)

F GdS

+

∫

Γ

(∂φ

∂n
+ κφ

) ∂

∂n
〈VF ,∇bΓ〉GdS

= K1 +K2.

From (3.5), we conclude

0 = ∆〈∇bΓ,∇bΓ〉 = 2〈∇(∆bΓ),∇bΓ〉+ 2D2bΓ : D2bΓ,

where A : B =
∑

i,j ai,j bi,j denotes the tensor product of matrices A = (ai,j) and
B = (bi,j). Thus,

〈∇(∆bΓ),∇bΓ〉 = −‖D2bΓ‖
2
F ,

where ‖ · ‖F denotes the Frobenius norm of a matrix.
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454 MICHAEL HINTERMÜLLER AND WOLFGANG RING

In I2 we find a term of the form φκ2 F G. We have κ2 = (trace(D2bΓ))
2. In two

dimensions, the relation

(traceD2bΓ)
2 − ‖D2bΓ‖

2
F = 2(bΓ)x1,x1

(bΓ)x2,x2
− 2(bΓ)

2
x1,x2

= 2det(D2bΓ) = 0

holds due to (3.8). With this, we obtain

I2 +K1 =

∫

Γ

(∂2φ

∂n2
+ 2

∂φ

∂n
κ
)

F GdS.(5.5)

The remaining term is K2 + I4. We find

K2 + I4 =

∫

Γ

(∂φ

∂n
+ κφ

)( ∂

∂n
〈VF ,∇bΓ〉G− 〈VF ,∇ΓG〉

)

dS

=

∫

Γ

(∂φ

∂n
+ κφ

)( ∂

∂n
〈VF ,∇bΓ〉G− 〈VF ,∇ΓG〉

)

dS.

For the second expression in the above integral, we obtain, using (4.7) and definition
(2.9),

〈VF ,∇ΓG〉 =
〈

VF ,∇〈VG,∇bΓ〉 −
∂

∂n
〈VG,∇bΓ〉n

〉

.

Thus, we get

(5.6) K2 + I4

=

∫

Γ

(∂φ

∂n
+κφ

)( ∂

∂n
〈VF ,∇bΓ〉G+

∂

∂n
〈VG,∇bΓ〉F−

〈

∇〈VG,∇bΓ〉, VF

〉

)

dS.

Note that the first two terms ∂
∂n

〈VF ,∇bΓ〉G+ ∂
∂n

〈VG,∇bΓ〉F in (5.6) are symmetric
in VF and VG, but they cannot be determined just from the restrictions F = 〈VF ,n〉|Γ
and G = 〈VG,n〉|Γ. The term 〈∇〈VG,∇bΓ〉, VF 〉 has the same nonintrinsic behavior
and is not even symmetric in VF and VG. Now let us assume that VF and VG satisfy
(4.6) on some neighborhood of Γ. Using this assumption, together with (3.8), we get

∇〈VF ,∇bΓ〉 = DVF · ∇bΓ +D2bΓ · VF = D(F̃ ∇bΓ) · ∇bΓ + F̃D2bΓ · ∇bΓ

= 〈∇F̃ ,∇bΓ〉 · ∇bΓ + 2〈VF , D
2∇bΓ · ∇bΓ〉 = 0,

hence

∂

∂n
〈VF ,∇bΓ〉 =

〈

∇〈VF ,∇bΓ〉,∇bΓ
〉

= 0,

and, with the same reasoning,

∂

∂n
〈VG,∇bΓ〉 = 0.

Thus, if we restrict our attention to perturbation vector fields of the form (4.4)–(4.6),
the nonintrinsic and asymmetric terms in d2J1(Γ;VF , VG) vanish.

Taking all intermediate results together, we obtain the following expression for
the second Eulerian derivative of J1:

d2J1(Γ;VF ;VG) =

∫

Γ

[(∂2φ

∂n2
+ 2

∂φ

∂n
κ
)

F G + φ〈∇ΓF,∇ΓG〉
]

dS.(5.7)
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A SECOND ORDER LEVEL SET APPROACH 455

For J2 we obtain, using Lemma 1,

dJ2(Ω;VF ) =

∫

Γ

φ 〈VF ,∇bΓ〉 dS.(5.8)

If we apply (2.19) in Proposition 2 and Lemma 4, we get

d2J2(Ω;VF , VG) =

∫

Γ

(∂φ

∂n
+ κφ

)

〈VF ,n〉 〈VG,n〉 dS

+

∫

Γ

φ
( ∂

∂n
〈VF ,n〉G− 〈VF ,∇ΓG〉

)

dS.

As in the discussion of expression (5.6), we find that the second integral is zero if VF

and VG satisfy (4.6). We therefore get

d2J2(Ω;VF ;VG) =

∫

Γ

(∂φ

∂n
+ κφ

)

F GdS.(5.9)

6. Gradient and Newton-type flow for variational image segmentation.

In this section, we apply the results of sections 2 and 4 to cost functionals of the
form (1.5). We consider a grayscale image given by its intensity map I : R

2 → R,
which assigns each point x its gray value I(x) ∈ R. For simplicity (to avoid special
treatment of the boundary), we assume that the image is defined on all of R

2. Let
g̃ : [0,∞) → (0,∞) be a given decreasing function which satisfies g̃(r) → 0 as r → ∞.
The function gI(x) = g̃(|∇I|(x)) acts as an edge detector in the sense that gI(x) = 0
if x lies on an ideal edge of I. In this paper, we use

gI(x) =
1

1 +
(

|∇I|(x)
)k

with k = 1, 2.(6.1)

To suppress the influence of noise, we replace ∇I in the above expression by a
smoothed version ∇Î. For the sake of simplicity, we use Gaussian smoothing, but
other, more effective geometric smoothers (see, e.g., [3]) can be used as well. The
method we propose also works for other edge detectors of the form gI : R

2 → R for
which gI ∼ 0 on edges and g ∼ c with c > 0 otherwise, provided that they satisfy
the necessary smoothness requirements for performing shape sensitivity analysis of a
functional of type (6.2) as exposed in sections 2–5.

Segmentation of an image is the task of partitioning a given image into disjoint
parts of approximately constant gray value. Let Γ be the union of the boundaries of
these homogeneous regions. Since homogeneous regions with different gray values are
separated by edges, it is likely that the boundary Γ is located at points where the edge
detector gI has small values. In Figure 1 it is seen that the edges of the image coincide
with the deep valley in the edge detector. This motivates the following variational
approach. We seek the final segmenting contour Γ as the minimizer of the functional

J(Γ) =

∫

Γ

gI dS + ν

∫

Ω

gI dx,(6.2)

where Γ = ∂Ω and ν > 0. We find the minimizer of (6.2) as the steady state of a family
of propagating contours Γ(t) which approach the minimal contour from the outside.
Note that a contour of length zero (a point) is a global minimizer for (6.2). This,
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Fig. 1. Grayscale image I and corresponding edge-map g.

however, is not the desired segmenting contour. Rather, we want the propagation
of the active contour to get stuck at the bottom of the valley of the edge detector,
which is a local minimizer for (6.2). The second term in (6.2) is a regularization
term, which helps shrink the active contour in the homogeneous regions where the
influence of the edges is not very strong. The parameter ν must not be chosen too
large, because otherwise the algorithm might overshoot the edge and end up at the
global minimizer.

The Euler–Lagrange equation for the cost functional (6.2) with respect to the ge-
ometrical variable Γ was derived, e.g., in [8, 37] using parametrized curves Γ = Γ(s, t),
where s denotes the curve parameter and t is a time variable describing the move-
ment of the curve. We derive the same result applying the speed method described
in section 2. Applying Lemma 3 and (2.5b) in Lemma 1 immediately yields

dJ(Γ;V ) = 〈DΓJ, V 〉 =

∫

Γ

〈(∂gI

∂n
+ gI (κ+ ν)

)

n, V
〉

dS.

Thus, the flow for a contour Γ(t) which propagates in the direction of the negative
gradient with respect to the functional (6.2) is given by

Γt = −
(

gI (κ+ ν) + 〈∇gI ,n〉
)

n.(6.3)

Note that in our case n denotes the exterior normal vector to the region enclosed by
Γ, so we have different signs in the expression (6.3) as, e.g., in [8, 37]. The level set
formulation corresponding to (6.3) (see [35]) is given by

ut = gI

(

div

(

∇u

|∇u|

)

+ ν|∇u|

)

+ 〈∇gI ,∇u〉 =

(

div

(

gI

∇u

|∇u|

)

+ ν

)

|∇u|.(6.4)

For ν = 0, (6.3) or (6.4) can be interpreted as geodesic curve-shortening flow with
respect to an image-dependent metric gI (cf. [8, 30]).

We now use the results from section 5 for the setup of a Newton-type algorithm
as described in section 4, specifically in (4.8), (4.6), (4.5), and (4.4) for variational
image segmentation. Using (5.7) and (5.9), we find that (4.8) for the Newton-type
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speed function F has the form of an elliptic equation on Γ: Find F : Γ → R such that

(6.5)

∫

Γ

[(∂2gI

∂n2
+ (2κ+ ν)

∂gI

∂n
+ ν κ gI

)

F G + gI〈∇ΓF,∇ΓG〉
]

dS

= −

∫

Γ

(∂gI

∂n
+ (κ+ ν) gI

)

GdS

for all test functions G : Γ → R.
The elliptic problem (6.5) has a unique solution, and the solution to (6.5) is a

descent direction with respect to (6.2) if the bilinear form on the left-hand side is
coercive on H1(Γ). Since gI > 0 on R

2, this is the case if

(∂2gI

∂n2
+ (2κ+ ν)

∂gI

∂n
+ ν κ gI

)

> 0 on Γ.(6.6)

See [36, section 2.21] for a comprehensive treatment of elliptic problems on contours.
We give some heuristic arguments why condition (6.6) is likely to be satisfied in a
neighborhood of the optimal contour. Let us consider the case ν = 0. If the optimal
contour is located at the bottom of a valley for the edge detector gI and if the contour
is approximately aligned with the direction of the valley, we have ∂gI

∂n
∼ 0 and gI is

convex in the direction normal to the contour, i.e., ∂2gI
∂n2 > 0. Thus, (6.6) is satisfied

for such a contour.
The positive definiteness of (6.5) is an important computational issue. For the

actual computations, the Hessian has to be modified such that positive definiteness
is maintained also for contours outside the (possibly very small) neighborhood of the
optimal contour, where the convexity of gI in the normal direction is strong enough
to guarantee coercivity. This topic (among others) is addressed in the next section.

7. Implementation of an active contour algorithm for image segmenta-

tion based on the Newton-type speed function. It is often said that the speed
function

F = −
(

gI κ+ 〈∇gI ,n〉
)

corresponds to the negative gradient direction with respect to the cost functional (6.2)
with ν = 0 and, therefore, propagation with this speed function decreases the cost
functional as fast as possible. On the other hand, it is observed that the decrease of J
along the propagation of the level set function u is not very fast and that the time steps
in the numerical implementation of the level set algorithm must be chosen relatively
small. Otherwise, zig-zagging trajectories for the points on the contour are observed.
In the worst case, the time-stepping procedure can even become unstable. In other
words, the numerical realization of the front-propagation problem (6.4) suffers from
many drawbacks which are well known for gradient-based algorithms in nonlinear
programming. Usually, the constant (expanding or shrinking) term, i.e., ν > 0 in
(6.2), is added to the speed function F to speed up the propagation. This procedure
has the disadvantage that an additional parameter (the constant deflation or inflation
speed) is introduced into the algorithm. It is a difficult task to choose this parameter
in a reasonable way. If it is too large, it is possible that weak edges in the image are
not recognized and the propagation of the contour does not stop at the edge. If it is
chosen too small, the desired speed-up cannot be achieved (see Table 2).

We propose a speed-up method for the propagating interface problem which—in
ideal cases—is even parameter free, i.e., ν = 0 is set in all iterations. The method
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458 MICHAEL HINTERMÜLLER AND WOLFGANG RING

can be considered as a preconditioned gradient method or, alternatively, as a Newton-
type technique. As speed function F in the level set equation (1.1), we choose the
Newton-type direction with respect to the cost functional (6.2) as calculated in section
5. Additionally, we use a line search technique in order to relax the restriction on
the time step size in the discretization of the level set equation given by the CFL-
condition. We consider the following algorithm.

Algorithm 1.
(1) Initialization. Choose an initial (closed) contour Γ0. Initialize the level set

function u0 such that Γ0 is the zero level set of u
0; set k = 0. Choose a

bandwidth w ∈ N and ν ∈ R.
(2) Newton direction. Find the zero level set Γk of the actual level set function

uk. Solve (6.5) to obtain the Newton-type direction F k.
(3) Extension. Extend F k to a band around the actual zero level set Γk with

bandwidth w yielding F k
ext.

(4) Update. Perform a time step in the level set equation with speed function
F k
ext to update uk on the band. Let ûk+1 denote this update.

(5) Reinitialization. Reinitialize ûk+1 in order to obtain a signed distance func-
tion uk+1 with zero level set given by the zero level set of ûk+1. Set k = k+1
and go to (2).

Before we discuss steps (1)–(5) of Algorithm 1 in detail, we note that the algo-
rithm operates only on a band around the actual zero level set (or contour) Γk. This
so-called narrow band approach was introduced by Chopp [14]. The key aspect is the
fact that typically only knowledge around the actual contour is of importance in the
propagation of the contour through the level set equation (which, then, is also con-
sidered only on the band). Clearly, in our situation the shape gradient and the shape
Hessian used in (6.5) are both defined only on Γk. Thus, the narrow band approach
is appropriate. In the discrete setting, the restriction to a band around the actual
zero level set reduces the computational time and the memory requirement. In [1] a
fixed band is chosen with respect to the contour and then, as soon as the propagated
contour approaches the boundary of the band, the band is reinitialized with respect
to the actual contour. In contrast to this technique, we allow a continuously moving
band, i.e., the band is moved together with the contour. This enables us to take larger
time steps while preserving a low computational cost. For more details on the narrow
band approach in level set methods we refer to [14, 1, 35].

Now let us discuss the steps of Algorithm 1 and the respective numerical realiza-
tion.

Initialization. In the literature there exist different characteristic choices with
respect to ν in the cost functional (6.2). In the following discussion, we decide to
consider deflation, i.e., we choose ν ≥ 0 and Γ0 such that the objects which should be
segmented are within the area enclosed by Γ0. Depending on Γ0, a signed distance
function u0 is computed with Γ0 as zero level set. This is done by utilizing the fast
marching technique [33, 34] on the band around Γ0 for solving the Eikonal equation

|∇u0| = 1 with u0 = 0 on Γ0.

Unless it is chosen too small, the algorithm is not sensitive (except for computa-
tional time) with respect to the bandwidth w.

Newton direction. This step is the core part of the new algorithm. As already
mentioned in the previous section, the coercivity in H1(Γ) of the bilinear form in (6.5)
is essential for having a well-defined Newton-type descent direction. Typically, in the
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grid intersection point 

d

di+1,j

i,j

Fig. 2. Computation of additional intersection points (on the discrete contour).

course of the iteration it happens that

∂2gI

∂n
+ (2κ+ ν)

∂gI

∂n
+ νκgI ≤ 0 on some parts of Γk.

Thus, the coercivity of the corresponding bilinear form is lost. To circumvent these
difficulties, we incorporate the following modification of (6.5). Find F : Γ → R such
that

(7.1)

∫

Γ

[(∂2gI

∂n2
+ (2κ+ ν)

∂gI

∂n
+ ν κ gI

)

+
F G + gI〈∇ΓF,∇ΓG〉

]

dS

= −

∫

Γ

(∂gI

∂n
+ (κ+ ν) gI

)

GdS

for all test functions G : Γ → R. Above we use (·)+ = max(·, ǫ) for 0 < ǫ ≪ 1. In
our numerical tests it turns out that frequently ǫ = 0 can be set, i.e., we basically
cut off the nonconvex part of the shape Hessian. For ǫ > 0, equation (7.1) realizes a
small correction of the Newton direction towards the steepest descent direction, i.e.,
the negative shape gradient.

The discretization of (7.1) is a rather delicate issue. This is due to the fact that
〈∇ΓF,∇ΓG〉 corresponds to the Laplace–Beltrami operator on Γ = Γk. We first need
a discrete model Γh

k of Γk. For this purpose, we recall that one of the advantages of
the level set method is the fact that it operates on a fixed (Cartesian) grid. In our
case, the nodes are given by the pixels of the image. The information on the contour
Γk is included in uk, i.e., it is the zero level set of uk. In order to get Γh

k we compute
additional points on the grid lines (which are the lines joining the pixels of the given
image) representing the discrete contour. Let us assume that xi,j , i = 1, . . . ,M and
j = 1, . . . , N , denote the grid points (nodes) and uk

h is the signed distance function
defined on the nodes. Whenever it is observed that uk

h(xi,j) and uk
h(xi+1,j) change

sign, then the interface obviously passes through the grid line connecting xi,j and
xi+1,j . An analogous observation is true for xi,j and xi,j+1. Since di,j = |uk

h(xi,j)|
and di+1,j = |uk

h(xi+1,j)| give the distances to the contour, we compute an additional
intersection point zkl as outlined in the graphic in Figure 2. The black node and
the white node indicated different signs of uk

h at these points. The discrete contour
is given by the piecewise linear approximation joining the intersection points. For
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simplicity, we temporarily assume that ∂Γh
k = 0 for all k and that NΓh

k
represents the

number of intersection points. Thus, Γh
k is a polygon. Let nk

h denote the normal to
Γk
h, and let [zkl , z

k
l+1] represent a linear piece of Γh

k . For the discretization of F k we
use the ansatz

F k
h (z) =

N
Γh
k

∑

l=1

F k
l φh,l(z)

with φh,l the linear functions on Γh
k , which are globally continuous and satisfy

φh,l(z
k
j ) = δlj for l, j = 1, . . . , NΓh

k
. We define the discretized tangential gradient

∇Γh
k
by

∇Γh
k
F k
h (z) =

N
Γh
k

∑

l=1

F k
l ∇Γh

k
φh,l(z)

with

∇Γh
k
φh,l(z) =







h−1
l if z ∈ [zkl−1, z

k
l ],

h−1
l+1 if z ∈ [zkl , z

k
l+1],

0 else.

Here hl is the length of [zkl−1, z
k
l ]; this is analogous for hl+1. Note that ∇Γh

k
F k
h is

constant on each linear piece of Γh
k .

Let akh denote the piecewise constant approximation of

a(z) =

((

∂2gI

∂n2

)

+ (2κ+ ν)

(

∂gI

∂n

)

+ ν κ gI

)

+

(z) for z ∈ Γk

with

akh(z
k
l ) =

((

∂2gI

∂n2

)

h

+ (2κh + ν)

(

∂gI

∂n

)

h

+ ν κh gI

)

+

(zkl ) for zkl ∈ Γh
k .

The approximation of the normal derivatives and the mean curvature in zhl , l =
1, . . . , NΓh

k
, are discussed below. Let bkh denote the piecewise constant approximations

of gI , which are defined as

bkh(z) =
1

2
(gI,h(z

k
l ) + gI,h(z

k
l+1)) for z ∈ [zkl , z

k
l+1].

For the discretization of the first term under the integral in (7.1), we use a mass
lumping technique which yields a positive definite diagonal matrix. The right-hand
side is approximated by utilizing the trapezoidal rule on each linear piece of Γh

k . The
discretization of (7.1) is then given by

N
Γh
k

∑

l=1

Fl

(

akh(z
k
l )hl +

∫

Γh
k

bkh〈∇Γh
k
φh,l∇Γh

k
φh,j〉

)

=

N
Γh
k

∑

l=1

ckh(z
k
l )ĥl(7.2)

for j = 1, . . . , NΓh
k
. Above, ĥl is given by ĥl =

1
2 (hl + hl+1). In the case where Γh

k

contains nonclosed components, ĥl has to be modified on terminal linear pieces of
these components.
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When assembling the system matrix in (7.2) one has to be careful in order to
produce a tridiagonal band matrix. In order to obtain this structure we employ the
following technique. We compute a list containing all intersection points. First, we
check whether one of the intersection points in the list is located on the grid lines
joining the boundary pixels of the image. If this is the case, then we start with an
intersection point on the boundary. In any case, we take zl with the minimal l and
follow the corresponding piece of the contour, compute the respective entries in the
stiffness matrix corresponding to the actual intersection point, and delete this point
from the list. If we have finished the piece of the discrete contour and the list is not
empty, we repeat this procedure by checking intersection points on the boundary. If
it turns out that there are no intersection points located on a boundary grid line, then
we take zl with minimal l. The final stiffness matrix is tridiagonal allowing efficient
solutions of the discretization of (7.2).

For details concerning asymptotic error estimates for the finite element discretiza-
tion of the elliptic equation (7.1) as described above, we refer to [17, 18].

The discretization of κ on the (fixed) grid points is based on finite differences like
those in [35]. To obtain an approximation of ∂gI

∂n
, we evaluate gI in the grid points,

compute ∇hgI by central differences, and compute nh =
∇hu

k
h

|∇hu
k
h
|
as an approximation

to the normal derivative in all grid points. Then

(

∂gI

∂n

)

h

(xi,j) = ∇hgI(xi,j)
Tnh(xi,j).

Values for κh and (∂gI
∂n

)h at intersection points are obtained as weighted averages of
the respective quantity at neighboring grid points.

Extension. Since dJ(Γk;VG), d
2J(Γk;VF ;VG), and, thus, the Newton-type di-

rection F k are defined only on Γk, but the level set equation is defined on Ω (or at
least on a band around Γk), an extension of F

k to Ω (or the band) must be computed.
There exist many possible ways to extend F k. According to (4.4), F k

ext in step 3 of
Algorithm 1 must satisfy

〈∇F k
ext,∇uk〉 = 0, F k

ext|Γk
= F k.(7.3)

On the discrete level, we realize (7.3) by employing the technique of [2]. Again, the
fast marching method is used on the narrow band only. For more details we refer to
[2].

Update. The discretization of the level set equation follows the standard sug-
gestions in, e.g., [35]; i.e., the time stepping is done by using an explicit Euler scheme
combined with an ENO-scheme for the term involving the spatial derivatives. Usu-
ally, the CFL-condition gives a link between the step size of the time and the spatial
discretization such that the difference scheme is stable [23]. In our situation, the
CFL-condition yields

‖F k
ext,h‖∞∆tk ≤ ∆x,

where ∆tk denotes the time step size in iteration k and ∆x is the mesh size of the
spatial discretization. Obviously, this might lead to very small time step sizes. This
is especially true at early stages of the iteration process where the shape gradient is
still large. Close to the discrete solution the CFL-condition becomes less stringent
since F k

ext,h becomes “smaller.”
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462 MICHAEL HINTERMÜLLER AND WOLFGANG RING

In contrast to the requirement induced by the CFL-condition, we determine ∆tk

based on considerations coming from optimization concepts. First, we relax ∆tkCFL,
the time step size required by the CFL-condition, by choosing a threshold T k :=
ℓ∆tkCFL with ℓ > 1. Due to our modification of the shape Hessian (its discretization
induces a positive definite matrix), we expect that F k is a local descent direction; i.e.,
for sufficiently small time step sizes the cost functional J is reduced by propagating Γk

through the level set equation. A so-called sufficient decrease condition, well known
from nonlinear programming [28], is given by the Armijo-condition. In our context
this condition becomes

J(Γk+1)− J(Γk) ≤ µ∆tk〈F k, dJ(Γk;F
k)〉 < 0

with a fixed parameter µ ∈ (0, 1). Numerically we realize the Armijo-condition in the
following way: Let Γh

k(∆t) denote the zero level of uk
h(∆t), the result of a time step

with ∆t in the discretized level set equation with speed function given by F k
ext,h. At

every iteration level k, we utilize the following algorithm.
Algorithm 2.
(1) Set a0 = ∆tkCFL, b0 = T k, r0 = b0 − a0, 0 < ξ ≪ 1

2 . Choose ∆t0 ∈
(a0 + ξr0, b0 − ξr0) and 0 < µ1 < µ2 < 1; set l = 0. Choose the maximal
number of cycles L ∈ N.

(2) Perform a time step in the level set equation with time step size ∆tl and speed
function F k

ext,h, and compute uk
h(∆tl).

(3) Compute the zero level set Γh
k(∆tl) of u

k
h(∆tl). If l = L, then ∆tk = ∆tl,

ûk+1
h := uk

h(∆tk) and RETURN to Algorithm 1. If Γh
k(∆tl) satisfies

Jh(Γ
h
k(∆tl))− Jh(Γ

h
k) ≤ µ2∆tl〈F

k
h , dJ(Γk;F

k)h〉 < 0,(7.4)

then al+1 = ∆tl, bl+1 = bl, rl+1 = bl+1 − al+1, and compute ∆tl+1 ∈ (al+1 +
ξrl+1, bl+1 − ξrl+1). If (7.4) is satisfied with µ2 replaced by µ1 and

Jh(Γ
h
k(∆tl))− Jh(Γ

h
k) > µ2∆tl〈F

k
h , dJ(Γk;F

k)h〉,

then ∆tk = ∆tl, û
k+1
h := uk

h(∆tk) and RETURN to Algorithm 1. If

Jh(Γ
h
k(∆tl))− Jh(Γ

h
k) > µ1∆tl〈F

k
h , dJ(Γk;F

k)h〉,(7.5)

then bl+1 = ∆tl, al+1 = al, rl+1 = bl+1 − al+1, and compute ∆tl+1 ∈ (al+1 +
ξrl+1, bl+1 − ξrl+1). Set l = l + 1 and go to step (2).

This step size strategy takes place in step 4 of the discrete analogue of Algorithm
1. The output (of Algorithm 2) is ûk+1

h = uk
h(∆tk).

Relaxing the CFL-condition significantly and computing time steps by Algo-
rithm 2 is substantiated by the fact that we are not as interested in tracking an
interface as we are in finding—as quickly as possible—a contour which locally mini-
mizes the cost functional.

Reinitialization. Since we allow larger time steps compared to the typical
choices for level set–based front propagation, the reinitialization is of importance.
Like in the initialization phase, we use a fast marching technique for solving the
Eikonal equation

|∇u| = 1 with u = 0 on Γk+1

numerically. Here, Γk+1 is the zero level set of ûk+1.
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A SECOND ORDER LEVEL SET APPROACH 463

Fig. 3. Image with zero level sets of uk
h
based on the parameter free (ν = 0) Newton-type

direction (left) and on the gradient-based direction with parameter ν = 1 (right).

Table 1
Time step sizes and cost functional values for the left graph of Figure 3.

k ∆tk ∆tk
CFL

Jk
h

Jk
h,r

1 0.00027 0.00014 67.71894 67.73983
2 0.00916 0.00458 63.62859 63.58714
3 0.05119 0.01462 55.69355 55.30486
4 0.07655 0.02187 45.59301 45.34222
5 0.11608 0.03317 37.06772 36.81020
6 0.16018 0.04577 28.19008 27.54977
7 0.20494 0.05856 16.41064 15.95286
8 0.31020 0.08862 9.73240 9.92598
9 0.34469 0.09848 4.01012 3.83231

8. Numerical results. In this section we report on numerical tests attained by
Algorithm 1 for the discretization described in the previous section. With respect
to the grayscales contained in the image data, the first two examples represent the
ideal situation. We use these examples to demonstrate the advantages of the Newton-
type direction compared to the gradient direction with deflation or inflation. Also
comparisons with a method based on the negative gradient are given. The third
example is related to the task of segmenting a contrast agent–based image of a kidney.
Here we show that the new algorithm can handle inflation, i.e., ν < 0, efficiently.

Let us start by reporting on the results for the image in Figure 3. Table 1
displays the time step sizes ∆tk accepted by Algorithm 2, the corresponding CFL-
based time step ∆tkCFL, the cost value Jk

h prior to the reinitialization, and Jk
h,r after

the reinitialization for Algorithm 1. Moreover, ν = 0 is chosen. From Table 1 we
can see that the Newton-type method stops after 9 iterations. The time step sizes
∆tk and ∆tkCFL are increasing, which is expected since F k

h should ideally vanish at a
local solution. Also, our step size rule (Algorithm 2) yields significantly larger time
steps than obtained from the CFL-condition. The cost functional is monotonically
decreasing, and the reinitialization has only a slight influence on the cost functional
value. If the speed function is changed from the Newton-type direction to the gradient
direction with ν = 0, then the algorithm (with step size strategy) needs 327 iterations
(instead of 9 iterations for the Newton-type direction) to reduce the objective value
from J1

h = 66.8179 to J327
h = 3.6318. If we allow a constant deflation by choosing
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Table 2
Comparison of algorithms.

Newton
ν = 1
with Alg. 2

Newton
ν = 0
with Alg. 2

Gradient
ν = 1
with Alg. 2

Gradient
ν = 1
no Alg. 2

Gradient
ν = 0
with Alg. 2

# it. 8 9 13 31 327

Fig. 4. Image with zero level sets of uk
h
based on the Newton-type direction with ν = 0.01 (left)

and on the gradient-based direction with parameter ν = 1 (right).

ν = 1 in the gradient-based method, then 13 iterations are needed. The fact that ν
has to be chosen appropriately in order to avoid overshooting the desired contour or a
slowly converging algorithm is a clear disadvantage. We also ran the algorithm with
the gradient-based speed function with ν = 1 and no step size strategy; i.e., ∆tk =
∆tkCFL was chosen. Then 31 iterations are needed for finding the local minimum
numerically. In our test runs we also observe that the Newton-type direction acts
more globally than the gradient direction. In fact, in the right graph of Figure 3
we can observe that the gradient direction detects certain parts of the contour rather
quickly, while it takes some time to correctly detect the nonconvex part of the contour.
The Newton-type direction yields a rather global propagation of the zero level set
towards the desired contour; i.e., in the detection process (evolution of the zero level
set of uk

h) the zero level sets approach the desired contour more uniformly; see the left
graph of Figure 3. Also, the contours based on the gradient-type propagation are less
regular than the contours obtained from the Newton-type propagation. This behavior
does not depend on our preference for employing Algorithm 2. It merely reflects
our theoretical findings, i.e., computing F k as the solution of the elliptic equation
(7.1) induces additional smoothness properties of F k. In Table 2 we summarize the
convergence behavior.

Our second example is concerned with the segmentation of the letters “O” and
“K” as displayed in Figure 4. Besides the aspect that our initial contour has to split
into two disjoint contours, it is interesting to investigate how the Newton direction
copes with the contours of “K” which involve, e.g., rather acute angles and specific
nonconvexities. We shall also see that the appropriate choice of ν is a delicate issue for
the gradient method. This is due to the fact that we have to balance the two objectives
of fast progress and accurate segmentation. For the Newton method, on the other
hand, a rather small value for ν already gives good progress without degrading the
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Fig. 5. Image with zero level sets of uk
h
based on the Newton-type direction with ν = −0.3 (left)

and the corresponding initial and final contours (right).

segmentation behavior.
The gradient-based direction with constant deflation (ν = 1) with or without

Algorithm 2 typically overshoots the right uppermost and lowermost corners. As a
consequence, the segmentation misses the “K.” For smaller values for ν the conver-
gence speed of the gradient-based algorithm is significantly reduced, and too small ν
eventually prevents the algorithm from convergence. From the right graph in Figure 4
we can observe that, like in the previous example, the contours for the gradient-based
speed function are quite irregular. This prevents the algorithm from taking larger
time step sizes.

For the Newton-type speed function, we choose ν = 0.01 and still get reasonable
progress in every iteration (successful termination after 33 iterations) but avoid the
overshooting of the corners of “K.” The evolution of the contours is displayed in
the left graph of Figure 4. We initialize the algorithm with the outermost ellipse
which shrinks towards the convex hull of the two letters and finally collapses onto two
separate contours. With the same value for ν, the gradient-based algorithm with a
step size strategy needs more then 100 iterations.

The final example is concerned with the task of segmenting a contrast agent–
based image of a kidney. We initialize the algorithm by choosing a small circle inside
the part of the image which we aim to segment. Thus, ν has to be assigned a negative
value in order to allow inflation of the initial contour. In the left graph of Figure 5
we display some of the iterates of the Newton-type method with ν = −0.3. The
algorithm detects the correct contour after 47 iterations. The right graph shows the
initial and the final contours for the Newton-type method.
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