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Blockchain technology has emerged as a novel distributed ledger technology, facilitating data sharing and system management
securely and efficiently without interventions from a central authority. However, blockchain technology alone is not suitable for
enterprise-class applications, mainly due to the limitations in capacity expansion and verification speed of blockchain systems.
*is paper proposes a secure and effective construction scheme for blockchain networks to improve performance and address the
effective management concerns of blockchain data based on transaction categories. We designed a network link protocol to
construct a directed acyclic graph (DAG) blockchain network and used a sharding protocol to divide the DAG blockchain into
multiple category shards to process transactions in parallel. We then extensively evaluated our proposed design on local clusters.
*e experimental results show that our link and shard protocols achieved high throughput and the category-based sharded DAG
blockchain demonstrated high scalability.

1. Introduction

*e traditional data storage and acquisition method has
been questioned due to data privacy leakage and the “data
island” dilemma in the big data industry. In the era of all-
around digitalization, managing data information to im-
prove the efficiency of data and decrease potential misuse
poses a formidable challenge for all kinds of enterprises and
even national governments.

Among existing technologies of data management,
blockchain provides a promising solution for problems in
data management. Unlike cloud storage [1], blockchain
operates a distributed, trustless, nonintermediary, and
tamper-resistant business mode, enhancing the security of
blockchain systems and guaranteeing data credibility. *e
early blockchain model was limited to issuing and trading
digital currencies, with bitcoin as a typical product [2]. *e
second generation of blockchain opens the multiapplication
era of blockchain by introducing smart contracts and
programmable bottom layers [3]. Traditional blockchain has

introduced a profound impact on human society [4–6]. In
reality, blockchain is leveraged to strengthen the access
control of personal data, ensuring that users own and utilize
their data without having to worry about privacy disclosures
[7–9]. A blockchain-enabled electronic health system pro-
vides efficient and flexible electronic medical record man-
agement, breaking the “barrier” of multisource
heterogeneous data management platforms [10, 11]. *e
Internet of *ings (IoT) system based on blockchain is able
to remotely control and configure IoT devices that collect
data information and track resource assets in real time
[12, 13]. *e blockchain-based notarization service can
ensure transparency, immutability, and nonrepudiation of
data in a potentially Byzantine failure environment [14, 15].

Traditional blockchain with a single chain is charac-
terized by high security and low misoperation rate. *is
mode largely attributes success to the application of con-
sensus mechanism, which mainly includes Proof of Work
(PoW) and Proof of Stake (PoS). However, this mode scales
and performs poorly due to consensus participation, data
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synchronization, multiple backups, and redundant network
loading. Currently, the bitcoin network can only handle
seven transactions per second (i.e., 7 TPS, transactions per
second), Ethereum has an average speed of about 25 TPS,
and Hyperledger Fabric can handle about 1000 TPS [16].
Compared with Alipay’s 256k TPS [17], the performance
and availability of blockchain lag considerably and would
need to be improved.

Directed acyclic graph (DAG) blockchain is a multichain
network composed of transactions [18], which is essentially
similar to traditional single-chain blockchain since DAG
transactions can be viewed as “blocks” (referred to as nodes
or transaction nodes in this paper). Aside from the network
structure, there are two other significant differences between
DAG and single-chain blockchain: (1) the record form of
transaction (also known as data state or state in blockchain)
and (2) the consensus mechanism. On the one hand, the
traditional single-chain blockchain first packages many
transactions into one block andmaintains the order between
blocks through hash in a block header to achieve a consensus
on the transaction sequence. However, the DAG blockchain
abandons the concept of “block” and allows each transaction
to initially participate in the maintenance of the transaction
sequence [18]. In theory, the DAG blockchain is much more
efficient since it skips the stage of packing blocks. On the
other hand, the single-chain blockchain uses the consensus
mechanism based on synchronous communication for
global sorting, which means the consensus delay is longer,
typically 60 minutes in bitcoin [2] and 3 minutes in
Ethereum [3]. In contrast, the DAG blockchain adopts the
DAG consensus mechanism [19], in which consensus delay
reaches the millisecond level under a high transaction arrival
rate because it addresses asynchronous communication and
concurrent processing concerns [20]. *erefore, DAG
blockchain is taking the core role in data management
technology due to its high performance [21].

*e fundamental idea of blockchain sharding [22] is to
divide the nodes in the blockchain network into relatively
independent shards. A single shard deals with small-scale
transactions (or even only stores part of the network states),
and multiple shards deal with transactions in parallel to
increase the transaction throughput of the whole network.
However, the absence of application value when applying
shard techniques to blockchain only depends on the number
of nodes. Disordered sharding rules can increase transaction
costs caused by frequent cross-shard communication since
users would have to traverse all shards to locate the latest
data state. *erefore, we propose dividing the blockchain
network nodes into different shards based on transaction
categories. Each category shard deals with one kind of
transaction processing and data storage. For transactions
with multiple categories, users only need to load involved
shards. *e kind of high cohesion and low coupling network
structure can improve the validation speed and transaction
throughput.

*e purpose of this paper is to improve the blockchain
performance and address the classification management
concerns of blockchain data to promote security as much as
possible. A novel DAG-type blockchain network model is

proposed, which is different from existing works in terms of
the following (see Table 1). First, the link rules of transaction
nodes are modified. In previous models, Byteball [23] and
IOTA [18] adopt the simplest and most basic form to
randomly link the latest nodes into the Tangle network.
Nano [24] uses all nodes belonging to the same account to
construct a relatively independent single chain. In the
proposed model, nodes of the same category are linked
together as much as possible. Second, the sharding rules of
the network in the proposed model are significantly im-
proved. In particular, our shard protocol is category-based,
which organizes data according to the category to reduce the
frequency of cross-shard communication. *ird, we
changed the network structure. Given that IOTA is a Tangle
structure and Nano is a lattice structure, our category-based
DAG network is a tree tangle structure, as shown in our
simulation experiments.

(1) To our knowledge, we are the first to propose a DAG
blockchain model supporting classification man-
agement of blockchain data.

(2) We are also the first to propose the link and shard
protocols of a DAG blockchain based on transaction
categories, which satisfies data-intensive blockchain
workloads.

(3) We adjusted the DAG consensus mechanism to
conform to a tree tangle blockchain, which ensures
the overall consistency of the blockchain data.

(4) We conducted simulation experiments to evaluate
the performance of our design. *e experimental
results show that the category-based sharded DAG
blockchain performed well in network loading and
transaction throughput.

*e major innovations and contributions of this study
are as follows:

*e rest of this paper is structured as follows. Section 2
reviews several major sharded blockchains and DAG-type
blockchains. Section 3 introduces the proposed blockchain
model. Section 4 describes our protocols in detail, including
a link protocol and a sharding protocol. Section 5 provides
security analysis. Section 6 presents a performance evalu-
ation of our methods. Section 7 summarizes and concludes
our work.

2. Related Work

2.1. ShardedBlockchain. Sharding was first proposed by Hua
and Lee [25] and is now applied to blockchain to expand the
limitations of transaction throughput. Generally speaking,
there are three types of sharding: network sharding,
transaction sharding, and state sharding (see Table 2).
Network sharding (also known as physical sharding) divides
the whole blockchain network into multiple groups, with
each group (called shard) composed of multiple servers. All
shards process different transactions simultaneously to
parallelize bookkeeping. In transaction sharding, transac-
tions are assigned into different shards according to
transaction hash or account addresses or by means of
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verifiable random function (VRF). For state sharding, part of
ledger information is stored and maintained in each shard.
*is is the most complex way of sharding since it may
involve cross-shard communication, cross-shard trading,
and other issues.

Zilliqa [31] is a sharded blockchain system which is
redesigned from scratch. Network sharding110 and trans-
action sharding are both applied to Zilliqa to shard the
network into smaller node groups. Each node group is called
a shard and handles different transactions. In Zilliqa, each
node must save all the states of the blockchain to process
transactions successfully. As the blockchain’s transaction
volume increases, the transaction costs and the performance
requirements of the node equipment also increase.

QuarkChain [32] expands blockchain capacity by in-
troducing state sharding based on network and transaction
sharding since each node only needs to record part of the
data and states to handle specific transactions. QuarkChain
consists of a two-tier blockchain. *e first tier is the slicing
layer used for transaction bookkeeping, while the second tier
is a root chain responsible for confirming transactions in the
slicing. Without affecting the root chain, the number of
slices can be increased dynamically to improve the overall
throughput of the system, which is expected to achieve
100,000 + TPS. Root chains account for a large proportion
(more than 50%) of the total network computing power,

which means that malicious miners would need at least
50%× 51%> 25% computing power to perform attacks.

Elrond [33] also adopts the full-state sharding mecha-
nism, focusing on performance and adaptability. It puts
forward a novel “adaptive state sharding” technology, which
performs calculation and reorganization about shards
according to the number of computing tasks and online
network nodes. Compared with the static sharding tech-
nology, the main challenge lies in effectively addressing the
time latency issues caused by data communication and
synchronization during sharding adjustment. Elrond pro-
poses a significant solution using a binary tree to cut apart
the account address space. *is is conducive to accurately
grasp the number of shards in each epoch and reduce the
workload and delay of system sharding.

Entities, such as scheduling nodes or verifying nodes, can
make the implementation of some functions easier (e.g.,
dynamic workload balancing) since they canmaster the whole
situation. However, this may sacrifice decentralization and
can lead to serious performance bottlenecks. Monoxide [29]
advocates for a simple design principle as much as possible.
On the premise of ensuring security and performance,
Monoxide neither tries to introduce additional entities and
mechanisms nor improves existing mechanisms. As a con-
current multichain system, each chain in Monoxide has its
own account book status, blockchain, a group of unconfirmed

Table 1: Comparison between our work and existing work.

System
Network

construction
Network
structure

Sharding
State
model

Node time
Smart
contracts

Bookkeeping
nodes

Byteball
[23]

Based on time Tangle No Account
0.5

minutes
Yes Whole network

IOTA [18] Based on time Tangle No UTXO Instant No Whole network
Nano [24] Based on account Block lattice No Account Instant No Account chain

Our work Based on category Tree tangle
Based on
category

Account Instant Yes Category shard

Table 2: Comparison of sharding based on their representative blockchain systems.

System Sharding type
Consensus
mechanism

Cross-shard
communication

State
model

Capacity TPS Project phase

Zilliqa
Network;
transaction

PoW; PBFT Main-chain driven Account Low
2,828 TPS with 3600 nodes

and 6 shards [26]
Test network
online

QuarkChain
Network;
transaction;

state
PoW

Main-chain driven;
Kademlia routing

Account High
318,052 TPS with 512

shards [27]
Test network
online

Elrond
Network;
transaction;

state

SPoS (Secure
Proof of Stake)

Binary tree
regulation

Account High
3750+TPS in a single shard

[28]
Test network
online

Monoxide
Network;
transaction;

state
PoW

Shard driven; Chu-
ko-nu mining

Account High
11,694 TPS with 2,048

shards [29]
*eoretical
research

Near
Network;
transaction;

state

Doomslug;
nightshade
finality gadget

Shard driven;
Merkle proof

Account High
1000 TPS with 8 shards, 24
block/block producers and

800 verifiers [30]

Test network
online

Our work
Network;
transaction;

state

PoW; root shard;
main chain

Shard driven;
Merkle proof

Account High

Depends on the number of
concurrent threads

without upper limit in
theory

*eoretical
research
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transactions, and full nodes (including miners). Beyond that,
this network has no other role nor any supernode.

Near [34] is a scalable public chain based on full-state
sharding. Unlike other sharded blockchains composed of
one beacon chain or multiple shard chains, Near is a single
chain sharded at the block level. Each block in Near stores
logically all states of the whole network and is cut into
multiple pieces. Similar pieces from all the blocks comprise a
complete shard. For example, the Near network with 20
blocks/block producers and 1000 verifiers is divided into ten
shards. *is means that each block is divided into ten pieces,
and each piece requires 100 verifiers to confirm that there are
no problems among the 20 similar pieces in one shard.

2.2. Consensus Mechanism. *e consensus mechanism of
DAG-type blockchains mainly includes Tangle, Witness,
Coordinator, and Delegated Proof of Stake (DPoS) (see
Table 3).

Byteball [23] and IOTA [18] are the well-known DAG-
type blockchains in the industry that adopt Tangle con-
sensus. Each transaction of Byteball confirms one or more
previous transactions, while IOTA must confirm two
existing transactions. Byteball uses transaction fees to pre-
vent Sybil [36] and Denial of Service (DoS) [37] attacks,
while IOTA draws support from PoW consensus [2].

*eoretically, if someone can initiate transactions
amounting to 51% (POW consensus) or 33% (Practical
Byzantine-Fault-Tolerant, namely, PBFT consensus [38]) of
the entire network, it would be possible to make invalid
transactions effective. To solve this problem, Byteball adopts
12 witnesses to generate the “main chain” in DAG by se-
rializing transactions in order to achieve an overall con-
sensus. For IOTA, a central node called “the coordinator” is
used to “double-check” all transactions in the network until
the Tangle network reaches a certain scale, making it difficult
for individuals to reach 51% or 33% of all transactions.

DPoS [39] is the consensus mechanism used in Nano
[40]. *e general idea is that users elect a deputy to handle
the bifurcation.*e deputy first broadcasts the bifurcation to
all users and then complies with the voting results from
high-power users for a fixed time range to determine which
block to retain. DPoS can ensure the reasonable operation of
blockchain with low energy consumption to substantially
reduce the number of nodes participating in the validation
and bookkeeping.

3. Proposed Sharded DAG Blockchain

In this paper, we present the model design of a sharded DAG
blockchain and the implementation of its network con-
struction. *rough directed acyclic graph (DAG) technolo-
gies, we transformed the blockchain single-chain structure
into a bifurcated graph structure. Based on sharding tech-
nology, we transformed the single-chain distributed storage
into multishard parallel distributed storage. Our method
improves the scalability and throughput of blockchain sys-
tems and facilitates the orderly management of massive data.
Our scheme also enhances the controllability and security of

the whole network through a shard-driven communication
mode and Merkel verification mechanism. *e category-
based DAG blockchain network construction theory brings
opportunities for new design ideas, components, and oper-
ation modes in the blockchain system. We first introduce the
fundamentals and prerequisites to lay the foundation and
contextualize the improvements in our proposed model.

3.1. Blockchain Entity. DAG-type blockchain entities mainly
refer to user, data, and transaction. Users are external entities
that use blockchain infrastructure to transfer assets or run
smart contracts. *ey are represented as user� (address,
public-key, private-key), where address identifies blockchain
users while public-key and private-key are the security tech-
nology to protect user accounts [41]. Concretely, public-key
and private-key are a key pair obtained by an algorithm [42]:
public-key is the public part of the key pair that can be dis-
closed to all nodes without any potential risk, and private-key
is the nonpublic part which will cause property loss and in-
formation disclosure once exposed. In addition, the public-key,
private-key, and address are essentially a string of 0 or 1 and
have the generation relationship [43], as shown in Figure 1.

Blockchain transaction is a kind of data structure used to
unify and standardize the representation of blockchain data,
given that it packs extracted original data into a transaction
record. As shown in Figure 2, the data structure is repre-
sented as transaction� (index, timestamp, from_account,
to_account, data[], pre_index{}, code, category, nonce), where
index is the index (or digital fingerprint) of a transaction,
index� hash(timestamp, from_account, to_account, data[],
pre_index{}, code, category, nonce); timestamp indicates the
time of the transaction, timestamp� time(); from_account
represents the address of the data seller; and to_account
represents the address of the data buyer. pre_index is the set
of parent node indexes of a transaction; code is the smart
contract program; category is the classification of a trans-
action, transaction_category ∈ {dataItem_category}; and
nonce is the counter to ensure that each transaction is ex-
ecuted in sequence.

Data[] is a dynamic list containing multiple data items,
expressed as data� [{ID, owner, value, describe, URL, cat-
egory, nonce} {} · · ·], denoting the original data in a trans-
action or the asset information of users. Data_ID� hash
(owner, value, describe, URL, category, nonce) represents the
index (or digital fingerprint) of each data item; owner refers
to the data owner (after the close of trading); value is the
value quota of digital currency or resource-type data; de-
scribe is a brief description of the data item;URL refers to the
uniform resource location of the data item; category is the
classification of the data item; and nonce is a counter used to
make sure the data consistency.*e data sources are diverse,
including physical assets, electronic documents, network
data, digital currency, and even work IP, patent number, and
URL address.

3.2. Model Design. *e category-based DAG blockchain
model is shown in Figure 3. *e whole system mainly in-
cludes five components: shards, smart contracts, a category
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recommendation system, a set of consensus rules, and a
backup system. Transaction processing can be divided into
four stages:

(1) *e category recommendation system assigns a
specific category and shard to new transactions.

(2) System verifies and confirms transactions through
crowdsourcing driven by smart contracts.

(3) System appends new transaction nodes to the cor-
responding shard.

(4) System updates the root shard and main chain
periodically.

Shard is a part of the blockchain system employed to
store ledgers, connect participants, and broadcast transac-
tions. *is paper adopts a full-state sharding technique to
shard the DAG blockchain network into a root shard and
multiple category shards. *e shard, where the genesis node
is located, is the root shard, and category shards are derived
from the division of the root shard, whose number has no
theoretical upper limit:

root_shard⟵G
0
V
0
, E

0{ },

shard_1, shard_2, . . .{ }⟵ root_shard.
(1)

Category recommendation system is an information fil-
tering system that predicts a transaction category according
to the categories of its data items. *e system appends new
transaction nodes to the corresponding shard.

t_category⟵ t_dataItem_category{ },
shard_category⟵ shard_category ∪node_new.

(2)

However, if the number of nodes in a shard reaches the
limit, the recommendation system appends the subshard
sequence to the category value of the new transaction. *e
system then temporarily assigns it into a category that would
require shard splitting:

t_category⟵ append(t_category, sub_shard_sequence),

shard_category⟵ shard_category ∪node_new.
(3)

If the recommendation system fails to find this category,
it gives the new node a new category (deriving from the
dataItem_category). *e system then assigns it to the root
shard to be split:

t_category⟵ t_dataItem_category{ },
root_shard⟵ root_shard∪node_new.

(4)

Note that the category recommendation here only
considers the basic situation that a transaction only involves
one data item category. *e complex situation that a
transaction involves multiple data categories will be dis-
cussed later.

transaction = {index: (256bits) transaction hash
timestamp: (64 bits)
from_account: (160 bits) account address 
to_account: (160 bits) account address
data: [{ID: (256bits) data hash; owner: (160 bits) account address;

value: (unlimited); describe: (unlimited);
URL: (unlimited); category: (unlimited); nonce: (64 bits)}

prev_index: (512 bits) index list
code: (unlimited) contract code
category: (unlimited)
nonce: (64 bits)

}

{} ……]

Figure 2: Data format of transaction. A transaction is regarded as a
node which is linked to previous nodes.

Table 3: Comparison of consensus mechanisms based on their representative DAG-type blockchains.

System Consensus mechanism Transaction fee State model TPS Node time Genesis node

Byteball [23] Main chain; witnesses Yes Account 10 [23] 0.5 minutes Oct. 21, 2015
IOTA [18] Tangle; coordinator No UTXO 182.8 [35] Instant Sept. 5, 2016
Nano [24] DAG; DPoS No Account 7000 [35] Instant Feb. 29, 2016
Our work PoW; root shard; main chain No Account Without upper limit in theory Instant —

Private key
32 bytes

Publickey
64 bytes

Address
20 bytes

Hash value of
the public key

32 bytes

Random

Last 20 bytesKeccak-256ECDSA-secp256k1

Figure 1: *e generation relationship between the public-key, private-key, and address. Step 1: randomly generate a private-key; step 2:
generate a public-key through the private-key; step 3: obtain the address by intercepting the last 20 bytes of the public-key.

Smart contract-powered
crowdsourcing

Root shard/main
chain

Shard

Voting

Category recommendation system New transactions

Backup
system

Figure 3: DAG blockchain model based on transaction categories.
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Smart contract-driven crowdsourcing is a set of smart
contracts used to publish information, such as task re-
quirements, contract provisions, and project delivery, to
blockchain in the form of programs to realize the automatic
processing of transaction logic. Crowdsourcing collabora-
tion eliminates third parties, making the source task open
and transparent. *e automated execution of smart con-
tracts addresses the supervision issues of contract execution
status, including the trigger control for tasks and access to
private data. *e crowdsourcing driven by smart contract is
mainly divided into four steps:

(1) Build the crowdsourcing powered by smart contract:

(a) Define the user set for smart contract, such that
U � u1, u2, . . . , un{ }, and n represents the
number of participating users including
witnesses.

(b) Release task requirements, such that
T � t1, t2, . . . , tm{ }, andm represents the number
of task requirements.

(c) Publish contract rules, such that
S � s1, s2, . . . , sp{ }, and p represents the number
of contract rules.

(2) Store the smart contract: the smart contract is
broadcasted to each user through the P2P network
and stored in the blockchain’s corresponding shards.

(3) Execute the smart contract: the smart contract
verifies the transaction whether it meets necessary
conditions and automatically begins to execute after
reaching a consensus among participating users.

(4) Deliver project: the smart contract periodically
checks the completion of tasks and the execution
status of contracts and links the transaction into
appropriate shards after confirming that the trans-
action is closed correctly.

According to our design, the blockchain transaction is
directly confirmed by participating users (including wit-
nesses) without the need for consensus of the whole network
or confirmation of subsequent transactions. However, it
ensures that the third party is excluded, since the transaction
is initiated and supervised by the participating users and the
delivery is performed automatically after the contract tasks
are completed. *e security is equivalent to IOTA since the
link relationship of the Tangle structure among the trans-
action nodes is still preserved.

Root shard/main chain is a set of consensus strategies
for the time of the whole network. *e optimal path from
any top node to the genesis node is called the candidate
main chain. Different candidate main chains will cross at a
certain node (the worst case is at the genesis node), referred
to as the stable node. For all candidate main chains, the
path from the stable node to the genesis node is the same,
known as the stable main chain [23]. Sharded DAG
blockchain contains many parallel tangle chains with a
stable main chain in each tangle, referred to as “shard main
chain.” *e shard main chain is an unbranched path on
which all nodes can be sorted. *is sequence number is

termed “SMCI” (shard main chain index), which reaches a
consensus on the transaction order in each shard. *e root
shard retains the initial transaction node of each category
and ranks these transaction nodes to reach the consensus of
the global network.

Backup system refers to a large-scale storage device that
replicates the data of the electronic computer storage and
stores it separately to deal with unexpected situations, such
as data loss or damage. Compared with traditional block-
chain breakdowns caused by the collapse of more than 50%
of nodes, the failure of one shard may affect more shards,
such as refusing to respond and deleting shard information
and data, which can be dangerous. To improve stability, we
suggest building an additional adaptive backup system. In
particular, the blockchain system selects some extra
supernodes to build a P2P storage system (e.g., IPFS (in-
terplanetary file system)) [44]. *is storage system is ded-
icated to backing up blockchain transactions and data. *e
backup system is also self-adaptive such that (1) it only backs
up the data of the smaller shard system; (2) when the shard
system reaches a safe scale, the backup system will auto-
matically release the shard storage space to back up new
shard data; and (3) it maintains the backup situation
adaptively to ensure basic backup requirements to prevent
data loss. When the shard system is offline or reports a
timeout response, the backup system responds to the re-
quest. When the backup system fails, the blockchain system
reconstructs and rewrites data into the new backup system.

3.3. Data Sharing. According to the design of “root shard”
and “category shard” in Section 3.2, our category-based
DAG blockchain system mainly uses the “three-step”
scheme to share data among shards.*e specific data sharing
mechanism is as follows:

(1) Construct a hash index table for the root shard.
According to our sharding mechanism, each shard of
the blockchain system backs up the genesis node of
the new shard to the root shard. *is would allow for
the quick determination of the specific category
shard based on the hash index table of the root shard.

(2) Construct a hash index table of the category shard.
After successfully locating the corresponding cate-
gory shard, we use the hash index table of the cat-
egory shard to further locate the specific data.

(3) Implement data sharing: the system would first need
to verify and authorize the permissions and then
establish a Transmission Control Protocol (TCP)
connection to start data transmission.

In Figure 4, the data retrieval mechanism for category-
type sharded blockchain systems is compared with the
unordered-type sharded blockchain systems and blockchain
systems without shards. In the figure, n is the number of
shards, m is the number of transactions in a shard, and all
hash index tables are stored in the memory. *e time
complexity of a hash search isO(1), and the space complexity
is O(n) [45]. Based on this, we can get
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(1) *e retrieval time complexity of category-type
sharded blockchain systems is the time complexity
for category shard retrieval plus the time complexity
for data retrieval, i.e., O(1) +O(1)�O(1). *e space
complexity is the space complexity of category shard
retrieval plus the space complexity of data retrieval,
that is, O(n) +O(m)�O(n+m).

(2) In an unordered-type sharded blockchain, the sys-
tem cannot directly determine the shard of the target
data and would need to traverse the shard index. In
general, the average time complexity is
((n + 1)/2) × O(1)⟶ O(n). *e space complexity
is the space complexity of shard traversal plus the
space complexity of data retrieval, that is,
O(n) +O(m)�O(n+m).

(3) *e retrieval time complexity of the blockchain
systems without shards is O(1), and the space
complexity is O(M), where M is the number of all
transactions in the whole blockchain system.

In general, category-based sharded blockchain systems
show the best data retrieval performance, in which the time
delay is fewer than that for unordered sharded blockchain
systems, and the memory cost is distinctly smaller compared
to blockchain systems without shards.

A hash list provides fast insert and query operations.
However, the hash list needs to set the array size in advance
and does not support dynamic expansion since it is
implemented based on the array. In addition, the hash list
has the problems of hash conflict and unable to sort. Merkle
tree [46] is a generalized hash list, which is widely used in
blockchain systems, such as bitcoin, Ethereum, and
Hyperledger. It can not only ensure the integrity and
consistency of data but also support the download and
verification of branch data. Ethereum proposes an improved

Merkle tree (Merkle Patricia tree) [47] to organize state data
so as to achieve fast data validation and status data update.
Qu et al. [48] further improved the Merkle Patricia tree by
adding spatiotemporal information for transactions, which
enriches the query functions of logistics management sys-
tems. Our blockchain design abandons the concept of block
and aims to achieve data classification management of in-
formation systems. Moreover, Merkle tree is an unbalanced
tree pattern. *erefore, it is not suitable for directly applying
above index strategies to our system. Further research on
data indexing and sharing will be carried out in the future.

3.4. Cross-Shard Trading. Even among independent block-
chain systems, the demand for interoperability between
blockchains is extremely high. Cross-shard trading must be
considered in the category-based sharding mechanism.

Suppose a simple trading scenario: Alice exchanges her
house A for Bob’s stock C, which involves two data cate-
gories and shards (house and stock). Synchronous trading
means that when a cross-shard transaction is executed,
blocks are simultaneously generated in multiple shards
containing related transactions [49]. *is trading method
was used since our proposed system can quickly retrieve and
locate the corresponding data states. *e system can also
package and back up the transaction to multiple relevant
shards after confirming the transaction promptly. *e
synchronization mode has better security, but it needs to
maintain fast cross-shard data retrieval capabilities.

*e asynchronous mode refers to the asynchronous
execution of a cross-shard transaction affecting multiple
shards. For example, the property right authentication and
transfer processing of house A are completed in the house
shard, while the stock authentication and transfer processing
are completed in the stock shard. At present, Cosmos [50],

Hash(A.category)

Access data item A

Hash(A)
Category shard index

Data index

Navigate to category shard
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Navigate to data item An
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Figure 4: Data retrieval mechanism of blockchain systems. (a) Category-type sharded blockchain system. (b) Unordered-type sharded
blockchain system. (c) Block chain system without shards.
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Ethereum serenity [51], Near [34], and Kadena [52] suggest
asynchronous cross-shard trading because for existing
sharding mechanisms, the asynchronous mode is simpler,
and the cooperation between regions is easier.

4. Protocol Design

4.1. Link Protocol

4.1.1. Link Mechanism. *e link mechanism makes the
nodes from the same category close to each other in physical
space, which helps the segmentation in DAG blockchain
networks. In a DAG-type blockchain, new transaction nodes
will be generated whenever registering or trading data, and
the transaction category is decided by data items in this
transaction. *e category types involved and the number of
nodes can be generated by

t_category⟵ t_dataItem_category{ },
node_new⟵ pack(t).

(5)

For example, Alice uses house A and car B under her
name to exchange stock C under Bob’s name. *is trans-
action involves three categories (i.e., house, car, and stock).
*e content of this transaction is shown in Figure 5, and the
blockchain states after this transaction are shown in Figure 6.
As a result, three nodes with different categories would
generate three category shards (house, car, and stock):

shard_house⟵ shard_house∪ node_new(house),
shard_car⟵ shard_car∪node_new(car),

shard_stock⟵ shard_stock ∪node_new(stock).
(6)

Some category shards may not exist during the trading
process because nodes of the same category have to reach a
secure scale before being separated from the root shard to
form a relatively independent category shard. *e new
transaction node is assigned to the root shard and linked to
the back of nodes of the same category. In extreme cases, all
new nodes associated with a transaction are assigned to the
root shard. *e generation mechanism for multiple shard
nodes is conducive to constructing a high cohesion and low
coupling network. *is kind of redundant bookkeeping
method also improves the speed of state verification since a
category shard stores all data states of a specific category. As
shown in Figure 6, the house shard always keeps track of all
the states of housing data. *is mechanism also supports
synchronous trading, which avoids failure atomicity in
asynchronous trading [53–55].

4.1.2. Link Algorithm. *e link algorithm is the link logic
between transaction nodes and is the last step in the
transaction process of the proposed model. *is algorithm
has nothing to do with the transaction content, state veri-
fication, and transaction confirmation. *e detailed link
algorithm (as shown in Algorithm 1) is as follows:

(1) *e recommendation system provides the category
of a transaction node.

(2) *e system is positioned to the corresponding shard:

(i) If the number of nodes with the same category is
greater than or equal to 2, randomly select two
of the latest ten nodes as parent nodes and chain
the new node into the shard.

(ii) If there only exists one node of the same cat-
egory, select this node as one of the parent nodes
and randomly select another latest node as the
second parent node and then chain the new
node into the shard.

(iii) If there are no nodes of the same category,
randomly select two latest nodes as parent nodes
and link the new node into the shard.

(3) Update the backup system and regularly update the
root shard and the main shard chain.

4.2. Shard Protocol

4.2.1. Sharding Mechanism. In the early stage of a block-
chain system, the network scale is small. *us, we let all the
nodes link to the root shard to reduce the risk of a 51%
attack:

root_shard⟵G0 V
0
, E

0{ }. (7)

In the middle stage, once nodes of a specific category in
the root shard reach a secure scale, we start up the sharding
mechanism to separate these nodes. To record the global
series of all category shards, we need to back up and store the
genesis node of each category shard to the root shard:

root_shard, shard_category, . . .{ }⟵G(V, E),

root_shard⟵ root_shard∪ genesis_category_node.
(8)

In the later stage, when the scale of the category shard
becomes too large, divide the category shard into multiple
new category shards according to sequence tags for trans-
action nodes. *en, link copies of the genesis nodes of the
subcategory shards into the root shard:

shard_category, shard_category 1, . . .{ }⟵ shard_category,

root_shard⟵ root_shard∪ sub_genesis_category_node{ }.
(9)

Based on this network construction theory, the root
shard always keeps the sharding records of the whole net-
work, and all shards are dynamic and divisible.

4.2.2. Sharding Algorithm. *e key of sharding is to cluster
category shards, which is realized through community dis-
covery algorithms. Traditional community discovery algo-
rithms mainly include graph segmentation theory [56, 57],
random walk [58, 59], label method [60], and hierarchical
clustering [61]. New community discovery algorithms mainly
refer to community overlapping [62], density theory [63],
distance theory [64], and statistical inference [65].
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According to our link mechanism, each node has a
specific category, and the link relationship between nodes of
the same category is compact while the relationship between
nodes of different categories is loose. Clustering-based and
label-based community discovery algorithms are both
suitable for this network structure. However, the clustering
algorithm is better than the label method in terms of per-
formance and effect since it avoids substantial label index
maintenance. Louvain algorithm [61] is one of the most
popular clustering algorithms, which is an unsupervised
algorithm that does not require the number of communities
or their sizes before execution as input. *e detailed process
of the Louvain algorithm is as follows:

(1) Initialization: each node in the graph is regarded as
an independent community, and the number of
communities is the same as the number of nodes.

(2) First phase––node transfer:

(i) For each node i, to allocate node i to the
community of each neighboring node, calculate
the modularity change (expressed as Q) before
and after allocation and then record the
neighboring node with max(Q).

(ii) If max(Q) is greater than 0, assign the node i to
the community where the neighboring node
with max(Q) is located; otherwise, abandon this
round of division.

(iii) Repeat steps a and b until the nodes are no
longer transferred.

(3) Second phase––graph rebuilding: treat all nodes in
the same community as a new node. Take the sum of
edge weights of the inner community as the ring
weight of the new node and the edge weights between
communities as the edge weights between the new
nodes.

transaction = {index: transaction hash
timestamp:
from_account: Alice
to_account: Bob
data: [{ID: A; owner: Bob; value; describe; URL; category: house; nonce}

{ID: B; owner: Bob; value; describe; URL; category: car; nonce}
{ID: C; owner: Alice; value; describe; URL; category: stock; nonce}]

pre_index: {pre_index_0, pre_index_1}
code: smart contract
category: house | car | stock
nonce:

}

Figure 5: Transaction content of node. *e initiator is Alice and the responder is Bob.

……
data:
[{ID: B;owner: Alice;

category: car; …}
…]

……

……
data:
[{ID: C;owner: Bob;

category: stock; …}
…]
……

……
data:
[{ID: A;owner: Bob;

category: house; …}
{ID: B;owner: Bob;

category: car; …}
{ID: C;owner: Alice;

category: stock; …}]
……

……
data:
[{ID: A;owner: Bob;

category: house; …}
{ID: B;owner: Bob;

category: car; …}
{ID: C;owner: Alice;

category: stock; …}]
……

……
data:
[{ID: A;owner: Bob;

category: house; …}
{ID: B;owner: Bob;

category: car; …}
{ID: C;owner: Alice;

category: stock; …}]
……

House Car Stock

……
data:
[{ID: A;owner: Alice;

category: house; …}
…]
……

Figure 6: Network status of DAG blockchain. Shards (house, car, and stock) generate a transaction node.
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(4) Repeat the first/second phase until Q of the whole
graph no longer changes.

After obtaining the clustering results of category shards
through the Louvain algorithm, we start to shard the DAG
network, which means filtering out the directions of all non-
self-graphs. *e process of the sharding algorithm (see
Algorithm 2) is as follows:

(1) Get the community map of the DAG networks.

(2) Filter out links between shards.

(3) Copy genesis category nodes and chain them into the
root shard.

(4) Return sharded networks.

5. Security Analysis

*e innovation of blockchain technologies must take system
security as premise. *is section briefly analyzes the security
of the category-based sharded DAG blockchain.

5.1. Consistency. DagCoin [66] and Byteball [23] apply the
“main chain” mechanism to solve the data consistency
problem. However, there are some differences between
Byteball, DagCoin, and our category-based DAG blockchain
in terms of network architecture (see Figure 7). Byteball and
DagCoin networks use a tangle structure (see Figure 7(a)),
where nodes are closely linked and a unique main chain is
present (marked in dark black). However, based on our
simulation network and theoretical analysis, the category-
based DAG blockchain consists of a tree tangle, as shown in
Figure 7(b). *e relationship between different node cate-
gories is very loose, making it difficult to find the same main
chain from different branches to the genesis node.*erefore,
we use “root shard” to sort nodes globally in a wide and
unordered directed acyclic network without high mainte-
nance costs since “root shard” always keeps a small network
scale. *e single category shard network is also a tangle
structure, which means the “main chain” mechanism is
suitable for category shards. *is kind of “main shard chain”
mechanism forms a unique ordered single chain in each

Input: transaction //input a transaction
Output: vnew //generate a new node
(Vi, Ei): the ith shard of the DAG network
E(vi): all edges connecting to vertex i
(1) vnew.category� recommendation system (transaction)
(2) i� 1
(3) for Vindex in V do //shard positioning
(4) if Vindex.category �� vnew.category
(5) i� index //category shard
(6) else
(7) i� 0 //root shard
(8) end for
(9) j� len(Vi)

//Finding the latest ten nodes
(10) for v− − j in Vi do
(11) if vj.category �� vnew.category:
(12) Csame⟵ vj
(13) else:
(14) Cother⟵ vj
(15) if len(Csame)≥ 10 & len(Cother)≥ 10
(16) break
(17) end for

//Finding parent nodes
(18) if len(Csame)≥ 2:
(19) vpre 0, vpre 1 � random(Csame)
(20) elif len(Csame) � � 1:
(21) vpre 0 � random(Csame)
(22) vpre 1 � random(Cother)
(23) else:
(24) vpre 0, vpre 1 � random(Cother)

//Node linking
(25) Vi⟵ vnew
(26) Ei⟵ e(vnew, vpre 0 ∪ vpre 1)
(27) vnew.pre_index⟵ vpre 0 ∪ vpre 1
(28) return vnew

ALGORITHM 1: Category-based link algorithm.
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branch of the category-based DAG blockchain in order to
reach consensus of data consistency within the category
shard.

5.2. DDoS Attack. Distributed Denial of Service (DDoS)
attack [67] means that the attacker uses multiple puppet
hosts to send reasonable but useless requests simultaneously

to consumemuch of the network resources so that legitimate
users cannot promptly receive service responses. *ere are
two principal difficulties to solve DDoS attacks: (1) these
attacks may be difficult to identify because the requests
initiated by the attacker are reasonable; (2) these attacks are
difficult to locate since the attacker uses multiple IPs to
launch the attacks. Our crowdsourcing mechanism, driven

Input: G0 � (V0, E0) //initial directed graph. V0 is the initial set of vertices and E0 is the initial set of edges.
Output: G(V, E)
(1) G(V, E) � Louvain (G0)
(2) for Vi in V do //category shard

//Cutting off connections between subgraphs
(3) for vj in Vi do
(4) parent_index⟵ vj.pre_index∩Vi
(5) E(vj)⟵ e(vj, parent index)
(6) end for

//Copying genesis category nodes
(7) c�Vi,0 //genesis node of shard i
(8) j� len(V0) //root shard
(9) for v− − j in V0 par-do
(10) if vj.category�� c.category:
(11) Csame⟵ vj
(12) else:
(13) Cother⟵ vj
(14) if len(Csame)≥ 10 & len(Cother)≥ 10
(15) break
(16) end for

//Node linking and root shard updating
(17) if len(Csame)≥ 2:
(18) cpre 0, cpre 1 � random(Csame)
(19) elif len(Csame) � � 1:
(20) cpre 0 � random(Csame)
(21) cpre 1 � random(Cother)
(22) else:
(23) cpre 0, cpre 1 � random(Cother)
(24) V0⟵ c
(25) E0⟵ e(c, cpre 0)∪ e(c, cpre 1)
(26) c.pre_index⟵ cpre 0 ∪ cpre 1
(27) end for
(28) return G(V, E)

ALGORITHM 2: Category-based sharding algorithm.

(a) (b)

Figure 7: Network structure comparison of different DAG blockchains. Different colors represent different categories. (a) Tangle structure.
(b) Tree tangle structure.
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by smart contracts, addresses this problem due largely to the
supervision of witnesses in smart contracts. In our design,
the blockchain system builds a smart contract user set
(including witnesses) for each transaction, in which the
witnesses monitor the request of each user in real-time, find
out the abnormal data traffic (such as DDoS attacks), and
address them without affecting other normal businesses.

5.3. Double Spend. Double-spend attack (also known as 51%
attack) [68] refers to user attempts to spend the same digital
cryptocurrency on the blockchain twice. Blockchain adopts a
decentralized governance mode, which does not require a
third party, such as a bank or government, to guarantee
transactions, making it possible for users to tamper with
transaction records with computing power. For example,
after a user spent some digital cryptocurrency on a stock, he
launches a 51% attack on the blockchain, wherein he tries to
establish a fake chain to replace the honest chain. If the user
succeeds, he will own both the stock and the digital currency.

*e essential cause of the double-spend attack is the
delay in transaction confirmation. Our automatic delivery
mechanism, powered by smart contracts, can address this
issue since the payment of a transaction is instantaneously
settled according to the contract settings.*e crowdsourcing
system establishes a task set and contract set for each
transaction and regularly checks the contract’s execution
state and the task completeness status. Once the user
completes all the required tasks correctly, the contract
program will automatically perform the transaction delivery.
At the same time, the transaction is confirmed without
waiting for verification of the subsequent nodes, which
means that the transaction will never be deleted or tampered
with after it is successfully generated.

6. Experiment

6.1. Experiment Introduction. We conducted experiments
on a computer with a MacOS 10 system, an inner core 6 i7
CPU, and 16GB DDR4 RAM. Our link algorithm was used
to construct blockchain networks based on the DAG library
[69] in Python 3, ensuring no closed-loop generation. We
then used our sharding algorithm to divide the blockchain
network with a graph plugin called Graphviz [70] to visu-
alize network graphs (see Figure 7). Finally, we tested the
performance of the category-based shardedDAG blockchain
on a local area network (LAN) with 100Mbps bandwidth.
*e size threshold of each shard ledger was set to 300 (i.e.,
each shard ledger must have at least 300 transaction nodes).

6.2. Experiment Result

6.2.1. Algorithm Performance. We implemented algorithm
stress testing based on four indicators: throughput, latency,
concurrency, and scalability. *e following is a brief de-
scription of the concepts involved.

;roughput refers to the number of transaction re-
quests processed by a system (software) in unit time,
reflecting the system’s pressure bearing capacity

(software). TPS is a common quantitative index of
throughput.

Time delay refers to the time that a system (software)
processes a transaction request and generally takes the
average value from multiple tests.

Concurrency number is the number of transactions (or
working threads) simultaneously processed by a sys-
tem. In the python development environment, a client
only supports one thread (concurrency) by default.*is
experiment uses the number of clients to represent the
number of threads (concurrency).

Scalability in this experiment refers to the ability of the
algorithm to adapt to the changes in the number of
users, which is reflected in the change of algorithm
performance with the increase of network devices.

Peak memory usage represents the maximum amount
of memory a process has used from initialization.

According to Figure 8(a), as the number of transactions
increases, the throughput of the link and sharding algo-
rithms generally decreased, from 1000 TPS to 8.03 TPS and
from 1000 TPS to 0.36 TPS. In Figure 8(b), the link algo-
rithm’s delay increased from 0.001 s to 0.125 s, while the
delay in the sharding algorithm grew from 0.001 s to 2.81 s.
*is is because, according to our setting, each client had only
one thread (concurrency), which means the processor can
only process one transaction request at a time. High
numbers of transactions can preempt memory space (see
Figure 8(c)) and limit CPU I/O speed [71]. Aside from al-
located memory for transactions, more transactions also
mean requiring a larger network structure and segmentation
workload for the sharding algorithm. *us, the sharding
algorithm yielded a worse throughput performance in terms
of the number of transactions. *e results also show that the
throughput of the link algorithm reaches its peak at
transaction volume 10, which can vary according to the
machine’s main memory’s access cycle and I/O speed (Box
1).

Figure 9(a) shows that in terms of the number of
transaction categories, the throughput for the link and
sharding algorithms increased from 8.03 TPS to 149.10 TPS
and from 0.38 TPS to 0.65 TPS, while in Figure 9(b), the
latency decreased from 0.125 s to 0.0067 s and from 2.61 s to
1.53 s. As the number of categories increased, the system
network generated more bifurcations, which resulted in
stronger concurrency. Figure 9(c) shows that the peak
memory consumption of the link and sharding algorithms
was not affected by the number of categories (Box 2).

In Figure 10(a), when the number of clients in the
blockchain network increased, the throughput of the link
and sharding algorithms increased clearly, while the delay in
both algorithms decreased significantly, as shown in
Figure 10(b). *is is because multiple clients share the
computing tasks in the blockchain system and the clients’
maximum load pressure (see Figure 10(c)). *e experiment
shows that with the increase of users (client devices) in the
blockchain network, the system has a markedly performance
expansion, which suggests that the overall system
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performance is not limited by the performance limit of a
single client device but is improved by the increase in the
number of clients (Box 3).

6.2.2. Network Load of Ledger. Network performance usu-
ally refers to the network’s service quality, which is the key
evaluation metric of software system availability. Many

factors affect network performance, such as network
bandwidth, hardware system, code quality, data content, and
network scale. In terms of network scale, we analyzed the
network load performance of the blockchain ledger, in-
cluding load latency and memory cost (Box 4).

*e experimental results show that the load delay and
memory cost of the ledger network increase linearly with the
number of transactions in the network, but the loading cost of

Experimental settings:
Quantitative: one shard; one client (single thread); 20 transaction categories
Variable: number of transactions
Experiments: Figures 8(a), 8(b), and 8(c)

BOX 1: *e first group of experiments: throughput and latency.
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Figure 8: Performance of the link and sharding algorithms in terms of transactions. (a) *roughput. (b) Latency. (c) Peak memory cost.

Experimental settings:
Quantitative: one shard; one client (6 threads); 10000 transactions
Variable: number of categories
Experiments: Figures 9(a), 9(b), and 9(c)

BOX 2: *e second group of experiments: concurrent capability.
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the whole network is significantly higher than that of the
shard network (see Figures 11(a) and 11(b), respectively).
*ese results suggest that the sharding scheme is conducive to
improving the loading performance of the blockchain ledger.

6.2.3. Performance of Data Sharing. We tested and analyzed
the data-sharing performance of the blockchain systems in
terms of data retrieval (Box 5) and data transmission (Box 6).
*e following is a brief description of the concepts involved:

Data retrieval is the operation to find the target data by
scanning the ledger of blockchain systems, which is the
basis of data sharing.

Data transmission refers to the operation of trans-
mitting data from the source to the terminal through

one or more data links according to certain procedures.
Its main function is to realize the information trans-
mission and exchange between ends, which is a critical
step in data sharing.

Figures 12(a) and 12(c) show that time delays in data
retrieval of the category-based sharded blockchain system do
not vary with the number of transactions or shards, vali-
dating the theoretical derivation of time complexity O(1) in
Section 3.3. *e time delay in data retrieval of an unordered
sharded blockchain system increases linearly with the
change of shards, consistent with the previous theoretical
derivation of time complexity O(n), where n represents the
number of shards.

In Figure 12(b), the memory cost of data retrieval in the
category-based sharded blockchain system is equal to that of
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Figure 9: Performance of the link and sharding algorithms in terms of categories. (a) *roughput. (b) Latency. (c) Peak memory cost.

Experimental settings:
Quantitative: one shard; 10000 transactions; 20 transaction categories
Variable: number of clients (concurrency)
Experiments: Figures 10(a), 10(b), and 10(c)

BOX 3: *e third group of experiments: extending capability.
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Figure 10: Performance of the link and sharding algorithms in terms of clients. (a) *roughput. (b) Latency. (c) Peak memory cost.

Experimental settings:
Quantitative: one client; whole system without shards; sharded system with three shards
Variable: number of transactions
Experiments: Figures 11(a) and 11(b)

BOX 4: *e first group of experiments: network load.
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(1) Experimental settings:
Quantitative: one client; 20 shards
Variable: number of transactions
Experiments: Figures 12(a) and 12(b)

(2) Experimental settings:
Quantitative: one client; 5000 transactions
Variable: number of shards
Experiments: Figures 12(c) and 12(d)

BOX 5: *e first group of experiments: data retrieval.
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Figure 12: Time latency and memory cost of data retrieval. (a) Latency. (b) Peak memory cost. (c) Latency. (d) Peak memory cost.
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the unordered sharded blockchain system. Both increase
linearly with the number of transactions, far lower than the
memory consumption of systems without shards. In
Figure 12(d), when the total transaction volume is fixed, as
the number of shards increases, the memory consumption
from data retrieval in a client decreases since the average
volume for each shard ledger is reduced.

Generally, the category-based sharded blockchain sys-
tem has a steady data retrieval delay and minimum memory
consumption and provides the best data retrieval
performance.

Figures 13(a) and 13(b) show that in a P2P network, the
network delay and the network load of data uploading and
downloading increase with data size. However, compared to
data download, data upload has a slightly higher network
delay and slightly lower network load due to the setting of
network bandwidth and computer hardware configuration.

In Figure 13(c), the more the clients in a P2P network,
the worse the network delay for data upload caused by the
multiple backups and synchronization of network data. *e
network delay in data download has a downward trend in
the number of clients since in a P2P network, multiple hosts

(1) Experimental settings:
Quantitative: one shard; one client
Variable: data size
Experiments: Figures 13(a) and 13(b)

(2) Experimental settings:
Quantitative: one shard; 100M data
Variable: number of clients
Experiments: Figures 13(c) and 13(d)

BOX 6: *e second group of experiments: data transmission.
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can improve the processing performance by dispersing the
computing tasks of a blockchain system. *e data upload
and download latency in P2P networks is far lower than that
of C/S architecture.

Figure 13(d) shows that the network load of data
transmission increases due to data synchronization and
communication between multiple hosts in a distributed
architecture. In extreme cases, network congestion and
network delay occur in P2P networks [72, 73]. Although
multiple data backup increases memory consumption, the
P2P network architecture in blockchain significantly im-
proves data transmission speed.

7. Conclusions

Blockchain has developed considerably in recent years. At
present, technological innovation has largely focused on
improving the performance and security aspects of block-
chain. DAG technology has been proven to be a feasible
approach to significantly improve the performance of single-
chain blockchain, in which consensus delay depends on
transaction arrival rate as generally reaching the millisecond
level and transaction throughput depends on the number of
concurrent threads without upper limit in theory [20].

We developed a secure and efficient construction scheme
for blockchain networks using a category-based sharding
DAG blockchain. Compared with the scale-based sharded
DAG blockchain, the category-based sharded DAG block-
chain has higher cohesion and lower network coupling since
similar data types and transaction information are organized
and stored together. Compared with the account chain-
based DAG blockchain [24], the category-based DAG
blockchain has better interactivity since a transaction always
involves multiple accounts, and similar data are easier to
share.

To prevent double-spend attacks, we added a limited
number of nodes using category-based sharding. Category
nodes that are not enough to form a shard are temporarily
stored in the root shard. When a category shard exceeds the
standard quantity, our sharding protocol divides it to pre-
vent network redundancy. To ensure data consistency in the
category-based DAG blockchains, we used a consensus
mechanism composed of “root shard” and “shard main
chain”: (1) the time series for all nodes of root shard are
marked and stored orderly to achieve global sorting among
shards and (2) the main chain of each subshard is used to
achieve local sorting of one single shard. We also introduced
a smart contract-driven crowdsourcing mechanism to
prevent DDoS attacks, providing stronger financial controls
and risk management capabilities.

Having low performance is a core issue of all sharded
blockchains. Disordered sharding mechanisms may cause
considerable transaction delay and network congestion due
to frequent cross-shard communication and data verifica-
tion. Our category-based shard protocol and redundant
node generation strategy ensure that users can quickly find
the latest states in the whole network of target data by
loading several specific shards, which substantially improves
transaction processing performance.

Using simulation tests and analyses, we were able to
verify the feasibility and superiority of our design in terms of
algorithm performance and system availability.
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