
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1997

A Secure Active Network Environment Architecture A Secure Active Network Environment Architecture

D. Scott Alexander
University of Pennsylvania

William A. Arbaugh
University of Pennsylvania

Angelos D. Keromytis
University of Pennsylvania

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis, and Jonathan M. Smith, "A Secure Active
Network Environment Architecture", . January 1997.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-97-17.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/114
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/114
mailto:repository@pobox.upenn.edu

A Secure Active Network Environment Architecture A Secure Active Network Environment Architecture

Abstract Abstract
Active Networks are a network infrastructure which is programmable on a per-user or even per-packet
basis. Increasing the flexibility of such network infrastructures invites new security risks. Coping with
these security risks represents the most fundamental contribution of Active Network research. The
security concerns can be divided into those which affect the network as a whole and those which affect
individual elements. It is clear that the element problems must be solved first, as the integrity of network-
level solutions will be based on trust of the network elements.

In this paper, we describe the architecture and implementation of a Secure Active Network Environment

(SANE1), which we believe provides a basis for implementing secure network-level solutions. We
guarantee that a node begins operation in a trusted state with the AEGIS secure bootstrap architecture.
We guarantee that the system remains in a trusted state by applying dynamic integrity checks in the
network element's run time system, a novel naming system, and applying node-node authentication when
needed.

The SANE implementation is for x86 architectures, currently those running one of several varieties of
UNIX.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-97-17.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/114

https://repository.upenn.edu/cis_reports/114

IEEE NETWORK 1

A Secure Active Network Environment Architecture
D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis and Jonathan M. Smith���������	��
��������������������
����

“Trust, but Verify”

Abstract—
Active Networks are a network infrastructure which is programmable

on a per-user or even per-packet basis. Increasing the flexibility of such
network infrastructures invites new security risks. Coping with these secu-
rity risks represents the most fundamental contribution of Active Network
research. The security concerns can be divided into those which affect the
network as a whole and those which affect individual elements. It is clear
that the element problems must be solved first, as the integrity of network-
level solutions will be based on trust of the network elements.

In this paper, we describe the architecture and implementation of a Se-
cure Active Network Environment (SANE1), which we believe provides a
basis for implementing secure network-level solutions. We guarantee that
a node begins operation in a trusted state with the AEGIS secure bootstrap
architecture. We guarantee that the system remains in a trusted state by
applying dynamic integrity checks in the network element’s run time sys-
tem, a novel naming system, and applying node-node authentication when
needed.

The SANE implementation is for x86 architectures, currently those run-
ning one of several varieties of UNIX.

I. INTRODUCTION

A variety of proposals for programmable network infrastruc-
tures are currently extant, such as open signaling [1] and Ac-
tive Networks [2]. These proposals share the goal of improv-
ing network flexibility and functionality through introduction of
an accessible programming abstraction, which may be available
on a per-user or even a per-packet basis. In the SwitchWare
project [3], U. Penn and Bellcore are collaborating on research
into the architecture of Active Network elements.

The goal of programmable network architectures is to provide
an acceleration of network service creation. Protocols provide a
set of rules by which compliant systems can participate in com-
munications. To build a global virtual infrastructure such as the
IP [4] Internet, a “minimal” interoperability requirement was
set, namely a packet format and a common addressing scheme.
The IP hourglass is shown in Figure 1. Service enhancements,
such as the TCP reliable stream protocol [5], occur at the end-
points of the virtual infrastructure. Since all IP-compliant net-
work infrastructures must support the IP protocol, change of the
infrastructure itself is slow and highly constrained. As the In-
ternet has become commercialized, the standardization process
has slowed considerably; yet at the same time there is increasing
demand for enhanced services.

Active Networks follows the approach first proposed in the
“Protocol Boosters” project [6], of enabling on-the-fly modifi-
cation of network functionality, for example to adapt to changes
in link conditions. Protocol Boosting is a design methodology,
but Active Networks provides an infrastructure general enough

Scott Alexander, William Arbaugh, and Angelos Keromytis are each work-
ing toward a Ph.D. in computer and information science at the University of
Pennsylvania.

Jonathan M. Smith is an associate professor at the University of Pennsylvania.
Old Russian saying.�
The pun for InSecure Active Network Environment is obvious (and painful).

IP

WWW

UDP TCP

FTP

ATM
ISDN

FDDI

Ethernet

Overlays

Standard

Subnets

Fig. 1. Hourglass model of internetworking.

to support any network reprogramming. This is done by rais-
ing the level of abstraction of the interoperability layer from a
packet format to a programming environment accessible to pro-
grammers. Not surprisingly, there are applications for a pro-
grammable network infrastructure.

A. Applications of Active Networks

There are many applications of programmable network in-
frastructures, some of which we can imagine today, and some
which will only appear as the limitations and implications of the
technology are discovered. We give here three simple examples
of uses which would (1) enhance flexibility, (2) improve per-
formance over today’s networks, and (3) improve manageability
relative to today’s networks.
� Since the virtual infrastructure provided by IP provides both
forwarding and routing, these services are not subject to user
control. This is a problem if one desires value-added services
such as non-co-routed paths (to enhance throughput via striping
or reliability in the face of link failure). With a programmable
network infrastructure, a larger portion of the network connec-
tivity might be usefully employed for enhanced services. The
most important factor is that this can be done under user con-
trol.
� Congestion remains a major problem for our information in-
frastructures, especially as the number of connected nodes has
exploded without corresponding increases in the core capacity.
Using congestion pricing and e-cash like schemes, we can use
price as a priority mechanism to spread load and let all available
capacity serve as a queuing sink. Per-packet programs can let
packets make their own routing decisions based on available in-
formation and resources, much as an automobile driver reroutes
based on deadlines and traffic reports on the car radio. In this
way, distributed intelligence, low-latency decision-making (i.e.,
close to the congestion point) and economic algorithms (which
are very scalable) can be employed in computer networks.
� Loadable diagnostic functionality is very powerful in network

2 IEEE NETWORK

management for a number of reasons. First, it is of course flex-
ible. Second, it is only loaded when needed and hence need
not be resident on any “fast path”. Third, it allows, when in-
serted in a multiplicity of network elements, a level of dis-
tributed monitoring (e.g., for intrusion detection and other tasks)
that has heretofore proven difficult if not impossible. For ex-
ample, the approach used in Paxson’s thesis [7] of randomized
traceroute probes illustrates the difficulty of obtaining rout-
ing statistics.

B. Threats

Threats to network infrastructure are intimately tied to the
model used for sharing the infrastructure. For example, with the
unreliable transport model provided by the Internet, any security
policies are enforced end-to-end. To the infrastructure, packets
are anonymous; only the destination address is used, in concert
with a routing algorithm, to select an entry from the forwarding
table.

IP packets are anonymous to the routers, and they, at least
before extensions such as MBONE [8] and RSVP [9], are allo-
cated service on a FIFO basis. IPSEC [10] provides authenti-
cation services, but it remains unclear how support for Quality
of Service (such as RSVP) will be integrated with authentica-
tion services. As it stands, the Internet infrastructure is vulner-
able to a variety of denial of service attacks as a consequence
of minimal resource accountability, as well as a variety of other
attacks such as traffic analysis. We note that since the resource
model in the routers is so simple, sophisticated threats are posed
by attacks on services implemented at the endpoints, e.g., the
notorious “Syn-Ack” attack [11] on TCP/IP and the “Ping of
Death” [12].

Active Networks, being more flexible, considerably expand
the threat possibilities. The security threats faced by such ele-
ments are considerable. For example, when a packet containing
code to execute arrives, the system typically must:
� Identify the sending network element
� Identify the sending user
� Authorize access to appropriate resources based on these
identifications
� Allow execution based on the authorizations and security pol-
icy

In networking terminology, the first three steps comprise a
form of admission control, while the final step is a form of polic-
ing. A second view is that of static versus dynamic checking.
Security violations occur when a policy is violated, e.g., reading
a private packet, or exceeding some specified resource usage.

C. A high-level view of a SANE architecture

Systems are organized as layers to limit complexity. A com-
mon layering principle is the use of levels of abstraction to mark
layer boundaries. A computer system is organized in a series
of abstraction levels, each of which defines a “virtual machine”
upon which higher levels of abstraction are constructed. Each
of the virtual machines presupposes that it is operating in an en-
vironment where the abstractions of underlying layers can be
treated as axiomatic. When these suppositions are true, the sys-
tem is said to possess integrity. Without integrity, no system can
be made secure.

Thus, any system is only as secure as the foundation upon
which it is built. For example, a number of attempts were made
in the 1960s and 1970s to produce secure computing systems
using a secure operating system environment as a basis [13].
An essential presumption of the security arguments for these
designs was that the system layers underpinning the operating
system, whether hardware, firmware, or both, were trusted. We
find it surprising, given the great attention paid to operating sys-
tem security [14] [15] that so little attention has been paid to
the underpinnings required for secure operation, e.g., a secure
bootstrapping phase for these operating systems.

In a computer system, the integrity of lower layers is typically
treated as axiomatic by higher layers. Under the presumption
that the hardware comprising the machine (the lowest layer) is
valid, the integrity of a layer can be guaranteed if and only if: (1)
the integrity of the lower layers is checked, and (2) transitions
to higher layers occur only after integrity checks on them are
complete. The resulting integrity “chain” inductively guarantees
system integrity. We call this the Chaining Layered Integrity
Checks (CLIC) model.

The overall approach to security taken in the SwitchWare
project is to provide carefully circumscribed functionality to
network programmers, by means of a programming language
which allows us to limit functionality and run in a controlled
environment. We have implemented a prototype of such a net-
work element, and applied it to the problem of constructing an
extended LAN (bridging).

II. SANE ISSUES AND ARCHITECTURE

In this section we discuss the issues which arise from the
threat model we presume. After a discussion of these issues,
we further discuss integrity and trust relationships at various
levels in the system. Finally, we give a high-level architecture
which addresses the division of integrity checking and enforce-
ment into static and dynamic portions.

A. Separation of Concerns

We make a somewhat artificial, albeit useful, division of our
concerns into static and dynamic. Static concerns are those
which can be checked once, or infrequently, as in the case of
an active network bootstrapping from a cold start into an opera-
tional state. Dynamic concerns are those which must be contin-
uously addressed to maintain the operational state of the system.

There are several major advantages to this division that can
be used in a system design. First, as static checks are done once,
or very few times, they can be very expensive if this pays off in
a significant increase in security. Second, dynamic checks can
be made faster if it is known that the static checks have been
performed in advance. Finally, these divisions usually closely
follow the division of a system into layers of abstraction. If the
proper trust and integrity relationships are preserved, the opera-
tion of the entire system can be trusted.

B. Integrity and Trust

Integrity is a way of saying that a system is what we expect
it is; that is, it is unmodified. Trust is a more complex relation-
ship, as something can be unmodified, but not trusted, while if

ALEXANDER, ARBAUGH, KEROMYTIS, AND SMITH: A SECURE ACTIVE NETWORK ENVIRONMENT ARCHITECTURE 3

a system is trusted, it must remain unmodified for the trust rela-
tionship to hold.

Integrity and Trust relationships in an active network setting
are of several types. In a layered architecture, each layer in a
system trusts the layer below it.

For an active network node, a trusted node architecture can be
constructed by making the lowest layers of the system trusted,
and then ensuring that higher layers depend on the integrity of
these lower layers.

There is, however, a significant difference when the actions of
the node are programmable and the programs come from hosts
or other active network elements. In this case, we must construct
a web of trust between participating elements. Further, trust is
not enough: a downloaded program from a trusted node may be
flawed and may damage the receiving node. Dynamic integrity
checks ensure that the node remains a participating element of
the active network in spite of such threats.

It is clear then that any architecture for system security in an
Active Network must use a combination of static checks and
dynamic checks to remain secure.

C. Architecture

The basic layered structure of the Secure Active Network En-
vironment (SANE) is shown in Figure 2. Here, we will ex-
plain the overall organization of the architecture and its principal
goals. The remainder of this article expands on the components
of the architecture.

Loadable Modules

Module Checking

Caml Runtime/Loader

Linux Process VM

O.S. (e.g., Linux)

Card ROMS, CMOS,...

BIOS Level 1

Memory Protection

Boundary

Secure Bootstrap

and Recovery, via

AEGIS

Integrity

Dependencies

Remote Authentication

of Modules

Fig. 2. SANE Architecture

The lower layers of the architecture ensure that the system
starts in an expected state. The design utilizes a secure bootstrap
architecture, called AEGIS, to reach the stage where dynamic
integrity checks can be applied on a per-user or per-packet ba-
sis. AEGIS assumes the integrity of the system level-1 BIOS,
and little else2. It then repeatedly, until the operational active
network element is operating, checks the integrity of the suc-
ceeding layer in the bootstrap before passing control to it. In-�

For recovery, a network-accessible trusted source is required.

tegrity is checked with a digital signature. This process results
in the expected operational system starting execution; it makes
no guarantees that that system operates correctly. Eventually,
we hope to address at least a fraction of operational correctness
issues with the application of formal methods.

When the active network element system is operational, it
maintains security in several ways. First, it performs remote
authentication when required for node-to-node authentication.
Second, it provides a restricted execution environment for the
evaluation of switchlets (the programs received from the net-
work). Finally, it uses a novel naming scheme we have devel-
oped to partition the node’s services name space between users.
The authentication and integrity checks performed before a lan-
guage system begins operating on it, such as checking a digi-
tal signature, are static. This is in contrast to dynamic checks
performed (e.g., by trying to type-check the packet’s code or
constrain its execution). These latter checks are performed fre-
quently and thus must be performed efficiently; they guarantee
that the network element remains secure, and remains operating.

D. Public Key Infrastructure

A very important element of our proposed architecture is the
public key infrastructure. It is assumed that every user (or group
of users) and every active element own a public/private key pair,
and that these keys (and certificates) are used to authenticate
and authorize actions of those entities3. It is also desirable that
the infrastructure allows selective authorization delegation, so
that flexible access and resource control policies can be built.
Finally, depending on the underlying network fabric, the prefer-
able method to revoke a certificate is by expiration; this mini-
mizes network traffic when authorization checks are performed.
In our implementation we intend to use SPKI [16] and Policy-
Maker [17].

III. AEGIS ARCHITECTURE

An ideal CLIC would work with each level verifying the next
as represented by the recurrence shown in equation 1.�������	��
���

����������� ��������� �"!#�$���&%
for ')(+*-,�. � (1)

where
���

represents a boolean value of the integrity of level * ,. represents the number of levels in the bootstrap, and
�

is the
boolean and operation.

� �
is the verification function associ-

ated with the *0/"1 level.
���

takes as its only argument the level
to verify, and it returns a boolean value as a result. Unfortu-
nately, implementing the recurrence in equation 1 is difficult, if
not impossible, in current computer systems.

Without a secure bootstrap the evaluator running on the net-
work element cannot be trusted since it is invoked by an un-
trusted process.

A. AEGIS Overview

AEGIS modifies the boot process shown in Figure 3 so that all
executable code, except for a very small section of trusted code,
is verified prior to execution by using a digital signature. This is2

Key owners will be referred to as principals.

4 IEEE NETWORK

accomplished through modifications and additions to the BIOS
(Basic Input Output System). The BIOS contains the verifica-
tion code, and public key certificate(s). In essence, the trusted
software serves as the root of an authentication chain that ex-
tends to the evaluator and potentially beyond to “active” packets.
In the AEGIS boot process, either the active network element is
started, or a recovery process is entered to repair any integrity
failure detected. Once the repair is completed, the system is
restarted to ensure that the system boots. This entire process
occurs without user intervention.

In addition to ensuring that the system boots in a secure man-
ner, AEGIS can also be used to maintain the hardware and soft-
ware configuration of a machine. Since AEGIS maintains a copy
of the signature for each expansion card4, any additional expan-
sion cards will fail the integrity test. Similarly, a new evaluator
cannot be started since the boot block would change, and the
new boot block would fail the integrity test.

B. AEGIS Boot Process

Every computer with the IBM PC architecture follows ap-
proximately the same boot process. We have divided this pro-
cess into four levels of abstraction (see Figure 3), which corre-
spond to phases of the bootstrap operation. The first phase is the
Power on Self Test or POST [18]. POST is invoked in one of
four ways:
1. Applying power to the computer automatically invokes
POST causing the processor to jump to the entry point indicated
by the processor reset vector.
2. Hardware reset also causes the processor to jump to the entry
point indicated by the processor reset vector.
3. Warm boot (ctrl-alt-del under DOS) invokes POST without
testing or initializing the upper 64K of system memory.
4. Software programs, if permitted by the operating system, can
jump to the processor reset vector.
In each of the cases above, a sequence of tests are conducted.
All of these tests, except for the initial processor self test, are
under the control of the system BIOS.

Once the BIOS has performed all of its power on tests, it be-
gins searching for expansion card ROMs which are identified
in memory by a specific signature. Once a valid ROM signa-
ture is found by the BIOS, control is immediately passed to it.
When the ROM completes its execution, control is returned to
the BIOS.

The final step of the POST process calls the BIOS operat-
ing system bootstrap interrupt. The bootstrap code first finds a
bootable disk by searching the disk search order defined in the
CMOS. Once it finds a bootable disk, it loads the primary boot
block into memory and passes control to it. The code contained
in the boot block proceeds to load the operating system, or a sec-
ondary boot block depending on the operating system [19] [20]
or boot loader [21].

Ideally, the boot process would proceed in a series of levels
with each level passing control to the next until the operating
system kernel is running as modeled by Equation 1. Unfortu-
nately, the IBM architecture uses a “star like” model which is
shown in Figure 3.
�
Ideally, the signature would be embedded in the firmware of the ROM.

Expansion ROMs

System BIOS

Initiate POST

Operating System

Boot Block

Level 1

Level 2

Level 3

Level 4

Expansion ROMs

Fig. 3. IBM PC boot process

B.1 A Layered Boot Process

We have divided the boot process into several levels to sim-
plify and organize the AEGIS BIOS modifications, as shown
in Figure 4. Each increasing level adds functionality to the sys-
tem, providing correspondingly higher levels of abstraction. The
lowest level is Level 0. Level 0 contains the small section of
trusted software, digital signatures, public key certificates, and
recovery code. The integrity of this level is assumed to be valid.
We do, however, perform an initial checksum test to identify
PROM failures. The first level contains the remainder of the
usual BIOS code, and the CMOS. The second level contains all
of the expansion cards and their associated ROMs, if any. The
third level contains the operating system boot block(s). These
are resident on the bootable device and are responsible for load-
ing the operating system kernel. The fourth level contains the
operating system, and the fifth and final level contains user level
programs and any network hosts.

The transition between levels in a traditional boot process is
accomplished with a jump or a call instruction without any at-
tempt at verifying the integrity of the next level. AEGIS, on
the other hand, uses public key cryptography and cryptographic
hashes to protect the transition from each lower level to the next
higher one, and its recovery process ensures the integrity of the
next level in the event of failures. The pseudo code for the action
taken at each level,

!
, before transition to level

!����
is shown in

Figure 5. The function IntegrityValid first finds the component
certificate for Level l. Ideally this will be stored in the com-
ponent itself, but initially it will be stored in a table contained
in Level 0. Once the certificate, c, is found. VerifyCertChain
then verifies that the certificate(s) form a “chain” of trust from
the component certificate to the root Certificate Authority Pub-
lic Key. If they do not, then both VerifyCertChain and Integri-
tyValid return FALSE and a recovery procedure is entered. If
VerifyCertChain returns TRUE, then the signature contained in
the certificate is verified using the public key contained in the
certificate.

ALEXANDER, ARBAUGH, KEROMYTIS, AND SMITH: A SECURE ACTIVE NETWORK ENVIRONMENT ARCHITECTURE 5

Expansion ROMs

Network Host

BIOS Section 1

BIOS Section 2

Boot Block

Operating System

Initiate POST

AEGIS ROM

Recovery Transition

Control Transition

Legend

Loader

Core Switchlet

Libraries/ Switchlets

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

Active
Node

Active
Network
Element

Fig. 4. AEGIS boot control flow

B.2 AEGIS BIOS Modifications

AEGIS modifies the boot process shown in Figure 3 by divid-
ing the BIOS into two logical sections. The first section contains
the bare essentials needed for integrity verification and recovery.
It comprises the “trusted software”. The second section contains
the remainder of the BIOS and the CMOS.

The first section executes and performs the standard check-
sum calculation over its address space to protect against ROM
failures. Following successful completion of the checksum, the
IntegrityValid function is called. If the function returns true, then
control is passed to the second section, i.e., Level 1.

The second section proceeds normally with one change. Prior
to executing an expansion ROM, the function IntegrityValid is
called. If the function returns true, then control is passed to the
expansion ROM. Once the verification of each expansion ROM
is complete (Level 2), the BIOS passes control to the operat-
ing system bootstrap code. The bootstrap code was previously
verified as part of the second section of the BIOS or expansion
ROM, and thus no further verification is required. The bootstrap
code finds the bootable device and verifies the boot block.

Assuming that the boot block is verified successfully, control
is passed to it (Level 3). If a secondary boot block is required,
then it is verified by the primary block before passing control
to it. Finally, the kernel is verified by the last boot block in the
chain before passing control to it (Level 4). This results in the

Boolean IntegrityValid(Level l) {
Certificate c = LookupCert(l);

if (VerifyCertChain(c))
return DSAVerify(SHA1(l), c);

else return FALSE;
}

if (IntegrityValid(L+1))) {
GOTO(L+1);

} else {
GOTO(Recovery);

}

Fig. 5. Layer Transition Pseudo code

CLIC model shown in Equation 2 and the layering model shown
in Figure 4. Any integrity failures identified in the above process
are recovered through a trusted repository.

��� �
True

�
���$���	�

��� ��
� � � � � �"! ����� %

for * � ' ��� ��� �� � ���
	�� � � � �"! � ��� � %
for * � � �

��� � � ��� � �"!-����� % %
for * �����

(2)

C. Recovery Process

The trusted repository can either be an expansion ROM board
that contains verified copies of the required software, or it can
be a another active node. If the repository is a ROM board,
then simple memory copies can repair or shadow failures. If the
repository is a network host, then a protocol with strong authen-
tication is required. We describe this protocol in Section III-C.1.

In the case of a network host, the detection of an integrity
failure causes the system to boot into a recovery kernel con-
tained on the network card ROM. The recovery kernel contacts
a “trusted” host through the secure protocol described in this
paper to recover a signed copy of the failed component. The
failed component is then shadowed or repaired, and the system
is restarted (warm boot).

C.1 Recovery Protocol

The protocol we use throughout this paper and in our architec-
ture is based on the Station to Station protocol [22]. The basis of
the protocol is the Diffie-Hellman exchange [23] for key estab-
lishment, and public key signatures for authentication (to avoid
man in the middle attacks). In our architecture we use DSA [24]
digital signature standard, but other (RSA [25] etc.) algorithms
can be used.

Briefly, this protocol allows each participant to establish the
identity of the other, discover the operations that the peer is au-
thorized to perform, and allows the two parties to establish a
shared secret to be used for a variety of purposes including the
authentication and encryption of future traffic. This is accom-
plished by having each party send the other both an authentica-
tion certificate and an authorization certificate and using Diffie-
Hellman key exchange to establish the shared secret. The proto-
col is carried out with a total of three messages transmitted.

6 IEEE NETWORK

A node that has detected an integrity failure can establish this
trust relationship with a repository. It can then request a new
version of the failed component. The repository will send the
new component using DSA to guarantee that this is the correct
component and using the shared secret to ensure that the com-
ponent is not tampered with while transitting the network.

Authentication Exchange Protocol

In more detail, here’s a description of the authentication
exchange protocol. The initiator sends a message to the
other party containing its authorization and authentication
certificates. The responder receives the message and ver-
ifies the initiator’s signature on the authentication certifi-
cate and that the hash contained in the authentication cer-
tificate matches that of the message, � . The authorization
certificate is also verifieda.
If all are valid and the timestamp on the authentication
certificate is within bounds, then the responder sends to
the initiator a message containing its authorization and
authentication certificates. The responder’s authentication
certificate may include the optional DH parameters, � and
� , and � , where � � �����	��
 � . If the DH parameters
are not included in the certificate, then default values for
� and � are used. Currently, we are using the same de-
fault values as those used in SKIP [26]. The responder’s
nonce, � .��.� � , and the initiator’s nonce, ��.��.� � , are also
included in the message. The initiator receives this mes-
sage and verifies the signatures on the authentication and
authorization certificates, that the hash in the responder’s
authentication certificate matches the message hash, and
that ��.��.� � matches that sent in the first message.
If all are valid and the timestamp value of the authenti-
cation certificate is within bounds and ��.��.� � matches
that sent in the first message, then the initiator sends a
signed message to the responder containing its DH pa-
rameter � where � � �����	��
 � , and the responder’s
nonce � .��.� � . The responder receives the message and
verifies the signature and that � .��.� � matches that sent in
its previous message. If both are valid, then the responder
can generate the shared secret, � , using DH. The initiator
similarly generates � . Now, � , can be used to authenti-
cate messages between the initiator and the responder until
such time as both agree to change � . The figure depicts the
entire exchange between the initiator and the responder.
The use of the authentication certificate assists in ensur-
ing that the protocol is “Fail Stop” [27] through the use of
nonces and a short validity period for the certificate. The
use of � .��.� � also permits the responder to reuse � over
a limited period. This reduces the computational overhead
on the responder (who will typically be an active node)
during high activity periods. The potential for a Syn-Ack
like denial of service attack is mitigated in the same man-
ner by the authentication certificate.
�

This implies that there is a certificate chain from the responder’s key
to the initiator’s certificate. Trusted third parties can be part (or the be-
ginning) of such a chain.

X, snonce, S (M)

P CAP

CAN

Client
CAR

Client

VClient

Y=g mod py

VCA CAR

Client

CAN

Client

()

()

CAN

Server
CAR

x
k = Y mod p

hash = H(M)?

hash = H(M)?

CAN

Server

CAR

Server

X=g mod px

ServerV ()

CAV ()

cnonce = cnonce?

ClientV Client(S (M))

k = X mod p
y

snonce = snonce
?

Client Server

,

,
Server

Client

SHA1MAC(M, k)

CA

Authentication Message Exchange

IV. BOOTSTRAPPING A SANE NETWORK

Once the node has been brought up in a secure manner, it
attempts to establish trust relations with its direct peers. The
same protocol that was described in section III-C.1 is used to
exchange certificates and establish a shared secret key with each
of the peer active nodes. The certificates exchanged at this stage
are used to verify the neighbors, establish administrative do-
mains (and their boundaries) and the trust relations inside and
between those domains. The secret key and the trust relations
will then be used to:
� Minimize path setup costs, as we’ll describe in the section VI-
A.
� Allow mobile-agent [28] [29] type of applications, where per-
hop authentication (and possibly encryption) may be necessary.
An API will be defined that lets a programmer make use of these
services.
� Secure message exchange between peer active nodes, such as
for routing messages or network management.
� Establish authenticated packet forwarding channels.
� Deter link traffic analysis; the active node administrator will
then be able to allocate a percentage of the available bandwidth
as an encrypted, always-busy, channel. An eavesdropper on the
link will then be unable to determine which messages were for-
warded to the peer node. Again, an API will be defined that
programmers can take advantage of.

V. THE ACTIVE NETWORK INFRASTRUCTURE

With the operating system verified and booted, the next step
is to make the node part of the active network. This is accom-
plished by loading two final layers. Given our definition of ac-
tive networks, not surprisingly, the lower layer of our network
infrastructure is a loader which can load switchlets, our active
programs. On top of the loader is a Core Switchlet which pro-
vides essential services. Finally, a non-privileged layer consist-
ing of a set of library routines which provide common services
is added. This layering, together with the applications or switch-
lets, is illustrated in Figure 4.

The lower two layers provide the basis of the dynamic secu-
rity model in the network infrastructure. They do this by using a

ALEXANDER, ARBAUGH, KEROMYTIS, AND SMITH: A SECURE ACTIVE NETWORK ENVIRONMENT ARCHITECTURE 7

strongly-typed language which supports garbage collection and
module thinning. Using these techniques, we move from static
to dynamic enforcement of our security mechanisms.

A. Why Does the Language Matter?

The programming language defines what operations the pro-
grammer can perform. By careful choice of language, we
can limit some of the undesirable actions that a programmer
might unintentionally or maliciously perform. Thus, through
the choice of language, we can prevent certain classes of secu-
rity violations.

The first property that we desire from the language is strong
typing. In a strongly typed language, the only way to convert
data from one type to another is through a well-defined conver-
sion routine. Thus, one can typically transform an integer into a
floating point value, but cannot perform conversions to or from a
pointer type. In a weakly typed language like C, it is this ability
to freely convert types which leads to the need for heavier secu-
rity mechanisms including separation of address spaces between
processes.

The second property that we desire is garbage collection. If
the programmer is able to manage storage directly, two prob-
lems can result. The first is failure to free storage which can
lead to loss of performance throughout the system. The second,
more dangerous problem, occurs when storage is returned to the
allocator and then referenced later. If the storage has been reas-
signed to another user, it is possible to discover another user’s
information. Worse yet, if the address is no longer valid, a fault
results which must be handled to avoid crashing the entire sys-
tem.

The third property that we desire is module thinning. By
modules, we mean a set of functions and values which are have
been combined into a package by the programmer. Module thin-
ning is a technique which allows us to pick and choose which
functions and values from a module are available to a switchlet
which we load. For example, in the Thread module that we use,
there is a function which allows one to kill any program on the
system by specifying its process ID. This is inappropriate for
switchlets, so we do not make this available except to the loader
and the Core Switchlet.

The final property which we require is the ability to dynami-
cally load programs. Clearly, if we intend to run programs that
arrive over the net, we must have a way to link those programs
into the running system and evaluate them. Dynamic loading
gives us this ability.

The Caml programming language [30] provides these fea-
tures. Caml additionally provides us with a threads interface and
static type checking. The former allows a natural programming
style and precludes the need to implement a scheduler. The lat-
ter pushes many of the costs associated with the type system to
compile time. Thus, checks that other systems perform repeat-
edly at runtime, we perform once at compile time.

B. The Loader

The loader forms the basis of the dynamic security for our
network infrastructure. Once it has been securely started by the
AEGIS bootstrap, the loader provides a minimal set of services
necessary to find the Core Switchlet and start it running. It also

provides policy and mechanism for making changes to the Core
Switchlet, if that is desirable.

The loader is also responsible for providing the mechanism
by which modules are loaded. Currently, the mechanisms pro-
vided are loading from disk or loading from a string. The Core
Switchlet governs the policy by which this mechanism may be
used and may provide interfaces to the mechanism.

C. The Core Switchlet

The Core Switchlet is the privileged portion of the system
visible to the user. Through the use of module thinning, it de-
termines which functions and values are visible to which users.
The services that it provides are broken into five modules.

The first module is Safestd. This module provides the
functions that one would expect to find in any programming
language including addition and multiplication as well as more
complex abstractions like lists, arrays, and queues. Many func-
tions including the I/O functions have been thinned from this
module to make it safe.

The next module is Safeunix. This module has been very
heavily thinned; it gives access to Unix error information, some
time related functions, and some types that are needed for the
networking interface that we provide. The rest of the access to
Unix functions has been thinned away.

In order to allow the user to supply error or status messages,
we have a Log module. The user supplies a string which will
be saved to a system log. What and where this system log is,
is not defined. For convenience while debugging, we currently
write the messages to a disk file, but for security purposes, we
intend to extend this module to limit the amount and frequency
of messages produced by any given thread.

Access to the network is provided by the Unixnet module.
This allows switchlets to access network interfaces for either
sending or receiving frames. Currently, only one switchlet is
allowed to have access to a given interface. In the near future,
we intend to modify this module to receive and demultiplex the
data. Access to the data will then be available to any switchlet,
assuming said switchlet can prove that it has the authority to
access the data as described in section VI-A.

The last of the five modules is Safethread. As mentioned,
this provides a threads package which helps in the structuring
of the system. Each switchlet runs in a thread and is capable
of creating additional threads. When a switchlet is first started,
it is given an identifier inside of an opaque type. (An opaque
type is one which has no conversion functions to or from any
other type. Thus, the identifier cannot be forged.) In order to
use additional resources including creating additional threads,
the switchlet must provide its identifier which allows the system
to check the resources currently consumed and allow or deny the
request for additional usage.

D. The Library

The library is a set of functions which provide useful routines
which do not require privilege to run. The proper set of functions
for the library is a continuing area of research. Some of the
things that are in the library for the experiments that we have
performed include utility functions and implementations of IP
and UDP [31].

8 IEEE NETWORK

E. The Active Bridge: An Active Networking Application

To demonstrate the utility of this infrastructure, we have im-
plemented an Active Bridge. This bridge is built from several
switchlets which build up layers of functionality. In particular,
by loading just the lowest layer, we can demonstrate a buffered
repeater. The next switchlet adds a learning algorithm. Finally,
the highest layer of the bridge adds spanning tree functionality
to give us a nearly compliant [32] bridge.

VI. DYNAMIC SECURITY CHECKS

Once the active node is operating, we rely upon dynamic se-
curity checks and measures to ensure that the access and re-
source use policies defined by the administrator are followed.
Furthermore, the node needs to provide certain guarantees in re-
gards to service access5; some of these guarantees are provided
by the underlying operating system and programming language.
However, some of our guarantees must be built through addi-
tional mechanisms provided by our system.

A. Access Control

One of the basic goals of active networks is allowing users
to install their own protocols on network elements, in the form
of dynamically loaded modules. Since these modules may have
access to critical resources, it is imperative that this access be
controlled. Furthermore, in some cases it is necessary to authen-
ticate packets belonging to some particular packet sequence, if
they need to be handled in some “privileged” manner (e.g., go-
ing through a firewall or delivery to some service). In the next
two sections, we extend the mechanism described in section III-
C.1 to provide authentication and authorization mechanisms.

These trust relations will be established along a path of active
nodes in most cases. Two possible methods of path establish-
ment are:
� Via direct negotiation with each node, possibly in parallel.
The implication here is that the initiator can both identify and
communicate directly with these nodes, instead of having to dis-
cover the path.
� In a “telescopic” manner, in which a scout packet would iden-
tify the next node at each step and initiate the negotiation. In this
model, each negotiation has to finish before the next one begins
(in order to establish a communications path from the current
node back to the initiator).

A.1 Principal Authentication/Authorization

On an active node, when a principal requests an action (such
as use a resource) that is privileged according to local policy,
he has to provide credentials that authorize him to perform said
action. The protocol that would implement the negotiation is the
modified version of the STS protocol, as described in section III-
C.1.

Once the node and the principal have established a security
association, they can use it to authenticate (and possibly en-
crypt) all or some of the messages between them. The node
retains all the credentials associated with this exchange, so it
can determine whether future attempted actions of the principal
are acceptable.

�

Essentially, user isolation.

Figure 6 shows the packet format once the security associ-
ation is established. The authenticator will be included in the
packet along with an SPI6 and a replay detection counter, simi-
lar to the IPsec Authentication Header [33].

.Packet Payload

Replay Detection Counter

Packet Headers

Authenticators

SPI

Authentication Data

.

.
Other Authenticators.

Fig. 6. Authenticator Header

However, doing this negotiation with every node along a path
to a remote end node is bound to prove costly in two ways:
1. time (both real and CPU cycles spent on the cryptographic
operations)
2. more importantly, packet overhead; for every node in the
path, there would have to be a different authenticator (since the
shared key is different between the principal and each node)

The impact of these problems and their solutions depends on
the environment in which the active node is operating. Based
on the types of attacks which must be protected against, we de-
scribe a series of measures which may be taken.

The first step is a simple optimization; once the described ne-
gotiation has taken place, the principal can then use the shared
key to distribute another secret key to all the nodes in the path.
By using this common key it is possible to have only one au-
thenticator in the packet, which would be verifiable by all the
nodes in the path.

There are two potential problems with this approach. There is
still significant computational and path establishment overhead.
If connections tend to be reasonably long running, this cost will
be dwarfed.

A worse problem occurs because a (malicious) node in the
path can perform actions as if it were the principal, on another
node, since the key is shared between all the nodes. There are a
few workarounds to this problem. In some environments, it may
be adequate to accept the problem and to establish paths only
through trusted nodes. This is likely to be impossible in other
environments.

A second workaround is to distinguish between packet au-
thentication and privileged operations. Authentication can be
done using the common key, while privileged operations have
to make use of the key known only to the particular node and
the principal. This means that control operations will be safe,
but that “data” can be forged or modified by a malicious or mal-
functioning node. Finally, to avoid delivery of “bad” data to the
remote endpoint, the packet would then have a second authenti-
cator in it, which would be only verifiable by the two endpoints
(and hence be unforgeable7 by intermediate nodes). If it is im-

�

The SPI is a value used along with the principal and/or node identifiers to
indicate the particular security association.

�

Keeping in mind the assumptions made about the strength of the key and the
algorithm used, of course.

ALEXANDER, ARBAUGH, KEROMYTIS, AND SMITH: A SECURE ACTIVE NETWORK ENVIRONMENT ARCHITECTURE 9

portant to not deliver corrupted packets to modules running in
intermediate nodes, there is a certain probabilistic scheme that
can be used to detect tampering, described in Appendix A.

A last optimization is possible, by taking into consideration
the results of section IV. If active nodes in the same administra-
tive domain have a common set of policies regarding access con-
trol and resource utilization, it may be sufficient to go through
the negotiation protocol once for each such domain (when enter-
ing it), and then having the credentials forwarded as necessary,
as shown in Figure 7. This reduces the computational effort
and the packet overhead necessary to authenticate/authorize the
principal and subsequent packets.

Credential Forwarding Possible

B 2

A 3

A 2

A 1
C 1

C 2

C 3

D 2

D 1

B 1

Domain A

Domain B Domain C

Domain D

Complete Authentication Required

Fig. 7. Administrative Clouds and Path Setup

The above optimizations can be applied when the policy spec-
ified by the owner of the packet flow and the individual node
policies allow them. Access policy to a module (once it has
been successfully loaded) is specified by the module itself. The
active node will then enforce this policy.

A.2 Single Packet Authentication

For certain classes of applications, the initiating principal may
not know exactly which nodes an active packet will visit (e.g.,
mobile agent type of applications). This means that security as-
sociation negotiation, as described in the previous section, may
not be feasible. However, these programs may need to per-
form privileged operations on the active nodes, which means
that some form of security guarantees has to be provided. There
are a few approaches that can be taken:
� If the administrative domains through which the switchlet will
travel are known a priori, the initiating principal may establish
security associations with nodes in those domains. The estab-
lished trust relations described in section IV can then be used to
forward the credentials inside those domains.
� If the switchlet does not need to perform any privileged op-
erations but requires some security guarantees of its own, it can
make use of the existing peer to peer trust relations to do per-hop
authentication and/or encryption. For example, if a switchlet re-
quires that each node in its path belong to a list of nodes that it
trusts, and since it must trust its creating node, at any hop, it is
on a trusted node and can request that that node use its security
relations to forward it to another node that is on its list of trusted
nodes.

� The switchlet can carry all necessary authorizations the ini-
tiating principals believes it may need. These authorizations
would be in the form of public key certificates, and the agent
needs to be authenticated through a digital signature. While
this approach is quite simple, it has two primary drawbacks. It
wastes packet space, since all the certificates need to be carried
even if they are not used. Further, it is hard to avoid switchlet-
replay, unless we assume either network wide (roughly) syn-
chronized clocks or persistent state on the active nodes8. Pro-
viding these allows a series of potential denial of service attacks.
� When the switchlet needs to perform some privileged opera-
tion and needs credentials, it can notify the initiating principal
who can then initiate a negotiation to establish a security asso-
ciation. Credentials can then be carried along while inside the
same administrative domain. The assumption here is that the
switchlet is able to send the notification message back to the
principal, which depends on the both the underlying network
infrastructure and the node policies.

VII. DYNAMIC RESOURCE NAMING

Conceptually, loaded modules can be considered as the inter-
faces to user defined resources. Such resources will generally
be shared between different sessions of the same principal, or
even between different principals. These principals will need to
identify (name) the particular resource they want to use.

The “naive” way of naming (using some user-defined value)
would not work well, because names need to be unique across
the active network. If users arbitrarily assign names to their re-
sources, it is conceivable that there will be accidental naming
collisions; worse yet, forging names is possible, allowing for
resource-in-the-middle attacks. Alternatively, some centralized
authority could assign names per request, making sure these re-
main unique; this solution is unattractive because it does not
scale well as the number of names required increases.

We present a decentralized way of naming dynamic resources
that does not allow name collisions, accidental or malicious. We
are one assumption: in order to load a module on the active ele-
ment, the principal must pass some type of authorization check.
Furthermore, this authorization is fine grained; each principal
is distinguishable for our purposes9. We believe that this as-
sumption is reasonable, since we expect that an active element
owner will probably want to limit the resources that any prin-
cipal will potentially consume. (Moreover, we expect that the
owner will want to give different access and resource rights to
different principals.) Finally, the principal who loaded a switch-
let to the node and the programmer may be different entities; the
switchlet may or may not include a signature from the program-
mer.

There are then different ways of naming a dynamic resource,
each with different semantics:
� The name could be the one-way hash of the code. Assuming
certain properties of the hash function, this uniquely identifies
the module. The two potential drawbacks to this approach are
that different versions of related services have unrelated names
and that users have to discover the hash value (either through

�

The nodes can then keep track of nonces or agent signatures that have been
processed, for as long as the authorizations are valid.

�

But remember that principals can be groups.

10 IEEE NETWORK

access to the code or by finding a trusted source that will give
the user the hash value). To use the module represented by this
name, a switchlet would have to trust only the module itself.
� The name could be the public key (or its one-way hash) of the
module programmer, along with some other identifier assigned
by the programmer (such as an ASCII string). The assumption
here is that the code may be signed by the programmer (who
may be different from the principal who loaded it on the active
element). Version control is possible (subject to the structure of
the programmer-assigned identifier). The signature would have
to be verified by the active node before this name becomes avail-
able. In this case, a switchlet would need to trust the program-
mer before using the module represented by this name.
� The name could be the public key (or its one-way hash) of the
principal who loaded the code onto the active element, along
with some other identifier assigned by the principal. Since the
principal had to pass an authentication/authorization check be-
fore he was allowed to load the code, there is no additional over-
head imposed by this naming scheme. In this case, the switchlet
must trust the installer before using the module so represented.

In fact, it is possible to combine these naming schemes as they
are not mutually exclusive. Different programs may access the
same resource through different names, depending on the trust
policies of their respective owners. Actually accessing these ser-
vices depends on the node architecture and implementation; we
plan to use a portmapper-like approach, but other approaches
(e.g., language constructs) are possible.

As an example, imagine a principal � with a public key
�

who loads a new service that implements IP packet forwarding
on an active node. The service was written by a programmer�

who signed it with his key � . The hash of the code is also
known to be � . Any user can then access this service as:
1. � � �

“IPv4/version1” � — the IPv4 module (version 1) loaded
by � ,
2. ��� �

“IPv4/version1” � — the IPv4 module (version 1) written
by

�
,

3. ����� — the IPv4 module known to the user, or
4. ��� �

“IPv4/version2” 	 “IPv4/version1” � — the IPv4 module
(version 2) if available, otherwise the previous version of the
same module.

VIII. SANE IMPLEMENTATION STATUS

The SANE architecture is piece-wise implemented and the
integration of the components is now underway. The AEGIS
secure bootstrap architecture is currently implemented using a
commercial BIOS, and has been tested up to the O.S. kernel
level using the FreeBSD UNIX implementation for Intel x86 ar-
chitecture machines. The AEGIS recovery algorithms are under
development, but will draw on an available implementation of
the IPSEC protocols for FreeBSD.

The dynamic integrity checking and availability-preservation
features of the SwitchWare kernel have been implemented and
tested in the prototype Active Bridge. In particular, the Ac-
tive Bridge demonstrated that the use of functional languages
(which are advantageous from a verification perspective) need
not impose a severe performance penalty; while full details can
be found in Alexander, et al. [34], an unoptimized prototype
Active Bridge demonstrated Ethernet frame forwarding perfor-

mance of ca. 1800 frames/second and a bottleneck throughput
(tested with ttcp between two Pentia running Linux) of about
16 Mbps on 100 Mbps Ethernet connections.

Our current project is integrating these components in a
SANE prototype. The methodology is to use the Utah OS Kit
to build a monolithic kernel (one which exists to boot the Caml
loader), and then check this using AEGIS. This project is well
underway, and will provide a direct integrity chain between the
low-level integrity assumptions and the running dynamic in-
tegrity checks.

IX. SANE FUTURE WORK

While the Secure Active Network Environment we have pro-
posed provides an integrity-checked network element, secured
collaboration between these elements, and a scaffolding to build
a language environment capable of per-packet or per-flow re-
strictions and integrity checks, a great deal of work must be done
to complete SANE.

We feel that two areas deserve concerted attention by mem-
bers of the Active Networks research effort in general, and they
are particular foci of our continuing efforts in SANE.

The first area to address is the issue of resource management.
While initial active network prototyping will focus on best-effort
services as a way to obtain operational infrastructure, resource
management is essential to many network services such as trans-
port of continuous media traffic. Providing explicit access to
the computational and storage capabilities of a node means that
there are some very difficult resource co-scheduling problems.
(Examples include pinning memory, providing access to a port,
scheduling a process.) An active network element must become
a multiple resource multiplexer. This opens a variety of new
attacks on the network infrastructure including denials of ser-
vice and new covert channels. We believe that the successful
approach will take the form of modern operating systems which
control multiplexing at a single system layer, such as the Uni-
versity of Cambridge Nemesis operating system [35] or the Uni-
versity of Arizona Scout/Escort system [36]. These systems al-
low explicit resource allocation, as well as mechanism for policy
enforcement. Putting services in multiplexing-controlled “con-
tainers” prevents most overload-based denial-of-service attacks.

The second issue is one of distributed programming. Our
threat model has focused on building secure nodes, and provid-
ing the infrastructure upon which secure network services can be
built. It is a great challenge to build systems which can examine
programs, even greatly restricted programs, and decide whether
or not they are safe to load. While the halting problem springs to
mind, we have a much less difficult problem at the node. Even
if we use a language such as the Programming Language for
Active Networks (PLAN) [37] (which is restricted to provide
guarantees including the termination of all programs), some pro-
grams must resort to “services” which allow a programmer (with
proper authorization) to perform actions outside of the scope of
PLAN itself. It is easy to imagine a well-meaning programmer
writing a simple service to read a packet from an input port and
write it to two output ports; with such a program a multicast
facility might be constructed. If this service was indiscrimi-
nately deployed however, packets could be replicated without
bound and the network could collapse of overload. This points

ALEXANDER, ARBAUGH, KEROMYTIS, AND SMITH: A SECURE ACTIVE NETWORK ENVIRONMENT ARCHITECTURE 11

out the need for systematic global checking and cooperation be-
tween node, for which we have provided some infrastructure in
SANE. The distinction this illustrates is the difference between
“node safe” programs and “network safe” programs. We believe
that techniques such as the Pi-calculus [38] provide a valuable
avenue for exploration.

REFERENCES

[1] J. E. van der Merwe and I. M. Leslie, “Switchlets and dynamic virtual
ATM networks,” in Proc. of the Fifth IFIP/IEEE International Symposium
on Integrated Network Management, San Diego, CA., May 1997.

[2] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J.
Minden, “A survey of active network research,” IEEE Communications
Magazine, pp. 80–86, January 1997.

[3] J. M. Smith, D. J. Farber, C. A. Gunter, S. M Nettles, D. C. Feldmeier, and
W. D. Sincoskie, “SwitchWare: Accelerating network evolution,” Tech.
Rep. MS-CIS-96-38, CIS Dept. University of Pennsylvania, 1996.

[4] Jon Postel, “INTERNET protocol,” Internet RFC 791, 1981.
[5] Jon Postel, “Transmission control protocol,” Internet RFC 793, 1981.
[6] D. C. Feldmeier, A. McAuley, and J. M. Smith, “Protocol boosters,” IEEE

JSAC Special Issue on Protocol Architectures for the 21st Century, 1998.
[7] Vern Paxson, Measurement and Analysis of End-to-End Internet Dynam-

ics, Ph.D. thesis, University of California, Berkeley, 1997.
[8] S. E. Deering, “Host extensions for IP multicasting,” Internet RFC 1112,

1989.
[9] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource

ReSerVation protocol (RSVP) – version 1 functional sepcification,” Inter-
net RFC 2208, 1997.

[10] R. Atkinson, “Security architecture for the internet protocol,” RFC 1825,
August 1995.

[11] L.T. Heberlein and M. Bishop, “Attack Class: Address Spoofing,” in Pro-
ceedings of the 19th National Information Systems Security Conference,
October 1996, pp. 371–377.

[12] “Cert advisory ca-96.26: Denial-of-service attack via ping,”
ftp://info.cert.org/pub/cert advisories/CA-96.26.ping, October 1996.

[13] M.D. Schroeder, “Engineering a security kernel for MULTICS,” in Fifth
Symposium on Operating Systems Principles, November 1975, pp. 125–
132.

[14] F. Mayer M. Branstad, H. Tajalli and D. Dalva, “Access mediation in a
message-passing kernel,” in IEEE Conference on Security and Privacy,
1989, pp. 66–71.

[15] Dawson R. Engler, M. Frans Kaashoek, and James W. O’Toole, “The op-
erating system kernel as a secure programmable machine,” in Proceedings
of the Sixth SIGOPS European Workshop, September 1994, pp. 62–67.

[16] Carl M. Ellison, Bill Frantz, Ron Rivest, and Brian M. Thomas, “Simple
Public Key Certificate,” Work in Progress, April 1997.

[17] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,”
in Proc. of the 17th Symposium on Security and Privacy. 1996, pp. 164–
173, IEEE Computer Society Press.

[18] Phoenix Technologies Ltd., System BIOS for IBM PCs, Compatibles, and
EISA Computers, Addison Wesley, 2nd edition, 1991.

[19] R. Grimes, “AT386 Protected Mode Bootstrap Loader,”
/sys/i386/boot/biosboot/README.MACH, October 1993, 2.1.5
FreeBSD.

[20] Julian Elischer, “386 boot,” /sys/i386/boot/biosboot/README.386, July
1996, 2.1.5 FreeBSD.

[21] Werner Almesberger, LILO Technical Overview, version 19 edition, May
1996.

[22] W. Diffie, P.C. van Oorschot, and M.J. Wiener, “Authentication and Au-
thenticated Key Exchanges,” Designs, Codes and Cryptography, vol. 2,
pp. 107–125, 1992.

[23] W. Diffie and M.E. Hellman, “New Directions in Cryptography,” IEEE
Transactions on Information Theory, vol. IT–22, no. 6, pp. 644–654, Nov
1976.

[24] National Institute of Standards, “Digital Signature Standard,” Tech. Rep.
FIPS-186, U.S. Department of Commerce, May 1994.

[25] RSA Laboratories, PKCS #1: RSA Encryption Standard, version 1.5 edi-
tion, 1993, November.

[26] Ashar Aziz, Tom Markson, and Hemma Prafullchandra, “Assigned Num-
bers for SKIP Protocols,” http://skip.incog.com/spec/numbers.html.

[27] Li Gong and Paul Syverson, “Fail-Stop Protocols: An Approach to De-
signing Secure Protocols,” in Proceedings of IFIP DCCA-5, September
1995.

[28] Frederick Colville Knabe, Language Support for Mobile Agents, Ph.D.
thesis, CMU, December 1995.

[29] Günter Kajoth, Danny B. Lange, and Mitsuru Oshima, “A security model
for aglets,” IEEE Internet Computing, vol. 1, no. 4, July - August 1997.

[30] Xavier Leroy, The Caml Special Light System (Release 1.10), INRIA,
France, November 1995.

[31] Jon Postel, “User datagram protocol,” Internet RFC 768, 1980.
[32] IEEE, “Media access control (mac) bridges,” Tech. Rep. ISO/IEC 10038,

ISO/IEC, 1993.
[33] R. Atkinson, “IP authentication header,” RFC 1826, August 1995.
[34] D. S. Alexander, M. Shaw, S. M. Nettles, and J. M Smith, “Active bridg-

ing,” in Proc. 1997 ACM SIGCOMM Conference, 1997.
[35] R. Black, P. Barham, A. Donnelly, and N. Stratford, “Protocol implemen-

tation in a vertically structured operating system,” in Proc. 22nd Annual
Conference on Local Computer Networks, 1997.

[36] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson, T. A. Proeb-
sting, and J. H. Hartman, “Scout: A communications-oriented operating
system,” Tech. Rep., Department of Computer Science, University of Ari-
zona, June 1994.

[37] “Plan web page,” http://www.cis.upenn.edu/˜switchware/PLAN/.
[38] Robin Milner, Joachim Parrow, and David Walker, “A calculus of mobile

processes, Parts I and II,” Journal of Information and Computation, vol.
100, pp. 1–77, Sept. 1992.

APPENDIX

I. DETECTION OF MALICIOUS NODES

In this appendix, we turn to the question of how to ensure
that corrupt packets are not delivered to intermediate nodes. We
take an approach which allows the originator to make a trade-
off between additional computation and packet space allocated
for security headers on one hand and security level on the other.
Moreover, we assume that the portion of the packet which might
be corrupted should not be changed by any intermediate node.
Thus, if any node along the path detects any modification to the
immutable part of the packet, it can determine that the packet
has been corrupted (by network error or by a malicious interme-
diate node) and can initiate the appropriate recovery procedure.
Modifications by outsiders will continue to be detected by the
common authenticator shared by all nodes as described in sec-
tion VI-A.

Modifications from nodes along the path (who know the se-
cret key) are not so easily detectable. At one extreme (when
using only the common authenticator), those modifications are
simply undetectable. At the other extreme, including in the
packet an authenticator for each node may be too resource
wasteful.

A first approach would be to include a number � of authen-
ticators, where � (�� and � is the number of nodes along the
path. After checking the common authenticator, a node would
check the list of additional authenticators for one addressed to
it. If it finds such an authenticator, it verifies that one as well
using the key known only to itself and the initiator. This extra
verification step is relatively inexpensive, since it just verifies
the common authenticator. The principal would include authen-
ticators to a randomly chosen set of nodes for every packet.

This approach has two weaknesses. First, a malicious node
can simply remove all additional authenticators. Second, such
a malicious insider knows which nodes will do the checks, and
therefore can modify a packet when the next node in the path is
not among those, thus allowing delivery of the corrupted packet
to at least one node.

The first problem can be solved by having the principal notify
every node, after the path establishment, how many authentica-
tors each packet will include. The second problem is solved by

12 IEEE NETWORK

making the authenticators anonymous: after the path is estab-
lished, the initiator tells each node what its “pseudonym” will
be. This pseudonym10 will be used to associate authenticators
to nodes; this way, no node will know which other nodes will
do the additional verification on a packet. The initiator also an-
nounces to all the nodes the list of valid pseudonyms (but not
their bindings) so that a malicious insider cannot substitute an
invalid pseudonym for a valid one without detection.

A malicious insider now does not know whether the next
node will do the additional verification or not, since it does not
know the binding between pseudonyms and nodes. It cannot
remove any of the additional authenticators, since every node
expects a fixed number of them on each packet. It cannot re-
place pseudonyms with invalid ones (since every node knows
which are the valid pseudonyms) or other valid ones (since the
verification would fail).

If the packet includes � additional authenticators and the path
has � nodes, the probability of the next node being one that will
do the additional verification is ��� � in general, or

�
��� ��% � � if

one of those authenticators was addressed to this node, assuming
a uniform distribution of authenticators among the nodes in the
path.

The initiator can decide on the value of � by balancing the
level of security desired against the acceptable overheads for
computation and packet size.

���
This pseudonym will be a value that will be stored in the SPI field. (See

Figure 6.)

	A Secure Active Network Environment Architecture
	Recommended Citation

	A Secure Active Network Environment Architecture
	Abstract
	Comments

	tmp.1162752355.pdf.eqMtS

