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ABSTRACT. Cryptography is a science that provides the security of information
in communication. One of the most important sub-branches of cryptography
is the hash functions. Hash functions are known as the digital fingerprints.
Following the recent attacks on the widely used hash functions MD5 and SHA-
1 and the increase in computational power, the need for a new hash function
standard has arisen. For this purpose, US National Institute of Standards and
Technology (NIST) had announced a competition to select a standard hash
function algorithm which would eventually become the Third Secure Hash
Algorithm, SHA-3. Initially 64 algorithms were submitted to NIST and 51 of
them were announced as the First Round Candidates. After an analysis period,
14 of these algorithms were announced as the Second Round Candidates, and
5 algorithms were announced as Finalists. The winner of the competition,
Keccak, was announced in 2012.

LUX is one of the 64 algorithms submitted to the SHA-3 competition by
Nikolic et al. It is designed as a byte oriented stream cipher based hash
function. For LUX-256, Schmidt-Nielsen gave a distinguisher and later Wu et
al. presented collision attacks, both of which for reduced rounds of LUX. As a
result of these attacks, LUX is eliminated in the first round. In this work, we
first give a procedure for the second preimage attack. Then we extend this to
the collision and second preimage attacks for the reduced rounds of LUX hash
family. Moreover, we implement the attacks and give the specific examples by
taking the padding into consideration.

1. INTRODUCTION

Cryptography is the study of the design and security of the cryptographic algo-
rithms, providing both the information security in communication. The information
security is ensured by the cryptographic algorithms using several ways such as data
confidentiality, data integrity, authentication and non-repudiation. Cryptography
is related to the fields of mathematics, physics, statistics, computer engineering
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and electrical engineering. To put it all in simple terms, cryptography is based on
the mathematical theory in order to provide secure transformation and safekeeping
of the information. With the increase in developments in technology the security
of information against attacks becomes more important than ever, since access-
ing and using information systems have become much easier. Therefore, the need
for not only the design of the cryptographic algorithms but also cryptanalysis has
increased.

Cryptography can be mainly divided into two: Asymmetric and symmetric key
cryptography. Asymmetric key cryptography which is generally known as public
key cryptography uses different keys for encryption and decryption. Contrary to
asymmetric key cryptography, symmetric cryptography is formed by three main
subjects: stream ciphers, block ciphers and hash functions. In stream and block
ciphers, the same key is used for both the encryption and the decryption. Hash
functions produce a hash value of the message without using key. In hash functions,
there is no decryption process. In addition to these subjects, message authentication
codes (MACs) and authenticated encryption primitives play an important role in
symmetric cryptography.

The function in which the arbitrary length input is mapped to a fixed size output
is a hash function. In practice, the input size which is not arbitrary is bounded
by a very large number. The output of the hash function is called the hash value,
message digest, or digest value. The size of hash value changes according to the
algorithm and varies generally between 128 bits and 512 bits. Cryptographic hash
functions have an important role in many applications such as digital signature,
message integrity checking, authentication protocols, password protection and ran-
dom number generation. Therefore, if there are any flaws or weaknesses in a stan-
dard or popular hash algorithm, this affects various applications [1]. For security
purposes, cryptographic hash functions must satisfy the following conditions [2]:

(1) Pre-image resistance: Given a hash value y, it should be hard to find any
input message z satisfying h(xz) = y where h is an unkeyed hash function.
This is related to hash function being one-way function.

(2) Second pre-image resistance: Given a message z1, it should be hard to
find a different message xo satisfying h(x1) = h(xz2) where h is an unkeyed
hash function.

(3) Collision resistance: It should be hard to find two different messages x;
and o satisfying h(zq1) = h(xz) where h is an unkeyed hash function.

The weaknesses of commonly-used SHA-0(Secure Hash Algorithm-0), RIPEMD
and MD5 were discovered in 2004 [3]. After that, these algorithms were strength-
ened; however, that was not enough to fulfill the need for a new hash standard.
In the following years, the weaknesses of SHA-1(strengthened version of SHA-0)
and MD5 were discovered [3]. As a result, the need for ensuring the security of
long-term applications of hash functions arose. Therefore, NIST [4] announced a
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competition, Secure Hash Algorithm-3 Competition [5], to select the new hash func-
tion algorithm. The hash function competition was arranged to design a new hash
function which is called Secure Hash Algorithm-3, SHA-3, for the standardization
due to the deficiencies of SHA-0 and SHA-1 Algorithms. SHA-3 Competition be-
gan on November 2, 2007 [6]. SHA-3 Competition was the response of NIST to the
advances in the cryptanalysis of hash algorithms [5].

NIST called for SHA-3 Competition submission deadline and received 64 entries
from cryptographers around the world by the second half of 2008. The First Round
of the competition began on November 1, 2008 and 51 submissions were selected
as the first round candidates at the end of 2008. The First SHA-3 Candidate
Conference was announced in the beginning of 2009. 37 algorithms are eliminated
due to security and performance issues and the second round of the competition
began with 14 candidates in July, 2009 [5]. After 5 finalists were selected from
14 candidates, the winner of the SHA-3 Competition was announced as Keccak on
October 2012 and the five year competition had ended [7].

LUX is one of the 64 algorithms submitted to the SHA-3 competition by Nikolic
et al. It is designed as a byte oriented stream cipher based hash function. For LUX-
256, Schmidt-Nielsen gave a distinguisher and later Wu et al. presented collision
attacks, both of which were for reduced rounds of LUX. As a result of these attacks,
LUX is eliminated in the first round. In this work, we give a procedure for the
second pre-image attack and carry out the collision and second pre-image attacks
for reduced blank round LUX hash function family. Moreover, we implement the
attacks and give the specific examples by taking the padding into consideration.

In this work, we first give a procedure for the second preimage attack. Then
we extend this to the collision and second preimage attack for LUX hash family.
Moreover, we implement and give the specific examples of the attacks by taking
the padding into consideration.

This paper is organized as follows: In Section 2 and 3, we describe LUX and the
known attacks against LUX respectively. In Section 4, we present our attacks in
details. In Section 5, we give the conclusion.

2. LUX HAsH FuNcTION FAMILY

LUX is a byte oriented stream based hash function design, which is submitted
by Nikolic et al. [8] to the SHA-3 competition. The structure of LUX compared to
the MD (Merkle-Damgard) structure is different in terms of the buffer size and the
parallelism. In other words, the buffer of LUX is bigger, and it is not parallel [9].

The Design of LUX:

The LUX family consists of four hash functions with hash values 224, 256, 384
or 512 bits namely LUX-224, LUX -256, LUX -384 and LUX -512. Message is
processed as the blocks of 32-bits for LUX-224 and LUX-256, 64-bits for LUX-
384 and LUX-512. The internal state is 768-bits and 1536-bits for LUX-224/256
and LUX-384/512 respectively. LUX algorithm can hash messages of length up to
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264 bits. The internal state contains a round function consisting of Rijndael-like
transformations. The internal state is updated by the state update function, ¢, and
has two buffers shown in Figure 1.

-the buffer, B, is a matrix of 4 x 16 for 224 and 256 bit digests and a matrix
of 8 x 16 for 384 and 512 bit digests,

-the core, C, is a matrix of 4 x 8 for 224 and 256 bit digests or a matrix of
8 x 8 for 384 and 512 bit digests.
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F1GURE 1. The State of LUX [8].

The hash function LUX processes the data in 8-bit words as in Rijndael [10].
In the initialization, the padding is applied to the message. If the size of the last
block of the message is less than 8m, where m is 4 or 8 in bytes for 224 and 256
or 384 and 512 bit hash values respectively, then this block is padded with a ”1”
bit followed by ”0” bits until the length of the block becomes 8m. If the length of
the last message block is 8m already, then two 4-byte blocks for 224 and 256 bit
digests, one 8-byte block for 384 and 512 bit digests are added then the message
is XORed to the first column of the buffer and to the first column of the core. A
cyclic columnwise right rotation is applied to the content of the buffer. In the core,
the messages are applied Rijndael-like transformations, which are:

(1) SubBytes: It is a non-linear byte-wise function. The S-box in Rijndael is
used in this transformation [10]. S(X) =Y where X = X; || X2 where X3
is the first four bits of byte X and X5 is the last four bits of X because of
the S-box property of Rijndael.

(2) ShiftRows: The state is cyclically rotated to left with respect to the given
rotation values. The shift vectors are v = (0, 1, 3,4) for LUX-224 and LUX-
256, and v = (0,1,2,3,4,5,6,7) for LUX-384 and LUX-512 as in Rijndael
[10].
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FIGURE 2. The Hashing of LUX [12]

MixColumns: Each column of the core C is multiplied with a fixed matrix.
This matrix is also the same as in Rijndael [10].

AddConstant: This operation is similar to AddRoundkey operation of Rijn-
dael [10]. However, in LUX, instead of round keys, a constant 0 x 2ad01c64
is XORed to the first column of the core C.

After the state update function, the core matrix C is XORed to the 5" to 1274
columns of the buffer B. Then, the last column Bis of the buffer is XORed to the
last column C5 of the core.

LUX produces the hash value in three phases which are given in 2.

(1)
2)

(3)

Input phase : In this phase, the message is input to the algorithm..

Blank phase : In this phase, 16 rounds without any message input are
applied in order to increase the diffusion of the last message blocks. The
number of blank rounds is increased to 20 after the update of LUX [11].
Output phase : In this phase, the hash value is produced from the state.
The state update function ¢ is applied to the current state S and the mes-
sage block with zeros. It contains 7, 8, 8 and 6 rounds for 224, 256, 512
and 384 bit hash values, respectively. After this process, the content of the
forth column of the core Cs is output as the hash value. Output phase is
discarded after the update of LUX since a correlation between the consecu-
tive output columns of core is found. According to the update of LUX, the
hash value is produced from the seventh column of the core Cg for LUX-224
and the sixth column of the core C5 for LUX-384 after 20 blank rounds [11].
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3. CRYPTANALYSIS OF LUX

In this section, we present the attack of Wu et al. and the distinguisher of
Schmidt-Nielsen introduced during SHA-3 Competition.

3.1. Attack of Wu et.al.: Wu et al. give two kinds of collisions on LUX-256,
namely reduced blank round collision and free-start collision. Also the authors
apply the free-start pre-image attack on LUX-256 [9]. These reduced blank round
collision and free-start collision attacks will be summarized below:

Reduced Blank Round Collision:Wu et al. state that if there were not
enough blank rounds, they could easily construct collision messages. The authors
give a message difference « in the first byte of the message as o = (v, 0,0, 0) as the
first message. Then, the authors choose the second message word § which is pre-
calculated from «. Using the message pair generated by o and g after three blank
rounds, a collision occurs for LUX-224 and a near collision occurs for LUX-256 as
shown in Table 1.

TABLE 1. Differential Path for Reduced Blank Round Collision [9].

round Am | AB AC

0 S —_—
1 «a

2 F_[pop—— [——
blank-1 -Ba- - — — | — —
blank-2 —Bo —f — — | — —
blank-3 —Bo—pf—— | — —
output-1 — Ba—-f— — —_
output-2 — -Ba- - — | — —
output-3 — Pa—P — | — —
output-4 — —Bo—pf— | — —
output-5 — — Ba—-pf— | — —
output-6 — — -Ba- (- | — —
output-7 —— Pa—L0 | — P
output-8 B— v-6e —n a— | v-0e —(

3.2. Schmidt-Nielsen distinguisher: Schmidt-Nielsen gives a distinguisher for
reduced-round LUX by using 256 different messages which differ in the first byte
of the first message block. The author used the square property to give the distin-
guisher [13].

If the first byte in the first column of the core is changed, it will only affect the
first column of the core after the first round since the first row is not shifted in the
state update function ®. The next message block can be arranged to cancel out
this difference in the core so that the buffer is modified without affecting the core.
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Also, because of the structure of LUX, if there exists a difference in the buffer, the
core will not be affected until the difference reaches the last column of the buffer.

4. OUR ATTACK

In this section, we present reduced round second preimage and collision the
attacks on LUX. Our attacks are applicable to both versions of LUX hash family.

In our attack, we used only 2 messages, instead of 256 messages in Schmidt-
Nielsen, to get a distinguisher. To be able to use these 2 messages, first, give a
difference to the first byte of the first message block as shown in Figure 3. Then,
the difference diffuses to the buffer and the core as in Figure 4 after the first message
block is processed. Taking the XOR difference in the second block of the messages
equal to the the difference in the first column of the core, the difference in the core
is canceled as shown in Figure 5. There will be no difference in the core until the
difference in the buffer B reaches the last column. When the difference reaches the
last column of the buffer, the difference is XORed to the last column of the core
as shown in Figure 6. One round later, the hash value is produced as shown in
Figure 7. If one continues the process, difference will spread to the all columns of
the core as in Figure 8. Hence, one cannot control the differences in the core any
more. Therefore, the collisions should be found before the differences in the buffer
affects the core.
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F1GURE 3. Input difference.
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The attack presented by of Wu et al. does not include padding. In this work, we
use the same idea in [9] with taking the padding into consideration. Considering
the messages having last bits as ”100..0” and find a collision, one can remove these
bits and get the same message after padding.

For LUX-256(224) we obtained the following distinguisher results with the ref-
erence implementation of LUX, which results in a 32-bit near collision. We need
two function calls for the 32-bit near collision, where the generic attack needs 2'6
function calls.

Message 1: 0x525252d505030306
Message 2: 0x5252520903010102
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FIGURE 7. After 11 blank rounds.

with message length=63 and with Blank Round=7
LU X (Messagel) ® LUX (Message2) =
0x00000000DAB76D6D72EDF107B6F7D3179E99CD7D5D3847AD4230CE4A

Notice that the reference implementation of LUX inputs the message bytes in
reverse order. Therefore, for instance, the first message is 0x06030305d5525252 in
fact.

Also these messages yield a collision for LUX-224 with 1 blank round shown in
Table 2.

For LUX-512(384) we can improve the results since LUX-512(384) takes 8-byte
message parts as input and also the message is only one 8-byte block. So we get;
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Rijndael round

FIGURE 8. After 12 blank rounds.

TABLE 2. DIFFERENTIAL TRIAL FOR LUX-256

Rounds A m | Buffer Difference Core Difference
0 - 0000 0000 0000 0000 | 0000 0000
1 a 0a00 b000 0000 0000 | bOOO 0000
2 b 0ba0 0b00 0000 0000 | 0000 0000
M.Length 1 | - 00ba 00b0O 0000 0000 | 0000 0000
M.Length 2 | - 000b a00b 0000 0000 | 0000 0000
Blank-1 0 0000 ba00 b000 0000 | 0000 0000
Output-1 0 0000 Oba0 0b00 0000 | 0000 0000
Output-2 0 0000 00ba 00b0 0000 | 0000 0000
Output-3 0 0000 000b a00b 0000 | 0000 0000
Output-4 0 0000 0000 ba00 b000 | 0000 0000
Output-5 0 0000 0000 Oba0 0b0OO | 0000 0000
Output-6 0 0000 0000 00ba 00b0O | 0000 0000
Output-7 0 0000 0000 000b a00b | 0000 000b
Output-8 0 b000 cOde 000f ba00 | cOde 000f

Message 3: 0x525252525252522d0000000000000000
Message 4: 0x52525252525252d775d6d6b79fc2ead6

With message length=127 and with Blank Rounds=8

LUX (Message3) ® LUX (Messaged) =
0x000000000000000041ad7e493f4949920bf243bbab566cd82659b0891bb318b2c33ec
da76a66d3ea0f739d9411e239290896f15e9a658de5d17fd5315447c7ac

Also with these messages we get collisions for LUX-512 with 1 blank round and
for LUX-384 with 3 blank rounds shown in Table 3.



264 FATIH SULAK, ONUR KOGQAK, ELIF SAYGI, MERVE OGUNC, AND BEYZA BOZDEMIR

TaBLE 3. DIFFERENTIAL TRIAL FOR LUX-512

Rounds A m | Buffer Difference Core Difference
0 - 0000 0000 0000 0000 | 0000 0000
1 a 0a00 b000 0000 0000 | BOOO 0000
2 b Oba0 0b00 0000 0000 | 0000 0000
M.Length | - 00ba 00b0 0000 0000 | 0000 0000
Blank-1 0 000b a00b 0000 0000 | 0000 0000
Blank-2 0 0000 ba00 b000 0000 | 0000 0000
Output-1 | 0 0000 Oba0 0b00 0000 | 0000 0000
Output-2 | 0 0000 00ba 00b0 0000 | 0000 0000
Output-3 | 0 0000 000b a00b 0000 | OO0 0000
Output-4 | 0 0000 0000 ba00 b0O0O | 0000 0000
Output-5 | 0 0000 0000 Oba0 0b0O | 0000 0000
Output-6 | 0 0000 0000 00ba 00bO | 0000 0000
Output-7 | 0 0000 0000 000b a00b | 0000 000b
Output-8 | 0 b000 cdef ghij ba00 | cdef ghij

Moreover, we perform a second preimage attack on LUX. For this attack, one has
to choose a message and should find another message which produces the same hash
value. For simplicity, we choose the first message as M1: 0x0000000000000000, but
the attack is applicable for any message. We obtain the first 32-bit of the second
message M2 as M2=M1& « where o = (0 x 01,0 x 00,0 x 00,0 x 00). After one
round of LUX, we take the values of the first column of the core of both messages.
While the value of the first column of core of the first message is 0x077fb349, the
value of the first column of core of the second message is 0x2660ac77. By XORing
these values, we obtain the second 32-bit of the second message M2. Hence, the
second message M2 is 0x00000001211f1f3e. The hash values of these two messages
collide for LUX-224 with 1 blank round. Hence, a second preimage is found for the
message M1 for LUX-224 with one blank round.

Message 1: 0x0000000000000000

Message 2: 0x00000001211f1{3e

with message length=63 and with Blank Round=1

LUX (Messagel) & LUX (Message2) =
0>00000000000000000000000000000000000000000000000000000000

5. CONCLUSION

Attacks on hash functions are generally theoretic and the complexities of attacks
are high. However, in this paper we carry out practical attacks for LUX hash
function family. We give near collision and second pre-image attacks considering
the padding for all hash functions of the LUX family. Moreover, we implement these
attacks and give specific examples for the attacks. We give an example of the second
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pre-image attack for LUX-224 with 1 blank round and examples of collisions and
near-collisions for LUX 224, 256, 384 and 512 by using our implementation based on
the reference implementation of LUX. Our contributions are summarized at Table

4.

TABLE 4. Number of rounds for collision, near collision and second pre-image for

LUX
LUX-224 LUX-256 LUX-384 LUX-512
Collision 1 round - Up to 3 rounds | 1 round
Near Collision Up to 7 rounds | Up to 7 rounds | Up to 8 rounds | Up to 8 rounds
Second pre-image | 1 round - - -

for

On the contrary to the previous works on LUX, we perform the practical attacks
LUX and implement the attacks and hence we give the examples of collisions,

near-collisions and second pre-image of LUX.
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