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A Secure and Privacy-preserving Protocol for

Smart Metering Operational Data Collection
Mustafa A. Mustafa, Sara Cleemput, Abdelrahaman Aly, and Aysajan Abidin

Abstract—Smart grid allows fine-grained smart metering data
collection which can improve the efficiency and reliability of the
grid. Unfortunately, this vast collection of data also impose risks
to users’ privacy. In this paper, we propose a novel protocol that
allows suppliers and grid operators to collect users’ aggregate
metering data in a secure and privacy-preserving manner. We use
secure multiparty computation to ensure privacy protection. In
addition, we propose three different data aggregation algorithms
that offer different balances between privacy-protection and
performance. Our protocol is designed for a realistic scenario in
which the data need to be sent to different parties, such as grid
operators and suppliers. Furthermore, it facilitates an accurate
calculation of transmission, distribution and grid balancing fees
in a privacy-preserving manner. We also present a security
analysis and a performance evaluation of our protocol based
on existing multiparty computation algorithms.

Index Terms—Secure Multiparty Computation, Smart Grid,
Smart Metering, Renewable Energy Source, Security, Privacy.

I. INTRODUCTION

S
MART Grid (SG) is the electrical grid of the future,

adding a communication network to the traditional electri-

cal grid infrastructure. This allows bidirectional communica-

tion between the different entities and components of the grid,

facilitating automated grid management. The overall aim is to

make the electrical grid more reliable and efficient [1]. This

is achieved by automatically collecting fine-grained metering

data from Smart Meters (SMs), which replace the traditional

electricity meters. These metering data include electricity con-

sumption and production measurements. Electricity production

takes place if households own a Distributed Energy Resource

(DER), e.g., solar panels. All these data are sent to the grid

operators and suppliers at regular intervals, e.g., 15 minutes.

Access to fine-grained metering data gives entities two

main advantages. Firstly, these data allow suppliers to predict

their customers’ electricity consumption and production more

accurately. These patterns are essential to allow the supplier to

predict the amount of electricity it needs to buy on the whole-

sale market for every trading period. Since suppliers pay heavy

imbalance fees for every deviation of the actual consumption

compared to their prediction, it is crucial for them to obtain

accurate consumption and production patterns. Secondly, fine-

grained metering data also allow accurate settling of all the

fees after each trading period, which is essential to realise local
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electricity trading markets [2], [3]. Currently, the imbalance

fees for the suppliers are calculated proportional to their

number of customers in each neighbourhood - i.e., households

connected to the same feeder. The current imbalance fee is

an estimate. With SM data, accurate settling of fees becomes

possible. The same is true for the distribution and transmission

fees which suppliers pay to the Distribution Network Operator

(DNO) and Transmission System Operator (TSO).

Unfortunately, fine-grained metering data also have disad-

vantages: they pose a privacy threat to users. Any entity who

has access to individual users’ fine-grained metering data can

use non-intrusive load monitoring techniques [4] to analyse

consumption patterns and infer user activities [5]. As a simple

example of how such a privacy invasion can lead to adverse

consequences, consider an insurance company which increases

the insurance fee if they observe from the consumption pattern

that their customers do not have a healthy life style. The

Netherlands have even abandoned their planned mandatory

roll-out of SMs because of the privacy issues [6].

The UK has privacy protection as a requirement for their

smart metering architecture [7]. However, their proposed archi-

tecture contains a centralised entity, the Data Communications

Company (DCC), that collects all metering data and provides

a privacy-friendly version of it to authorised entities. Although

this might ensure privacy protection against these entities (if

the privacy-friendly version is properly generated), it does not

protect against the DCC which has access to all users’ data.

There are two main approaches for user privacy protection:

anonymisation and data aggregation. Proper anonymisation

is difficult to achieve, as de-anonymisation is almost always

possible [8]. Aggregation is a better approach, but the cur-

rent proposals [9]–[11] still have shortcomings: (i) they are

designed for system models in which data are sent to only

one entity, thus they are not applicable to current electricity

markets, (ii) they do not consider electricity generated by

residential DERs and injected to the grid, and (iii) they

do not support transmission, distribution and balancing fee

calculation. The real challenge is to design solutions that

protect users’ privacy not only from external entities but also

from internal ones, and that are efficient, fault-tolerant and

applicable to real-world smart metering architecture.

In this paper we propose a secure and privacy-preserving

protocol for collecting metering data. This work extends our

previous research [12] by improving the data aggregation

algorithm. Our main contribution is twofold:

• We design a secure and privacy-preserving protocol for

collecting operational metering data which is required for

calculating distribution, transmission and imbalance fees.
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Our protocol uses Multiparty Computations (MPC) as

the underlying cryptographic primitive and supports three

different privacy-friendly data aggregation algorithms.

Additionally, it supports realistic system models (with

multiple data recipients of aggregates of various subsets

of users’ metering data); it is fault-tolerant; it is applicable

to existing liberalised market models, and it also supports

electricity production data generated by users.

• We analyse the computational complexity and communi-

cation cost of our protocol in a realistic setting based on

the UK’s smart metering architectue [7].

The remainder of the paper is organised as follows: Sec-

tion II discusses the related work, Section III gives the neces-

sary preliminaries, Section IV proposes a protocol (and three

aggregation algorithms) for secure and privacy-preserving op-

erational metering data collection. Sections V and VI analyse

its security and privacy properties, and evaluate its perfor-

mance, respectively. Finally, Section VII concludes the paper.

II. RELATED WORK

Security and privacy concerns in SG have been raised [5]

and various protocols have already been proposed [9]–[17].

To protect users’ privacy, these protocols usually take two

approaches: anonymisation or aggregation. Efthymiou and

Kalogridis [13] proposed that each SM also has an anonymous

ID for reporting only operational metering data. However,

Cleemput et al. [8] showed that de-anonymisation is possible.

To achieve privacy-friendly aggregation, Li et al. [10] pro-

posed to use homomorphic encryption. However, their protocol

does not protect against active attackers nor facilitate current

electricity markets. Mustafa et al. [14], [15] addressed these

limitations by using digital signatures and a selective data

aggregation and delivery method. Garcia and Jacobs [11] com-

bined homomorphic encryption with data sharing to allow the

data recipient to aggregate the data. The use of homomorphic

encryption can protect users’ privacy, but it also introduces

high computational costs to SMs. To overcome this limitation,

Kursawe et al. [9] proposed a lightweight aggregation scheme

which requires SMs to mask their data with noise that cancels

out when added together. The scheme is computationally

efficient, but it requires a complex reinitialization process

when adding SMs and does not support flexible aggregation

groups. Rahman et al. [18] proposed a distributed aggregation

of metering data where an initialisation SM adds random value

to its metering data before sending the sum to the next SM in

the group. In turns, each SM adds their data to the accumulated

sum before the value is returned to the initial SM that extracts

the beforehand added random value to obtain the aggregate

data of all the SMs. However, the data of a SM could easily be

learnt if two of the neighbouring SMs in the ring collaborate.

Gope and Sikdar [19] proposed a privacy-preserving aggre-

gation scheme for billing and demand response management,

named EDAS, that uses random values to mask the individual

measurements of SMs. However, their scheme only partially

protects users’ privacy, i.e., the service provider is fully trusted,

thus it learns all the users metering data, and the aggregator

also learns the aggregate data of users located in the same

region. Liu et al. [20] proposed a data aggregation scheme,

named 3PDA, that uses a virtual aggregation area to mask the

metering data of individual users. Although 3PDA does not

rely on a trusted party to aggregate the data, its system model

is simplified (it has only a service provider, aggregator and

SMs), thus not practical to deploy in existing grid architecture.

Lyu et al. [21] proposed a fog-enabled scheme, named PPFA.

PPFA uses nodes that are closer to SMs to perform an initial

aggregation of the data, and then the service provider uses the

aggregate data provided by the fog nodes to extract statistics

about the users’ metering data. Although the obtained results

protect users’ privacy, i.e., they are differentially private, such

results can not be used for billing and settlements as they are

just (close) estimations of the real consumption.

He et al. [22] proposed a privacy-preserving aggregation

scheme that also protects against internal attackers. However,

their scheme uses bilinear mapping, which is computationally

expensive for devices with limited resources. He et al. [23],

[24] proposed modified schemes that outperform [22] in terms

of computation and communication costs. Knirsch et al. [25]

combined the schemes proposed in [26] and [27] to construct

a scheme for privacy-friendly fault-tolerant aggregation over

multiple sets of SMs. However, the scheme is not efficient, as

it uses computationally expensive homomorphic techniques as

well as a full round between SMs and the service provider.

Li et al. [28] proposed a privacy-preserving multi-subset data

aggregation scheme, named PPMA. Their scheme combines

two super-increasing sequences (similar to EPPA [29]) and

Paillier cryptosystem. However, the SMs of each subset are

restricted to the ones whose consumption data is within a

predefined range, limiting the usefulness of the aggregate data.

Knirsch et al. [30] use masking to achieve error-resilient

data aggregation. Although their scheme supports aggregation

over multiple sets of SMs, it adds additional communication

costs as SMs communicate between each other to exchange

their masking values. Abdallah and Shen [31], [32] proposed a

lattice-based homomorphic data aggregation scheme, whereas

Shen et al. [33] proposed a cube-data aggregation scheme that

allows aggregation of multi-dimensional data to obtain sums

of each dimension without revealing users’ private informa-

tion. However, these schemes do not support aggregation of

multiple sets of SMs. Borges and Mühlhäuser [34] proposed a

homomorphic encryption-based protocol, where each SM has

two secret keys, and an authorised data recipient is aware of

the sums of all the corresponding keys of all the SMs in the

network. Each SM encrypts its metering data using its keys

and sends the ciphertext directly to the data recipient. The data

recipient aggregates all the ciphertexts and then using the sums

of the keys, it can decrypt only the sum of the SMs’ metering

data. The protocol has lower computational costs at SMs (the

costs of encryption), compared to the original Paillier scheme.

However, the decryption cost at the data recipient is high. Also,

the communication overheads are high, as each SM sends its

data to the data recipient, i.e., the aggregation is done at the

data recipient (the destination of the data), not in the network.

Tonyali et al. [35] proposed mechanisms to reduce communi-

cation overheads when somewhat homomorphic encryption is

used to perform in-network data aggregation.
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Fig. 1. System model.

Another approach to aggregate data in a privacy-preserving

(and efficient) manner is MPC. Danezis et al. [16] proposed

protocols using secret-sharing based MPC to detect fraud and

to extract advanced grid statistics. Rottondi et al. [17] proposed

a novel security architecture for aggregation of metering data.

However, their architecture requires additional nodes in the

system, i.e., gateways placed at the users’ households.

Unlike the aforementioned work, our proposed MPC-based

privacy-preserving protocol for operational metering data col-

lection (i) is based on a real smart metering architecture,

(ii) is readily applicable to a liberalised electricity market

with various stakeholders, (iii) takes into account not only

the electricity consumption data, but also electricity injected

into the grid by households, and (iv) allows the TSO, DNOs

and suppliers to calculate the exact distribution, transmission

and balancing fees based on real data rather than on estimates.

Furthermore, our protocol is fault-tolerant and it protects users’

privacy against (colluding) internal adversaries.

III. PRELIMINARIES

A. System Model

As shown in Fig. 1, our system model follows the smart

metering architecture used in the UK [36], and consists of the

following entities. Users consume electricity and are billed

for this by their contracted supplier. Distributed Energy Re-

sources (DERs) are mini generators (e.g., solar panels) located

on users’ premises. Most of the electricity they generate is

consumed by their owners. However, surplus electricity may

be injected into the grid. Smart Meters (SMs) are advanced

metering devices that measure the electricity flowing from the

grid to the house and vice versa per time slot, tk. SMs regularly

communicate with other authorised SG entities. Suppliers are

responsible for supplying electricity to all users. They buy this

electricity from generators on the wholesale market, and sell

it to users. They are also obliged to buy any electricity their

customers inject into the grid. If a supplier buys an incorrect

amount of electricity, it will be punished with imbalance fees.

Distribution Network Operators (DNOs) are responsible for

managing and maintaining the electricity distribution lines

(i.e., the low/middle voltage lines) in their respective regions.

They charge suppliers distribution fees based on the electricity

consumption of the suppliers’ customers in each time slot. The

suppliers then charge their customers this fee in turn. Trans-

mission System Operator (TSO) is responsible for managing

and maintaining the electricity transmission lines (i.e., the high

voltage lines) in the grid as well as balancing the whole grid

at any point in time. It charges suppliers transmission and

balancing fees based on the consumption of their customers

in each time slot. Similarly, suppliers pass this cost to users.

Data Communications Company (DCC) is a centralised entity

that consists of servers run by different parties. It collects and

delivers users’ metering data to the TSO, DNOs and suppliers.

We also classify some of these entities into three groups:

dealers (i.e., SMs) who provide the input data, computational

parties (i.e., DCC servers) who perform computations on the

input data, and output parties (i.e., TSO, DNOs, and suppliers)

who receive the results of the computations. The SMs generate

and provide the DCC servers with input data including the

electricity consumption and generation data measured per time

slot. The DCC servers obtain input data from the SMs, jointly

perform the necessary calculations and provide the TSO,

DNOs and suppliers with the results of these calculations.

B. Threat Model and Assumptions

All external and internal entities (i.e., users, DCC servers,

TSO, DNOs and suppliers) can act maliciously. External

entities may eavesdrop or modify data in transit trying to gain

access to confidential data or to disrupt the SG. Any user may

try to modify metering data sent by their SMs in an attempt to

gain financial advantage or learn other users’ data. The TSO,

DNOs and suppliers may manipulate users’ metering data in

an attempt to gain financial advantage, i.e., to manipulate the

transmission/distribution fees and imbalance fines calculations.

They may also try to learn individual users’ consumption data

or the aggregate consumption of any group of users located

in different regions or contracted by competitors. Any DCC

server may manipulate the metering data it receives/computes.

As our main concern is privacy protection of users, we

make the following realistic assumptions. The communication

channels among all entities are encrypted and authenticated. At

least one DCC server is honest and trustworthy, i.e., it follows

the protocol specifications. SMs are tamper-proof and sealed,

thus no one can tamper with them without being detected.

This is a common assumption in the community. If an SM is

faulty or compromised (sending false data), there are standard

techniques (e.g., use control meters) to trace back and identify

this meter. However, this is out of the scope of this paper.

C. Notations

We denote the SM of household i as SMi ∈ SM, where SM

is the set of all the SMs in the grid of a country, and the amount

of electricity taken from the grid (i.e., imported electricity) and

the amount fed back to the grid (i.e., exported electricity) by

household i during the kth time slot, tk, as E
imp,tk
i ∈ E

imp,tk

and E
exp,tk
i ∈ E

exp,tk , respectively. E
exp,tk and E

exp,tk are

the aggregate of consumption data and electricity fed back

data, respectively, of all the households during tk in the grid.

More notations are given in Table I. Also,
∑

(X) denotes the

aggregate (sum) value of all elements in set X .
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TABLE I
NOTATIONS

Symbol Meaning

tk kth time slot, k = 1, . . . ,Nt

dj the DNO operating in region j, j = 1, . . . ,Nd

su uth supplier, u = 1, . . . ,Ns

SMi the SM belonging to household i
SM set of all the SMs in a specific country
SMdj set of all the SMs operated by DNO dj

SM
imp
su set of all the SMs whose users buy electricity from su

SM
exp
su set of all the SMs whose users sell electricity to su

SM
imp
dj ,su

set of all the SMs operated by dj and whose users buy
electricity from su

SM
exp
dj ,su

set of all the SMs operated by dj whose users sell
electricity to su

E
imp,tk
i amount of electricity imported by household i during tk

E
exp,tk
i amount of electricity exported by household i during tk

Eimp,tk aggregate data of all E
imp,tk
i for SMi ∈ SM

Eexp,tk aggregate data of all E
exp,tk
i for SMi ∈ SM

E
imp,tk
dj

aggregate data of all E
imp,tk
i for SMi ∈ SMdj

E
exp,tk
dj

aggregate data of all E
exp,tk
i for SMi ∈ SMdj

E
imp,tk
su aggregate data of all E

imp,tk
i for SMi ∈ SM

imp
su

E
exp,tk
su aggregate data of all E

exp,tk
i for SMi ∈ SM

exp
su

E
imp,tk
dj ,su

aggregate data of all E
imp,tk
i for SMi ∈ SM

imp
dj ,su

E
exp,tk
dj ,su

aggregate data of all E
exp,tk
i for SMi ∈ SM

exp
dj ,su

D. Design Requirements

1) Functional Requirements:

(F1) For each time period tk, each DNO dj should access:

a) E
imp,tk
dj

and E
exp,tk
dj

, in order to better manage the

distribution network in its region,

b) E
imp,tk
dj ,su

and E
exp,tk
dj ,su

, for u = 1, . . . ,Ns, in order to

split the distribution fees fairly among the suppliers.

(F2) For each time period tk, each supplier su should access:

a) E
imp,tk
su and E

exp,tk
su , in order to predict its customers’

electricity consumption and production accurately, so

that it can avoid receiving imbalance fines,

b) E
imp,tk
dj ,su

and E
exp,tk
dj ,su

for j = 1, . . . ,Nd, so it can

be assured that it pays the correct transmission and

distribution network fees to the TSO and each DNO,

respectively. Transmission network fees can also be

made region-dependent to encourage suppliers to buy

electricity from sources located closer to the demand.

(F3) For each time period tk, the TSO should access:

a) E
imp,tk
dj ,su

and E
exp,tk
dj ,su

, for u = 1, . . . ,Ns, so it can split

transmission network fees among suppliers,

b) E
imp,tk
su and E

exp,tk
su , for u = 1, . . . ,Ns, so it can

calculate the imbalance fine for each supplier,

c) E
imp,tk
dj

and E
exp,tk
dj

, for j = 1, . . . ,Nd, to identify the

regions that cause imbalance, thus to decide which

measures to take to avoid the imbalance, and

d) E
imp,tk and E

exp,tk , to balance the grid efficiently.

2) Security and Privacy Requirements:

(S1) Privacy of users: individual users’ fine-grained metering

data should not be revealed to any in(ex-)ternal SG entity.

(S2) Confidentiality of users’ data: only the authorised entities,

i.e., TSO, DNO and suppliers, should have access only

to the aggregates of users’ metering data.

Algorithm 1: Generic Equality Test

Input: Secret share bit representation of x, [x]1, . . . , [x]σ
Bit representation y1, . . . , yσ of public scalar y to which x is compared

Output: A secret share of the output of the equality test [c]
1 [c]← 0;
2 for i← 1 to σ do

3 [c′]← [x]i + yi − 2 · ([x]i · yi);
4 [c]← [c] + [c′]− [c] · [c′];
5 end

(S3) Authorisation: SG entities should be allowed to access

the aggregate data only of the users whom they provide

services to. For the DNO this means only the users living

in the region it operates, for the supplier this means only

the users who have a contract with it.

(S4) Fault tolerance: (Partial) loss of metering data should still

allow computation of aggregates of the data.

E. Cryptographic Notation

Security of MPC protocols is typically analysed in the

Universally Composable (UC) framework [37], under which,

the ideal functionality of MPC is modelled as an Arithmetic

Black Box (ABB). ABB can be seen as a generic procedure

for secure computation, where any party can send its private

input to ABB and ask it to calculate any computable function.

The functions are represented as arithmetic circuits comprising

additions, multiplications, permutations, equality tests, etc. As

long as the circuit components are UC secure, the UC frame-

work guarantees that the circuit can be executed securely. Our

protocol uses equality test and permutation as components.

Equality test can be implemented in oblivious fashion by

using just multiplications and additions. Any existing test [38],

[39] is suitable for use. To simplify it, SMs could share their

ID in its bit representation. This way the bit-wise comparison

would require only σ multiplications, where σ is the bit length

of the suppliers’ ID. Algorithm 1 illustrates this. It can be

optimised by parallelising the computation of multiplications

so that only log(σ) communication rounds are needed.

Oblivious permutation can be achieved by using an n × n

Boolean permutation matrix, where n is the size of the

input to be permuted. Under this approach each entry of

the input is multiplied against a corresponding matrix col-

umn, and the results are aggregated. This method has O(n2)
complexity. Other approaches (e.g., use of sorting networks)

can achieve better asymptotic complexity. However, using a

pre-computed permutation network this can be achieved in

(almost) O(n log(n)) complexity [40]. Such approaches have

been adapted for practical use in electricity markets [41].

We assume that all secretly shared values are members of a

field Zp bounded by a sufficiently large prime p, such that no

overflow occurs. If fixed point precision is needed, the entries

can be multiplied with a large enough constant such that they

can be shared as elements of Zp.

IV. PRIVACY-PRESERVING SMART METERING PROTOCOL

In this section we propose a privacy-preserving MPC-based

protocol for operational metering data collection. We give an

overview of the protocol, and then propose three aggregation

algorithms that offer different privacy/performance trade-offs.
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Algorithm 2: Naı̈ve Aggregation Algorithm (NAA)

Input: Tuples from region j, {[simp
u ], [sexp

u ], [Eimp
i

], [Eexp
i

]} for SMi ∈ SMdj

Output: Shares of aggregate consumption data per supplier, [Eimp

dj ,su
]

Shares of aggregate production data per supplier, [Eexp

dj ,su
]

1 [Eimp

dj ,su
]← {01, ..., 0Ns};

2 [Eexp

dj ,su
]← {01, ..., 0Ns};

3 for i← 1 to |SMdj
| do

4 for u← 1 to Ns do

5 [c]← [simp
u ]

?
= su;

6 [Eimp

dj ,su
]← [Eimp

dj ,su
] + [c] ∗ [Eimp

i
];

7 end

8 for u← 1 to Ns do

9 [c]← [sexp
u ]

?
= su;

10 [Eexp

dj ,su
]← [Eexp

dj ,su
] + [c] ∗ [Eexp

i
];

11 end

12 end

A. Overview of our Generic Protocol

The generic protocol consists of the following four steps.

1) Input data generation and distribution: Each SM gener-

ates three data tuples, each containing different shares of the

user’s contracted suppliers, consumption and generation data,

and sends them to the corresponding computational parties.

2) Region-based data aggregation: Once the input data of

all the SMs are received, the computational parties aggregate

the consumption and generation data for each region using

one of the three aggregation algorithms described below. The

output is in shared form and represents the region-based

aggregate consumption and generation data per supplier.

3) Grid-based data aggregation: The computational parties

compute the shares of all the grid-based aggregate consump-

tion and generation data by simply adding the corresponding

shares of the region-based aggregate data.

4) Output data distribution: Following the functional re-

quirements specified in Section III, the shares of the previously

calculated aggregations are distributed to the TSO, DNOs and

suppliers, accordingly. Finally, these entities reconstruct their

required results by reconstructing the corresponding shares.

B. Region-based Data Aggregation Algorithms

In this section, we present our three region-based data

aggregation algorithms that offer different trade-offs in terms

of security, flexibility and performance.

1) Naı̈ve Aggregation Algorithm (NAA): A naı̈ve approach

to perform data aggregation with perfect privacy would be to

implement a basic circuit that uses equality tests to identify

users’ suppliers. As shown in Algorithm 2, SMs send their

tuples {[simp
u ], [sexp

u ], [Eimp
i ], [Eexp

i ]} to the DCC servers, so that

the servers can classify the inputs by using oblivious compar-

isons. Although the algorithm is fairly adaptive to a growing

number of suppliers, denoted as Ns, it is expensive in terms of

performance as it still requires O(|SMdj | · Ns) equality tests,

where |SMdj | is the number of SMs in a given region j.

2) No Comparison Aggregation Algorithm (NCAA): To

improve the performance of the aggregation algorithm, some

level of disclosure to the DCC servers can be allowed, in

this case, the number of users linked to each supplier. As

shown in Algorithm 3, the DCC servers permute the tuples

Algorithm 3: No Comparison Aggr. Algorithm (NCAA)

Input: Tuples from region j, {[simp
u ], [sexp

u ], [Eimp
i

], [Eexp
i

]} for SMi ∈ SMdj

Output: Shares of aggregate consumption data per supplier, [Eimp

dj ,su
]

Shares of aggregate production data per supplier, [Eexp

dj ,su
]

1 [Eimp

dj ,su
]← {01, ..., 0Ns};

2 [Eexp

dj ,su
]← {01, ..., 0Ns};

3 [SM′

dj
]← permute([SMdj

]);

4 for i← 1 to |SM′

dj
| do

5 simp
u ← open([simp

u ]);
6 for u← 1 to Ns do

7 c← simp
u == su;

8 [Eimp

dj ,su
]← [Eimp

dj ,su
] + c ∗ [Eimp

i
];

9 end

10 end

11 [SM′

dj
]← permute([SMdj

]);

12 for i← 1 to |SM′

dj
| do

13 sexp
u ← open([sexp

u ]);
14 for u← 1 to Ns do

15 c← sexp
u == su;

16 [Eexp

dj ,su
]← [Eexp

dj ,su
] + c ∗ [Eexp

i
];

17 end

18 end

corresponding to the same region and aggregate them in a

non-interactive way afterwards. Considering that its complex-

ity is dominated by the oblivious permutation calls, NCAA

multiplication bound is O(|SMdj | · log(|SMdj |). Also, NCAA

keeps its flexibility with respect to Ns at the cost of disclosing

the number of SMs associated to each supplier.

3) Non-Interactive Aggregation Algorithm (NIAA): To fur-

ther improve the performance of the aggregation algorithm, the

input data of SMs can be tweaked such that the aggregation

could be done without the need of communication between

the DCC servers. To achieve this, SMs have to encode their

input data into vectors of all zeros but one unique non-zero

entry. These vectors are of size Ns and the non-zero entries are

their Eimp and Eexp, respectively. This way the DCC servers

only need to process the aggregation of the shares, which

is non-interactive for any generalized Linear Secret Sharing

Scheme (LSSS). By reducing the flexibility (Ns has to be

fixed), NIAA, as shown in Algorithm 4, is implemented with

neither comparison nor multiplication operations. To support

the addition of a new supplier, SMs will have to use a vector

with a sufficiently large pre-fixed size, providing 0 for the non-

used slots, so that the system is flexible in accommodating a

large number of suppliers. An easy alternative would be to

Algorithm 4: Non-Interactive Aggr. Algorithm (NIAA)

Input: Tuples from region j, {[Eimp
i

], [Eexp
i

]} for SMi ∈ SMdj
, where E

imp
i

and E
exp
i

are vectors of size Ns with only one non-zero entry at position u

Output: Shares of aggregate consumption data per supplier, [Eimp

dj ,su
]

Shares of aggregate production data per supplier, [Eexp

dj ,su
]

1 [Eimp

dj ,su
]← {01, ..., 0Ns};

2 [Eexp

dj ,su
]← {01, ..., 0Ns};

3 for i← 1 to |SMdj
| do

4 for u← 1 to Ns do

5 [Eimp

dj ,su
]← [Eimp

dj ,su
] + [Eimp

i,u
];

6 [Eexp

dj ,su
]← [Eexp

dj ,su
] + [Eexp

i,u
];

7 end

8 end
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allow the system to feed (via an update) all the SMs with a

parameter – the number of suppliers – so that SMs will encode

their inputs as vectors of correct length. Moreover, the supplier

ID position has to be agreed in advance. NIAA also produces

no leakage, hence it achieves perfect security.

V. SECURITY ANALYSIS

We analyse the security of our protocol in the Univer-

sal Composability (UC) framework [37], in which the ideal

functionality of MPC is modelled as Arithmetic Black Box

(ABB) [42]. ABB is a generic procedure for MPC providing

an abstraction of the details of MPC operations and of secret

sharing. Players can send their private input to ABB to

compute any computable function on their private inputs. The

results from the computation are stored in the internal state

of ABB to be used in the subsequent computations. Stored

values are only made public if enough number of players

agree. Formally, ABB is defined as follows.

Definition 1 (ABB Functionality FABB). The ideal function-

ality FABB for MPC is defined as follows:

• input: Receive a value α ∈ ZM and store α.

• share(α): Create a share [α] of α.

• product([α], [β]): Compute γ = α× β and store [γ].
• compare([α], [β]): Compare α and β, and return 0 if

α < β and 1 otherwise.

• equal([α], [β]): Check if α = β; return 1 if α = β, 0

otherwise.

• permute([X]): Given an input [X] ∈ Z
n
M return a

random permutation of it.

• open([α]): Send the value α to all players.

Addition and scalar multiplication are denoted by their cor-

responding conventional symbols + and ×.

Definition 2 (UC-security [43]). A real protocol π is UC-

secure if, for any adversary A, there exists a simulator S for

which no environment Z can distinguish with a non-negligible

probability if it is interacting with A and π or S and the ideal

functionality F .

Definition 3 (Universal Composition [43]). Let π and ρ be

two protocols such that ρ ǫ1-UC-emulates G and π ◦ G ǫ2-

UC-emulates F , when using G as a subroutine. Then π ◦ ρ

(ǫ1 + ǫ2)-UC-emulates F , when using ρ as a subroutine.

We define the ideal functionality of the operation metering

data collection protocol as follows.

Definition 4 (Ideal Functionality of Operational Metering

Data Collection Protocol FOMDCP). Given a set of input

tuples {s
imp
u , s

exp
u ,E

imp
i ,E

exp
i } from SMs, the ideal functionality

FOMDCP computes the aggregate consumption data E
imp
dj ,su

and

aggregate production data E
exp
dj ,su

per supplier, and returns the

results to the relevant parties (i.e., suppliers, DNOs, and TSO).

Next, we show that the three region-based data aggregation

algorithms – NAA, NCAA, and NIAA – securely realise the

ideal functionality FOMDCP. This follows from the fact that all

three algorithms use MPC operations provided by ABB, which

are both sequentially and concurrently universal composable.

Theorem 1. Let πNAA be the operational metering data

collection protocol employing the NAA algorithm. Then πNAA

securely emulates FOMDCP.

Proof. The proof is a straightforward application of the Uni-

versal Composition Theorem 3, since (i) each ABB opera-

tion is universally composable and (ii) the NAA algorithm

comprises only ABB operations, namely, equal, addition, and

scalar multiplication.

Theorem 2. Let πNCAA be the operational metering data

collection protocol employing the NAA algorithm. Then πNCAA

securely emulates FOMDCP.

Proof. For the same reason as in the proof of the previous

Theorem. In this case, the ABB operations that are used in

NCAA are permute, equal, addition, scalar multiplication,

and open.

Theorem 3. Let πNIAA be the operational metering data

collection protocol employing the NIAA algorithm. Then πNAA

securely emulates FOMDCP.

Proof. In the case of NIAA, only addition is used, so the proof

is again straightforward.

Note that we build all our protocols over the idealised

functionality given by FABB, and no intermediate value is re-

vealed on any of them. Security then trivially follows from the

simulation of the protocols where the adversary is restricted

to what already is allowed under the ideal functionality. This

principle applies to all the results in this paper.

Fault tolerance and collusion-attacks resistance: Our solu-

tions are also fault-tolerant. This property is guaranteed due

to the fact that in all our solutions the SMs send shares of the

consumption data to the respective entities. These shares are

generated using Shamir secret sharing with a threshold, say,

τ . Therefore, even if some shares of the metering data are lost

in transit, as long as τ+1 shares are present, the DCC servers

can still compute the aggregates correctly.

Regarding security against collusion attacks, security under

MPC can be achieved under two possible settings: an honest

majority, and a dishonest majority e.g., [44]–[47]. In the

former, a majority of computational parties (i.e., at least two

of the DCC servers in our case) need to remain honest in

order to achieve perfect security. In the latter case, we can

protect against any collusion attacks as long as there is at

least one honest computational party, by choosing a protocol

secure against dishonest majority to implement the underlying

MPC functionality.

VI. PERFORMANCE EVALUATION

This section evaluates the performance of our protocol (and

our proposed data aggregation algorithms) in terms of compu-

tational complexity and communication cost using parameters

of the smart metering architecture in the UK. In addition, we

compare our protocol to (i) the traditional protocol (denoted as

TRAD) proposed by the UK government, and (ii) the DEP2SA

protocol [15] which uses the same system model as this work.

Note that TRAD does not provide sufficient privacy protection

as the DCC access all metering data of all users.
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TABLE II
THE COMPUTATIONAL COMPLEXITY OF OUR PROTOCOL WHEN A DIFFERENT DATA AGGREGATION ALGORITHM IS USED.

SM DCC servers TSO DNO Supplier

TRAD protocol - - - - -
DEP2SA protocol [15] 1 enc - - Ns (dec + rnr) Nd enc
Our protocol with NAA 1 share |su| × |SMdj | × Ns + |SMdj | × Ns multiplication Nd × Ns open Ns open Nd open

Our protocol with NCAA 1 share 2× (|SMdj | × log(|SMdj |) + |SMdj | multiplication Nd × Ns open Ns open Nd open

Our protocol with NIAA Ns share 0 multiplication Nd × Ns open Ns open Nd open

TABLE III
SIMULATION PARAMETERS.

Parameter Value

Nd - number of DNOs 14
Ns - number of suppliers 10
|su| - length of supplier ID 8
|SMdj | - number of SMs in each DNO 0.5M − 4M
|x|, |r| - length of data, random number 32
|[x]| - length of share 63
|c| - length of encrypted data with symmetric key 128
|C| - length of encrypted data with public key 1024

A. Computational Complexity

The most computationally demanding step of our protocol is

the region-based aggregation algorithm. Therefore, we focus

on this step. Moreover, since the cost of a share, addition

and open operations is negligible compared to the cost of

a multiplication operation (in an MPC setting), we take into

account only the number of multiplications in our calculation.

1) NAA complexity: This algorithm contains two loops

which have the same number of multiplications. For each loop,

NAA requires |su|×|SMdj |×Ns multiplications to perform the

equality tests needed, and |SMdj |×Ns multiplications needed

for the aggregation, where |su| is the bit length of the supplier

ID, |SMdj | is the number of SMs per region and Ns is the

number of suppliers in the retail market. However, as both

loops are parallelizible, the total number of multiplications in

NAA is equal to |su| × |SMdj | × Ns + |SMdj | × Ns.

2) NCAA complexity: The number of multiplications used

by the NCAA depends on the permutation network used.

For instance, the Batcher oddeven merge sorting network

requires |SMdj |× log2(|SMdj |) exchange gates. Each of these

gates requires three multiplications per item being permuted,

in this case the supplier ID and the respective electricity

consumption or generation value. Also, the open operation

performed by the DCC servers has the same computational

cost as performing a multiplication. In total, this adds up to

2×(|SMdj |× log2(|SMdj |)+ |SMdj | multiplication-equivalent

operations per loop. However, a permutation network can be

built with only |SMdj | × log(|SMdj |) exchange gates [40],

reducing the total to 2× (|SMdj | × log(|SMdj |) + |SMdj |.
3) NIAA complexity: NIAA does not perform any mul-

tiplications. As the cost of aggregation is negligible, given

that it is just an arithmetic aggregation of shares, the total

computational complexity of NIAA is negligible.

Table II summarises the computational complexity of our

data aggregation algorithms on per entity base. The cost of the

operations performed by each SM, TSO, DNO and supplier is

negligible compared to the cost of the operations performed

by the DCC servers. In terms of computational complexity,
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Fig. 2. Computational cost of the DCC servers.

NIAA is the most efficient aggregation algorithm as it does

not require any communication between the DCC servers.

Note that TRAD does not introduce any additional cost at

each entity as it does not provide privacy protection. In the case

of DEP2SA, each SM encrypts its data using homomorphic

encryption algorithm, each DNO performs Ns decryption as

well as recovery of a random number from each of the

ciphertexts it receives, and each supplier has to perform Nd

encryptions. Similarly to the case of TRAD, DCC does not

perform any computationally expensive operations.

We also conducted an experiment to test the performance

of our algorithms. We used C++ and custom implementations

of Shamir’s SSS [48], its linear addition and improved BGW

protocol from Gennaro et al. [49], all presented in [50]. We

made use of the generalized equality test from Algorithm 1.

We run the three computational parties on the same machine,

a 64-bit 2*2*10-cores Intel Xeon E5-2687 server at 3.1GHz,

thus our results do not consider network latency.

We first executed 2 million multiplications which, on aver-

age, resulted in 20.8 × 10−6 seconds per multiplication. We

then calculated the CPU time needed by our algorithms for

various settings. For our calculations we used the following

parameters based on the UK’s electrical grid [51] and smart

metering architecture [7]: Nd = 14, Ns = 10, |su| = 8, and

|SMdj | = {0.5M, . . . , 4M}. All of our simulation parameters

are given in Table III. Note that the computational complexity

does not depend on the metering data but on the smart me-

tering architecture. Figure 2 depicts our experimental results.

They indicate all the necessary CPU time required regardless

of the number of processors. Considering that in each UK

region there will be on average 2.2 million SMs, our protocol

could be executed in less than ten minutes, even if NAA

(our most computationally demanding algorithm) is used, by

simply dividing the work between eight threads, thus making

it practical for the UK smart metering architecture.



IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. XX, XXX 201X 8

TABLE IV
THE COMMUNICATION OVERHEAD OF THE TRADITIONAL PROTOCOL AND OUR PROTOCOL.

SMs-to-DCC Between-DCC DCC-to-TSO/DNOs/Suppliers

TRAD protocol 2× Nd × |SMdj | × |x| 0 6× Nd × Ns × |x|
DEP2SA protocol [15] 2× Nd × |SMdj | × |C| 0 2× Nd × Ns × (2× |C|+ |x|+ |r|)
Our protocol with NAA 12× Nd × |SMdj | × |[x]| 6× |[x]| × (|su| × |SMdj | × Ns + |SMdj | × Ns) 18× Nd × Ns × |[x]|
Our protocol with NCAA 12× Nd × |SMdj | × |[x]| 6× |[x]| × (2× (|SMdj | × log(|SMdj |) + |SMdj |) 18× Nd × Ns × |[x]|
Our protocol with NIAA 6× Nd × |SMdj | × Ns × |[x]| 0 18× Nd × Ns × |[x]|
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(a) At the SMs-to-DCC part
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(b) At the Between-DCC part
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(c) At the DCC-to-TSO/DNOs/Suppliers part

Fig. 3. The communication overhead of our protocol at different parts of the grid.

B. Communication Cost

The communication cost of our protocol can be divided

in three parts: SMs-to-DCC, Between-DCC and DCC-to-

TSO/DNOs/Suppliers. For each part, we evaluate the com-

munication cost of our protocol when a different aggregation

algorithm is used and compare it to TRAD and DEP2SA.

1) SMs-to-DCC part: In each time slot each SM sends its

tuple to each of the DCC servers. If our protocol uses NAA or

NCAA, the format of the tuple is {[simp
u ], [sexp

u ], [Eimp
i ], [Eexp

i ]}.

Assuming there are three DCC servers, the communication

cost is 3× Nd × |SMdj | × ([simp
u ] + [sexp

u ] + [Eimp
i ] + [Eexp

i ]). If

our protocol uses NIAA, the tuple’s format is {[Eimp
i ], [Eexp

i ]},

where {[Eimp
i ], [Eexp

i ]} are shares of vectors with size Ns. This

adds up to a cost of 3×Nd×Ns×|SMdj |×([Eimp
i ]+[Eexp

i ]). If

TRAD is used, each SM sends {E
imp
i ,E

exp
i } to the DCC which

is a single entity in this case. This results in a communication

cost of Nd × |SMdj | × (Eimp
i + E

exp
i ). If DEP2SA is used,

the communication cost is Nd ×|SMdj |× (Cimp +Cexp), where

Cimp and Cexp are the ciphertext of E
imp
i and E

exp
i , respectively.

Note that these ciphertexts are the results of the homomorphic

encryption operation performed by the SMs.

2) Between-DCC part: In each time slot the DCC servers

need to communicate between each other in order to preform

the necessary computations for calculating the region-based

aggregates per supplier. As each multiplication equals the

transmission of a share from each of the DCC servers to the

others, the communication cost for this part can be calculated

by simply multiplying the total number of multiplications

(given in Table II) with the total number of shares exchanged

between the DCC servers per multiplication. In our case this

is equal to 6× |[x]|, where |[x]| is the size of a share. TRAD

and DEP2SA do not have any communication cost in this part.

3) DCC-to-TSO/DNOs/Suppliers part: In each time slot the

DCC servers need to send the computed results to the TSO,

DNOs and suppliers. As the output data of NAA, NCAA and

NIAA is the same, the communication cost for this part is

the same regardless of the aggregation algorithm. In detail,

each DCC server has to send (i) Nd × ([Eimp
dj ,su

] + [Eexp
dj ,su

]) to

each supplier, (ii) Ns × ([Eimp
dj ,su

] + [Eexp
dj ,su

]) to each DNO, and

Nd × Ns × ([Eimp
dj ,su

] + [Eexp
dj ,su

]) to the TSO. This results in a

total communication cost of 9×Nd×Ns×([Eimp
dj ,su

]+[Eexp
dj ,su

]).
If the suppliers and DNOs trust the TSO (which is usually the

case in practice), they could directly obtain the aggregation

results from the TSO. In that case, the communication cost

will be reduced to 3 × Nd × Ns × ([Eimp
dj ,su

] + [Eexp
dj ,su

]) +
(Nd + Ns) × cdj ,su , where cdj ,su is an encrypted message

containing the region-supplier based aggregate consumption

and production data, i.e., cdj ,su = Enck(E
imp
dj ,su

,E
exp
dj ,su

). If

TRAD (DEP2SA) is used, the DCC sends the respective (ci-

phertexts of the) aggregate consumption and generation data,

E
imp
dj ,su

,E
exp
dj ,su

(Cimp
dj ,su

,C
exp
dj ,su

), to the output parties. This results

in a communication cost of 3 × Nd × Ns × (Eimp
dj ,su

+ E
exp
dj ,su

)
for TRAD. In the case of DEP2SA. each DNO also sends the

respective aggregate of the consumption and generation data,

as well as a random number extracted from each ciphertext, to

each of the suppliers. This results in a communication cost of

Nd×Ns×(2×C
imp
dj ,su

+2×C
exp
dj ,su

+E
imp
dj ,su

+E
exp
dj ,su

+r
imp
dj ,su

+r
exp
dj ,su

).

Table IV summarises the communication cost of our pro-

tocol (with a different aggregation algorithm used), TRAD

and DEP2SA, where |x|, |[x]|, |C|, and |r|, denote the length

of a message, its share, a ciphertext and a random num-

ber, respectively. Furthermore, using the parameters from the

previous section and setting |x| = |r| = 32, |[x]| = 63,

|c| = 128 and |C| = 1024, we depict the communication

cost of our protocol at each part and the entire smart metering

architecture in Fig. 3 and Fig. 4, respectively. As expected, our

protocol has higher communication cost than TRAD due to the

privacy protection it offers. In comparison to DEP2SA, only
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TABLE V
COMPARISON OF OUR PROTOCOL WITH EXISTING AGGREGATION PROTOCOLS.

Feature/Property Our TRAD [15] [16] [17] [19] [20] [21] [23] [28] [30] [32] [33] [34] [35]

Real smart metering architecture Yes Yes Yes No No No No No No No No No No No No
Multiple data recipients Yes Yes Yes Yes Yes No No No No No No No No No No
Flexible subsets of SMs Yes Yes Yes Yes Yes Yes No No No Yes Yes No Yes Yes No
Consumption & production data Yes Yes No No Yes No No No No No No No Yes No No
Multiple grid fees calculation Yes Yes Yes Yes Yes No No No No No Yes No Yes Yes No
Easy supplier switch for users Yes Yes Yes No No No No No No No No No No No No
Easy SM addition/removal Yes Yes Yes No No No No No No No No Yes No No No

Confidentiality of user data Yes No Yes Yes Yes No Yes Yes Yes Yes Yes Yes No Yes Yes
Internal-attackers resistance Yes No Yes No Yes No Yes Yes Yes Yes Yes No Yes Yes Yes
Privacy of users Yes No Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes
Authorisation Yes No Yes No Yes Yes Yes No No No No No No No No
Fault tolerant Yes No No No Yes No Yes Yes No No Yes Yes No No No
Collusion-attacks resistance Yes No Yes Yes Yes No Yes No No Yes Yes No Yes No No
Require secure channels* Yes Yes No Yes Yes No No No No No Yes No No Yes No

Computational cost at SMs L L H H L L H L M H L M H H H
Computational cost at recipients L L M L L L L L L H L L L H H
Communication cost at SMs level L L L L L L L L L L H L L L H
Overall communication cost M L L L M L L L L L H L L L M
Scalable Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes

*This can be provided via the TLS/SSL protocol. L - Low, M - Medium, H - High
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Fig. 4. The total communication overhead for our protocol.

our protocol with NCAA performs better. Regarding the choice

of data aggregation algorithms, NCAA is the most efficient.

However, this algorithm discloses towards the DCC servers

the number of users linked to each supplier. In practice, such

disclosure can be tolerated by users. If such disclosures are

not accepted, NAA or NIAA should be used. Both algorithms

have comparable communication costs, the difference being

in the part of the smart metering architecture where the cost

is concentrated. In the case of NAA, the main cost incurs at

the Between-DCC part, whereas in the case of NIAA – at the

SMs-to-DCC part.

C. Comparison with Existing Aggregation Protocols

Table V gives an overview of the comparison of our protocol

with existing (privacy-preserving) smart metering data aggre-

gation protocols in terms of features, functionalities, security

and privacy properties as well as performance. Although most

of the existing solutions provide a sufficient protection of

users’ privacy, they do not support functionalities needed for

a real-world smart metering architecture. It is clear that our

protocol is the only one that, apart from protecting users’

privacy, is readily deployable in a real-world smart metering

architecture due to the functionalities it supports as well as its

low overhead and good scalability.

VII. CONCLUSIONS

We introduced an MPC-based protocol for aggregating

electricity data, related to consumption and generation, in a

secure and privacy-friendly manner. These data are required

for operational purposes such as calculating the transmission,

generation and balancing fees. Furthermore, we introduced

three data aggregation algorithms that offer different security

and performance trade-offs. We also analysed the associated

computation and communication costs of all our protocols.

Our results indicate the feasibility of our protocol for a setting

based on a real smart metering architecture. As a future work,

we will aim to have a testbed implementation of our protocol

in order to test its performance in a real-world environment.
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