
This may be the author’s version of a work that was submitted/accepted

for publication in the following source:

Su, Zhou, Wang, Yuntao, Xu, Qichao, Fei, Min-Rui, Tian, Glen, & Zhang,

Ning

(2019)

A secure charging scheme for electric vehicles with smart communities in

energy blockchain.

IEEE Internet of Things Journal, 6(3), Article number: 84571864601-4613.

This file was downloaded from: https://eprints.qut.edu.au/122663/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a

Creative Commons Licence, you must assume that re-use is limited to personal use and

that permission from the copyright owner must be obtained for all other uses. If the docu-

ment is available under a Creative Commons License (or other specified license) then refer

to the Licence for details of permitted re-use. It is a condition of access that users recog-

nise and abide by the legal requirements associated with these rights. If you believe that

this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record

(i.e. published version) of the work. Author manuscript versions (as Sub-

mitted for peer review or as Accepted for publication after peer review) can

be identified by an absence of publisher branding and/or typeset appear-

ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/JIOT.2018.2869297

https://eprints.qut.edu.au/view/person/Tian,_Glen.html
https://eprints.qut.edu.au/122663/
https://doi.org/10.1109/JIOT.2018.2869297


1 

 

 

A Secure Charging Scheme for Electric Vehicles 

with Smart Communities in Energy Blockchain 
Zhou Su, Yuntao Wang, Qichao Xu, Minrui Fei, Yu-Chu Tian, and Ning Zhang 

 

 

 
 

Abstract—The smart community (SC), as an important part 
of the Internet of energy (IoE), can facilitate integration of 
distributed renewable energy sources (RES) and electric vehicles 
(EVs) in the smart grid. However, due to the potential security 
and privacy issues caused by untrusted and opaque energy 
markets, it becomes a great challenge to optimally schedule 
the charging behaviors of EVs with distinct energy consumption 
preferences in SC. In this paper, we propose a contract based 
energy blockchain for secure EV charging in SC. Firstly, a per- 
missioned energy blockchain system is introduced to implement 
secure charging services for EVs with the execution of smart 
contracts. Secondly, a reputation based delegated Byzantine fault 
tolerance (DBFT) consensus algorithm is proposed to efficiently 
achieve the consensus in the permissioned blockchain. Thirdly, 
based on the contract theory, the optimal contracts are analyzed 
and designed to satisfy EVs’ individual needs for energy sources 
while maximizing the operator’s utility. Furthermore, a novel 
energy allocation mechanism is proposed to allocate the limited 
renewable energy for EVs. Finally, extensive numerical results 
are carried out to evaluate and demonstrate the effectiveness 
and efficiency of the proposed scheme through comparison with 
other conventional schemes. 

Index Terms—Energy blockchain, Smart community (SC), 
Electric vehicles (EVs), Contract theory. 

 
 

I. INTRODUCTION 

Renewable energy sources (RES) and electric vehicles 

(EVs), hold great potential to ease fossil fuel crisis and reduce 

gas emissions, which have attracted worldwide attentions [1]– 

[3]. According to [4]–[6], renewable energy is projected to 

equal coal and natural gas electricity generation by 2040, and 

the EV stock will reach 140 million in 2030. However, the 

rapid RES deployment and the booming EV development can 

inevitably lead to the profound and everlasting influence on the 

current smart grid architecture. To integrate and coordinate the 

large number of distributed RES and EVs, the Internet of ener- 

gy (IoE) has emerged as a promising and innovative approach 

to improve the energy efficiency and sustainability [7]–[9]. 

Moreover, equipped with RES, a smart community (SC) can 

be considered as an important component of the IoE, which 

enables the internal energy generation, storage and distribution 

and can exchange energy with external energy entities, e.g., 
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the power grid and EVs [10]–[12]. In the presence of SC, it 

is desirable to charging a group of EVs using the distributed 

RES in a cost effective way [13]–[15]. 

Microgrids are small scale power systems powered by 

distributed RES, e.g., solar energy, wind energy, hydropower, 

etc, which has been demonstrated as a feasible and effective 

strategy to integrate local available RES into the smart grid 

[16], [17]. In a SC integrated with microgrids, it allows energy 

suppliers and consumers to trade energy directly. Such local 

electricity trading not only reduces the power loss that occurs 

in electricity transmission, but mitigates the burden of the 

power grid. As a result, the framework of EV charging in SC 

involves three energy parties, i.e., the power grid, microgrids, 

and EVs. Recently, various literatures have been reported to 

improve the performance of EV charging [18]–[20]. However, 

most of them only consider two-sided interactions between 

EVs and microgrids or the power grid and cannot be directly 

applied to the charging management of EVs in SC. In addition, 

EV users have different charging preferences on various ener- 

gy sources in SC, e.g., the clean energy, the traditional energy, 

or the mixture of them. Therefore, in the presence of SC, it 

is of necessity to charge a group of EVs considering both 

the power grid providing traditional energy and microgrids 

supplying clean energy. 

Malicious operators of energy market will heavily threaten 

EV’s security and privacy through various malicious ex- 

ploitations [21]–[23], e.g., privacy leakage, falsification, node 

impersonation, advertising fraudulent charging service, etc. To 

provide secure charging services for EVs, many incentive 

mechanisms have been proposed and implemented [24], [25], 

e.g., trust mechanism and monetary approach. However, trust 

mechanism is neither sustainable nor susceptible for sybil at- 

tack and whitewashing attack, while monetary approach relies 

on trusted centers. Trusted centers may not only leak users’ 

privacy for profit, but are vulnerable to be attacked. Blockchain 

has provided a unique technology for secure energy transaction 

in a distributed network without trusted agents through the use 

of an immutable ledger, cryptocurrency, and the execution of 

smart contracts [26]. The agents execute a consensus protocol 

for transaction validation, block generation, and hash chain 

building over the blocks [27]. However, the widely used proof- 

of-work (POW) consensus protocol wastes a massive expen- 

diture of energy and has slow confirmation of transactions in 

traditional blockchain applications [28], such as bitcoin. Thus, 

it is not adaptable in the permissioned energy blockchain. 

Therefore, it is still an open and vital issue to resolve the 

security problems for EV charging in SC. 

In this paper, to address the aforementioned problems, we 
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exploit a contract theory based EV charging scheme in SC, 

secured by permissioned blockchain technology. Firstly, by 

introducing a novel permissioned energy blockchain system 

in  SC,  the  preselected  EVs  can  publicly  audit  and  share 

transaction records without reliance on a trusted intermediary. 

Afterwards, a reputation based delegated Byzantine fault tol- 

erance (DBFT) consensus algorithm is presented to reach the 

consensus in an efficient manner in the permissioned energy 

blockchain. Furthermore, based on contract theory, the optimal 

contracts are analysed and designed by the monopolistic oper- 

ator to meet EVs’ individual energy demand tastes. Finally, a 

novel energy allocation mechanism is proposed to allocate the 

limited RES for EVs while maximizing the operator’s utility. 

In a nutshell, the main contributions of this work are three- 

fold as follows. 

 First, based on the permissioned blockchain technolo- 

gy, we present a secure EV charging framework in an 

energy blockchain system in SC, where the preselected 

EVs can publicly audit and share transaction records 

without reliance on a trusted intermediary.  To reduce the 

cost of establishing a blockchain in energy-limited EVs, 

we propose a reputation based delegated Byzantine fault 

tolerance (DBFT) consensus algorithm within the 

permissioned energy blockchain context. 

 Second,  we  leverage  the  contract  game  to  model  the 

decision process between the aggregator  and  EVs  in the 

presence of asymmetric information. In the proposed 

contract game, the aggregator designs the contract menu 

containing its trading strategies towards all types of EVs. 

Within the proposed framework, EVs can choose either 

the traditional energy, clean energy, or the mixture of 

them to satisfy their individual energy tastes, while 

maximizing the operator’s utility. 

 Third, we propose a dynamic optimal contract assignment 

and energy allocation algorithm to achieve the optimal 

contracts and address the problem that the optimal strate- 

gies for all EVs may not be always met due to the inter- 

mittent and unstable RES supply. We carry out extensive 

simulation experiments to validate the effectiveness and 

efficiency of the proposed scheme. It is demonstrated that 

our proposal can improve both the operator’s and EVs’ 

utilities, compared with conventional schemes. 

The remainder of the work is organized as follows. Related 

work is reviewed in Section II. The system model is introduced 

in Section III. The energy blockchain is proposed in Section 

IV. The optimal contract design is proposed in Section V. 

Performance evaluations are shown in Section VI. Conclusion 

and the future work are given in Section VII. 

 
II. RELATED WORK 

A. Smart Community 

Liang et al. [29] proposed an efficient service searching 

scheme for privacy preserving in a SC consisted of networked 

smart homes. Zhang et al. [30] reviewed typical incentive 

approaches in the smart grid and investigated the cloud-based 

vehicle-to-vehicle (V2V) energy trading process via a contract 

theoretical approach. An incentive game-based mechanism for 

distributed renewable energy management in SC was studied 

by Tushar et al. [31] to improve the operator’s profit and 

minimize the total cost in energy trading. 

Bera et al. [32] presented a novel cooperative energy 

consumption framework among communities in the smart grid 

to mitigate energy consumption cost of users and reduce peak- 

to-average ratio. Montero et al. [33] investigated a global 

control strategy for electric energy micro-storage system in SC 

to improve the local power quality of demanded current and 

global power consumption. Common communication security 

issues and attacks in SCs, especially the the GPS spoofing 

attacks, were researched by He et al. [34] and the security 

mechanisms against GPS spoofing attacks were also studied. 

 
B. Energy Blockchain 

Kang et al. [35] proposed a novel peer-to-peer (P2P) energy 

trading model with a consortium blockchain approach to 

address the privacy preserving and transaction security issues 

for plug-in hybrid electric vehicles (PHEVs). Based on multi- 

signatures and anonymous encryption  methods,  Aitzhan  et al. 

[36] presented a token-based decentralized energy trading 

system to enable peers perform transaction anonymously and 

securely. Li et al. [37] exploited the consortium blockchain 

method to secure distributed energy trading market and for- 

mulated a novel energy blockchain system in the industrial 

Internet of things (IIoT). 

A novel announcement network named credit-coin was 

presented by Li et al. [38] via blockchain technology to protect 

vehicles’ privacy and motivate users to share traffic informa- 

tion. Mattila et al. [39] provided a pragmatic blockchain use 

case for machine-to-machine (M2M) energy transactions in a 

housing society environment. Based on the lightning network 

and smart contract in the energy blockchain ecosystem, Huang 

et al. [40] presented a decentralized security model to enhance 

the security of trading between EVs and charging piles in the 

P2P network. 

 
C. EV Charging Scheduling 

Zou et al. [19] designed a progressive second price auction 

game based mechanism to resolve the large scale EV charging 

cooperation problem while ensuring incentive compatibility 

over a finite horizon. Mohammadi et al. [20] proposed a 

distributed cooperative charging scheme for plug-in electric 

vehicles (PEVs) to minimize the charging cost for PEV fleets 

using a receding horizon method. A novel renewable energy 

pricing scheme in SC was studied by Liu et al. [41] to 

minimize the total electricity bill among residential users by 

using an advanced cross entropy optimization technique in 

smart home energy scheduling. 

A contract game based direct energy trading framework was 

proposed by Zhang et al. [42] to model the decision making 

process of electricity operators and consumers in vehicular 

edge computing network. Yang et al. [43] presented the 

coordinate EV charging mechanism in a microgrid powered 

by wind power generators via a Markov decision process 

(MDP) approach. By using stochastic dynamic programming 

methods, Wu et al [44] investigated the energy management 
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in a smart home integrated with PEVs to address the problem

of intermittent RES supply while minimizing the electricity

cost.

III. SYSTEM MODEL

A. Network Model

Blockchain is an open, distributed data storage mechanism

which is designed to efficiently record transactions among

participants without a trusted intermediary. Blockchain can

be either public, where transactions are verified by groups of

independent nodes, or permissioned, where only authorized

individuals can process new transactions [45]. Blockchain is a

continuously growing sequence of blocks, each hash-chained

with the previous block. As shown in Fig. 1, the permissioned

energy blockchain system in a SC is mainly composed of the

following entities:

Fig. 1. System model.

Aggregator. The aggregator in SC acts as a monopolis-

tic operator of the energy market, which operates multiple

charging piles and coordinates the charging behaviors of a

group of EVs in the charging lots. The aggregator can obtain

energy from both the power grid and the local microgrid,

i.e., photovoltaics (PV) systems. On one hand, the aggregator

manages all rooftop solar panels installed in multiple buildings

in SC and sells the harvested solar energy to EVs. On the

other hand, the aggregator purchases energy from the power

grid with unit price pg and sells the traditional energy to EVs.

EVs. The set of EVs in the charging lots in SC is denoted

as I = {1, · · · , i, · · · , I}. EVs, as the energy consumers, can

choose to purchase energy either from the power grid, or PV

systems, or the mixture of them in SC. EVs with different

energy consumption preferences are classified into different

types. We define θi as the desired perception of clean energy

in the total energy consumption of EV i. The set of EV types is

defined as Θ = {θ1, θ2, · · · , θI}. To some extent, θi indicates

the preference or the type of EV i and is only known by itself.

Moreover, the aggregator has no exact knowledge about EVs’

preference θi, but it knows the distribution of EV type θi.

Without loss of generality, we assume θ = θ1 < θ2 < · · · <
θI = θ, and 0  θ < θ  1.

Smart Meters. A built-in smart meter in each EV records

the amount of energy consumption to verify whether the

transaction has been accomplished to authorize the payment.

Microgrid. The PV system, as the local microgrid in SC,

is operated by the aggregator and is made up of multiple

solar panels installed on the rooftop of community buildings.

Suppose the number of solar panels in SC is K and the solar

irradiance at time slot t is Ilight(t). Let ηpv and S be the

energy conversion efficiency and the area of each solar panel,

respectively. Thus, the energy output of solar panels at time

slot t can be achieved through the following formula [46]

Epv(t) = ηpv · S ·K · Ilight(t) (1)

Due to the intermittent and unstable characteristics of solar

energy generation, the energy storage system (ESS) is often

used to balance the solar energy supply and demand. When

the solar energy is surplus, ESS will be in charging state,

otherwise it is in discharging state when facing shortages of

solar energy. Let Eess(t) and Cess represent the battery power

of ESS and the capacity of ESS, respectively. To prolong the

battery life, we have 0.2Cess  Eess(t)  Cess [47]. Let

Eres(t) be the total available clean energy supply for EV

charging. Thus, we have

Eres(t)=Epv(t)+ηess (Eess(t)�0.2Cess) (2)

where ηess denotes the discharging efficiency of ESS.

B. Utility Function

The monopolistic operator provides a set of the ener-

gy quantities {x(θi) 2 Ω} and the corresponding prices

{π(θi) 2 Π} for its customers. Here, the set of contract

items consisting of the energy-price combinations is defined

as Ψ = {(x(θi),π(θi)) | 8θi 2 Θ}. Where x(θi) is the energy

demand of type-θi EV, and π(θi) represents the price that

type-θi EV pays to the aggregator for energy consumption.

Obviously, the energy demand of EV can neither be negative

nor infinity, i.e., Ω =
n

x(θi)|0  x(θi)  Ci

ηi

o

, where ηi is

the charging efficiency of EV i, and Ci is the capacity of EV

i, respectively. Besides, EVs can decide whether to receive

charging services from the aggregator or not. Where x(θi) = 0
indicates that EV i will not purchase any electricity from the

aggregator and correspondingly will not pay any price to the

aggregator.

Each EV user is a risk-averse agent in the energy market,

where the utility function should be a concave, non-decreasing

function of its demand for energy. If EV i chooses the contract

item (x(θi),π(θi)), its utility function can be defined as:

U (θi, x(θi)) = V (θi, x(θi))� π(θi) (3)

where V (θi, x(θi)) is the satisfaction function that EV i
achieves from energy consumption. Based on literature [31],

[48], [49], the natural logarithmic function has been extensive-

ly accepted in modeling the utilities of energy buyers. Thus,

we use the logarithmic function to model the relationship

between EV’s satisfaction and demand including the clean

Glen Tian
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energy demand and traditional energy demand, which is shown

as [50]

V (θi, x(θi)) = α ln [1 + ωθix(θi) + ω0(1� θi)x(θi)] (4)

where α is the non-negative satisfaction coefficient, ω is the

environmental friendliness coefficient representing the clean-

liness of RES generation, and ω0 indicates the cleanliness of

traditional fossil energy. In general, we assume ω > ω0 > 0.

It is easy to see that
∂V (θi,x(θi))

∂θi
� 0,

∂V (θi,x(θi))
∂x(θi)

> 0,

and
∂2V (θi,x(θi))

∂x(θi)2
< 0. EV i will choose the contract item

(x(θi) = 0,π(θi) = 0) if its utility is negative. It is obvious

that V (θi, 0) = 0 and U(θi, 0) = 0.

Here, we define R(x(θi)) as the utility of the aggregator

that obtains from a contract item (x(θi),π(θi)) of EV i. Then

we have

R(x(θi)) = π(θi)� C(θi, x(θi)) (5)

Obviously, a rational aggregator would not accept negative

utility from a specific charging service. Thus we can conclude

that Π = {π(θi)|π(θi) � C (θi, x(θi))}. The cost function is

composed of the cost of solar energy generation, the payment

for purchasing electricity from the power grid, and the subsidy

offered by the government, which can be expressed as:

C (θi, x(θi))=(cpv�rpv)θix(θi) + pg(1�θi)x(θi) + c0 (6)

where cpv and rpv are the unit cost and the unit subsidy

for energy generation of solar panels, respectively. c0 > 0
is the fixed cost mainly including transaction cost, storage

cost, etc. For generality, we assume that 0  cpv � rpv  pg ,

which means that the ultimate unit cost of RES generation is

no more than the electricity market price of the power grid.

Then we can obtain
∂C(θi,x(θi))

∂θi
 0,

∂C(θi,x(θi))
∂x(θi)

� 0, and

∂2C(θi,x(θi))
∂x(θi)2

= 0. Thus, for the aggregator, the overall utility

function can be written as:

R =
I
X

i=1

τθi(π(θi)� C(θi, x(θi))) (7)

where τθi describes the ratio of type-θi EVs in all EVs. We

have τθi =
NθiP

i∈I

Nθi

, where Nθi is the number of type-θi EVs.

We further define the social surplus in the energy trading

between the aggregator and the specific EV as the sum of

both utilities, i.e.,

S(θi, x(θi)) = R(x(θi)) + U(θi, x(θi))

= V (θi, x(θi))� C(θi, x(θi))
(8)

According to (4) and (6), we can conclude
∂2S(θi,x(θi))

∂x(θi)2
< 0.

Similarly, the overall social surplus in the energy market can

be written as:

S =
I
X

i=1

τθi [V (θi, xi)� C(θi, xi)] (9)

For simplicity, in what follows, we rewrite τθi , Nθi , x(θi),
and π(θi) as τi, Ni, xi, and πi, respectively.

Algorithm 1 Smart contract implementation algorithm

1: Init():

2: Input: i, IDi, pNumi

3: {Ceri, PKi, SKi, addressi} register(IDi, pNumi)

4: Create():

5: Input: deposits, depositi, xi, πi, pPrice, tT ime, tStamp
6: verify(deposits), verify(depositi � πi)

7: Invoke():

8: Input: ms, mi

9: verify(t � tT ime)

10: Penaltys  penalty(xi, ms, mi, pPrice)

11: send(i, depositi � πi + Penaltys)

12: send(s, deposits + πi � Penaltys)

C. Attack Model

In SC, malicious participants in energy market may threaten

EV security and privacy. Here, we define the following three

kinds of attackers or adversaries:

1) Malicious energy provider. A malicious aggregator who

advertises fraudulent charging services without enough solar

energy.

2) Malicious energy consumer. A malicious EV pretends

that it has not received any charging service from the aggre-

gator and refuses to pay the money.

3) Malicious trusted third party. The malicious trust center

may not only disclose EV’s privacy but tamper EV’s reputation

value for profit. While the reputation value of each EV is

stored in the trust center in trust mechanism [51].

IV. ENERGY BLOCKCHAIN

A. Smart Contract

Within the blockchain context, a smart contract is a set of

digital commitments resided on the blockchain that contract

participants are agreed with [52]. Smart contracts permit

credible transactions to be executed automatically in a pre-

scribed manner among disparate, anonymous parties without

third parties. Here, a detailed overview of the smart contract

implementation is presented in Algorithm 1.

1) The Init function performs the system initialization.

After registration at a trusted authority, e.g., a government

department, EV i gets its certificate Ceri which is used

to uniquely identify itself through binding its identity IDi

and license plate number pNumi. EV i joins the blockchain

network with its certificate Ceri and gets its public/private

key pair (PKi, SKi) and wallet address addressi. Here, the

aggregator’s account contains its wallet address addresss,

available RES Eres, account balance Balances, and pub-

lic/private key pair (PKs, SKs). Each EV’s account includes

its wallet address addressi, account balance Balancei, cur-

rent credit value cri, reputation value Rei, certificate Ceri,
and public/private key pair (PKi, SKi). To ensure the authen-

ticity and integrity of information transmission, asymmetric

encryption technology is employed in the blockchain. If

DPKi
(SigSKi

(H(m))) = H(m) (10)

Glen Tian
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then the data integrity and unforgeability can be guaranteed.

Where SigSKi
is the digital signature of sender i with its

private key, DPKi
is the decode function with sender i’s public

key, H(m) is the hash digest of message m.

2) The Create function deploys a new smart contract

to the blockchain after the aggregator and EV i make an

agreement on the contract items and sign with their private

keys, respectively. After reaching consensus in the blockchain

network, which is detailedly presented in Section V–C, a

smart contract is successfully deployed and can be accessed

by all network agents. Each smart contract maintains a set

of state variables including the seller’s and buyer’s account

address (accounts, accounti), the energy demand xi, the

corresponding payment πi, the transaction time tT ime, the

timestamp tStamp, and the penalty price pPrice. To ensure

the implementation of the smart contract, the aggregator and

EV i should move enough deposit from their wallet addresses

to the contract address respectively to prevent a malicious

seller/buyer from advertising/submitting a fraudulent charging

service.

3) The Invoke function can be called after reaching con-

sensus. Then, the smart contract executes automatically if

t � tT ime and performs the energy transaction and financial

settlement. The smart contract reads inputs from both seller’s

and buyer’s smart meters (ms,mi) to verify whether the

amount of electricity have been produced and consumed, re-

spectively. Any necessary penalties will be assigned by calling

the Penalty function. Afterwards, the system periodically

updates the state ledger of blockchain, such as the balances in

the buyers’ accounts, the residual energy in sellers’ accounts,

and the state variables in smart contracts.

Here, the charging process can be simplified as follows.

EV first makes a new smart contract with the aggregator

through energy blockchain network. Then it will navigate to

the charging lot in SC and wait for charging service. Once

the trading conditions are satisfied, the smart contract will

execute automatically and perform the corresponding energy

and cryptocurrency exchange between the buyer and the seller

in a prescribed manner.

B. Consensus Process

To ensure that each node has a copy of the recognized

version of the whole ledger, the public audit stage, i.e., the

consensus process should be carried out. Based on [53], a

reputation based delegated Byzantine fault tolerance (DBFT)

consensus algorithm is proposed in Algorithm 2 to reach

consensus efficiently in the energy blockchain. The consensus

process needs to go through the following steps:

1) Leader Election: EVs have two types of roles in the

V2V network: ordinary nodes and consensus nodes. Ordinary

nodes only relay, transfer, exchange and accept ledger data,

while consensus nodes are authorized to perform the consensus

process. Any EV node, called as a shareholder, can vote for

a delegator, i.e., a consensus node, in the V2V network. The

voting weight of each node is determined by its stake, i.e.,

reputation value. The top M delegators by voting are selected,

denoted as the set M = [1, · · · ,m, · · · ,M ]. Based on [53],

we assume that M � 3f+1, where f is the maximum number

of malicious nodes in the V2V network. Here, the time interval

of block generation and delegator election are denoted as ∆T1

and ∆T2, respectively. The reputation value Rem of node m
is defined as:

Rem =

Pξ
j=0 crm,j · ϕj

ξ + 1
(11)

where ϕj is the time decay function which captures the nature

that previous credit value may be out of date quickly. ξ is the

current times of election and can be obtained by ξ = bt/∆T2c,
where t is the current time slot and b·c is the floor function.

crm,j is the credit value of node m within j–th election

interval. Here, the exponential decay function is adopted for

modeling the time decay, which is given as:

ϕj = e�λ·(ξ�j) (12)

where λ > 0 is the rate of decay. Here, the credit value is

initialized by cri,0 = 1, 8i 2 I. If Rei  Remin, EV i will

be added into the blacklist and will never have the chance to

perform the consensus process, where Remin is a predefined

threshold. To stimulate EVs to join in the consensus process,

we assume that EVs with higher reputation value can enjoy

more community welfare, e.g., higher charge priority, shorter

charging queuing time, etc.

Here, the leader p in the consensus nodes is determined by

p = (h� v) mod M + 1 (13)

where h is the current block height, v is the index of view,

initialized by v = 0.

2) Building Block Concurrently: The detailed process is

shown in steps 3–17, where Qm is the transaction set, Sm is

the state set, tx is a transaction record, Stx is the changed state

after executing the smart contract that transaction tx specifies,

Bm is the local block created by node m, verifyTx(tx) is

to verify the validity of a transaction tx, simulate(tx) is

to simulatively execute the smart contract that transaction tx
specifies, bulidBlock(Qm,Sm) is to build local block with

the transaction set Qm and the state set Sm.

When a smart contract is made between EV i and the

aggregator, EV i broadcasts it to the network. All consensus

nodes collect all transactions during a certain time and vali-

date each transaction independently before relaying it. Invalid

transactions are discarded. Then consensus nodes simulatively

execute the smart contracts and record the changed states into

their local state ledger, respectively. All valid transactions are

collected by each consensus node during a certain period,

ordered by the timestamp and packaged into a block concur-

rently. Each block contains a cryptographic hash to the prior

block in the blockchain. After all non-leader consensus nodes

have already completed this process, the delegated leader will

broadcast the proposalMsg message in step 16 and send its

candidate block to other consensus nodes.

In the sequential model [54], the leader first builds the can-

didate block, then the rest of consensus nodes build their local

blocks. By comparison, in the proposed concurrent model,

the consensus nodes build local blocks in parallel, which can

significantly shorten the time of verifying a candidate block.
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3) Verifying Candidate Block: The detailed process is

shown in steps 18–43, where Sp is the state set in the received

block, verifyBlock(B) is to verify the validity of the received

block, getState(B) is to get the states from the received block.

Each non-leader consensus node compares the local state

set with the state set in the received block. If the veri-

fication passes, each non-leader consensus node broadcasts

the confirmMsg message with its signature in the net-

work in step 25. Otherwise, the view change will be trig-

gered and the non-leader consensus node will broadcast the

changeviewMsg message in step 35. Once any consensus

node receives at least M �f same vk from distinct consensus

nodes, the view change is finished and the next round of

consensus process will start. If consensus node m doubts

the proposal received from leader p and triggers the view

change successfully, then the credit value of consensus node

m, current leader p will be changed by ∆1 and �∆2 in step

36, respectively, where ∆2 > ∆1 > 0.

4) Publishing a New Block: Any consensus node, upon

receiving no less than M � f amount of confirmMsg
message from other distinct consensus nodes within ∆T1,

reaches consensus and publishes a new block. Then the credit

value of each consensus node m and leader p0 who eventually

produces the block will be increased by ∆1 and ∆2 as a reward

in step 30, respectively. After reaching consensus, the new

block is added into the blockchain in a linear and chronological

order, which contains a cryptographic hash to the prior block.

Any node synchronizes its local copy of the blockchain with

the new block and prepares for the next round of consensus

process.

Based on [53], our proposal provides f = b(M � 1)/3c
fault tolerance to a consensus system which comprises M
consensus nodes, and the blockchain system cannot be forked

within the tolerance range.

Through the execution of smart contracts, the trading pro-

cess, i.e., the energy and cryptocurrency exchange, can be exe-

cuted automatically and safely in the untrusted energy market.

If a malicious aggregator advertises fraudulent charging ser-

vices without enough RES, the corresponding punishment will

be carried out according to the smart contract. Additionally,

each transaction is recorded in the recognized ledger in the

blockchain, and EVs cannot deny it.

In the energy blockchain system, all reputation values are

recorded in the blockchain instead of the centralized trust

center. On one hand, due to overwhelming cost, it is hard to

compromise all consensus nodes in the blockchain network to

tamper the current credit value. On the other hand, since each

block is hash-chained with the previous one, the historical rep-

utation values and transactions in each block are unforgeable.

V. OPTIMAL CONTRACT DESIGN

In this section, based on contract theory, we analyse the

optimal contracts that are made between the aggregator and

each EV in Section IV-A to maximize the utilities of both

sides. Firstly, we present the feasibility of the contract. Then

the optimal contracts are analysed. Finally, an energy alloca-

tion mechanism is designed in limited energy trading market.

Algorithm 2 Reputation based DBFT consensus algorithm

1: v = 0, k = 1. All nodes get the same block height h by

synchronizing the blocks.

2: The leader p is determined by using (13).

3: Input: transaction set Q
4: for m 2M do

5: for tx 2 Q do

6: if verifyTx(tx) = true then

7: Stx  simulate(tx)

8: Sm  Stx

9: else

10: Qm  Q\{tx}
11: end if

12: end for

13: Bm  buildBlock(Qm,Sm)

14: end for

15: if m = p then

16: broadcast
⌦

Proposal, h, υ, p,B, SigSKm
(H(B))

↵

;

17: end if

18: Input: candidate block B, local state set Si

19: for m 2M and m 6= p do

20: if verifyBlock(B) = false then

21: go to step 33;

22: end if

23: Sp  getState(B)

24: if Sp = Sm then

25: broadcast
D

Confirm, h, υ,m, SigSKp
(H(B))

E

;

26: else

27: go to step 33;

28: end if

29: if t � ∆T1 and count(confirmMsg) �M � f then

30: crm := crm +∆1, 8m 2M\{p}, crp := crp +∆2.

31: publish a new block B and begin the next round;

32: else

33: vk = v + k;

34: broadcast hChangeView, h, υ,m, vki;
35: if count(vk) �M � f then

36: v = vk, crm := crm +∆1, crp := crp �∆2

37: go to step 2;

38: else

39: k := k + 1, go to step 34;

40: end if

41: end if

42: end for

A. Contract Formulation

According to the revelation principle [55], a feasible con-

tract means that each self-interested EV truthfully selects the

contract item for its type to maximize its utility. Based on the

contract theory [56], a contract is feasible if the following two

constraints are satisfied simultaneously for all types of EVs.

Definition 1. Individual rationality (IR) constraint, whereby

type-θi EV receives a non-negative utility by choosing the

contract item (xi,πi), i.e.,

α ln [1 + (ωθi + ω0(1� θi))xi]� πi � 0, 8θi 2 Θ (14)
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Definition 2. Incentive compatible (IC) constraint, whereby

type-θi EV would prefer to choose the contract item for type

θi rather than that for type θj , i.e.,

α ln [1 + (ωθi + ω0(1� θi))xi]� πi �
α ln [1 + (ωθi + ω0(1� θi))xj ]� πj , 8θj 6= θi

(15)

Thus the aggregator, as the contract designer, will establish

the optimal contracts for all types of EVs, denoted by the set

Ψ⇤ = {(x⇤

i ,π
⇤

i ), 8θi 2 Θ}, to maximize its utility as follows:

P1 : max
{(xi2Ω,πi2Π)}

I
X

i=1

τi(πi � C(θi, xi))

s.t.

(

IR constraint in (14)

IC constraint in (15)

(16)

B. Feasibility of Contract

Note that the above maximization problem has I amount

of IR constraints and I(I � 1) amount of IC constraints, the

computational complexity of solving P1 grows rapidly as the

number of EVs, i.e., I , increases. To attain the solution of P1,

IR and IC constraints should be simplified. We first consider

to reduce IR constraints through Lemma 1.

Lemma 1. Suppose IC constraint in (15) holds for all types

of EVs, then IR constraint in (14) can be replaced by

α ln [1 + (ωθ1 + ω0(1� θ1))x1)]� π1 � 0 (17)

Proof. Since IC constraint holds for all EV types which

satisfy θ1 < θ2 < · · · < θI , then we have

α ln [1 + (ωθi + ω0(1� θi))xi]� πi

� α ln [1 + ((ω � ω0)θi + ω0)x1]� π1

� α ln [1 + ((ω � ω0)θ1 + ω0)x1]� π1

(18)

To satisfy IR constraint for all types of EVs, we only need to

guarantee that α ln [1 + ((ω � ω0)θ1 + ω0)x1]�π1 � 0. This

completes our proof.

Next, we present the necessary conditions for IC constraints

through Lemma 2 and Lemma 3.

Lemma 2. If EV’s utility function satisfies the Spence-

Mirrless condition (SMC), then for any θi > θj and xi � xj ,

8i, j 2 I, the following inequality holds:

V (θi, xi)� V (θi, xj)) � V (θj , xi))� V (θj , xj) (19)

Proof. Obviously, it holds when xj = 0 due to V (θi, 0) =

V (θj , 0) = 0 and
∂V (θ,x)

∂θ
� 0. In the case that xi � xj > 0,

note that the SMC holds, i.e., ∂
∂θ

h

� ∂U/∂x
∂U/∂π

i

> 0, then we can

obtain
∂2V (θ,x)

∂x∂θ > 0. By the fundamental theorem of calculus,

we have

V (θi, xi)� V (θi, xj))� V (θj , xi)) + V (θj , xj)

=

Z xi

xj

∂V (θi, x)

∂x
dx�

Z xi

xj

∂V (θj , x)

∂x
dx

=

Z xi

xj

 

Z θi

θj

∂2V (θ, x)

∂x∂θ
dθ

!

dx � 0

(20)

This completes our proof.

Lemma 3. For any contract satisfies IC constraint, the

monotonicity constraint holds, i.e., xi � xj , if and only if

θi � θj .

Proof. Since IC constraints are satisfied for both EV type

θi and θj , then we have V (θi, xi) � πi � V (θi, xj) � πj for

type-θi EV, and V (θj , xj) � πj � V (θj , xi) � πi for type-θj
EV. Combining the above two equations, we can obtain

V (θi, xi) + V (θj , xj) � V (θi, xj) + V (θj , xi) (21)

Substituting (4) into (21), we can simplify (21) as α(ω �
ω0)(θi� θj)(xi�xj) � 0. Thus, if θi � θj , we have xi � xj

due to ω > ω0. This completes our proof.

Then, we present the corresponding sufficient conditions for

IC constraints through Lemma 4 and Lemma 5.

Lemma 4. Local downward incentive constraints (LDICs):

for all types θi, i 2 I, if the LDICs are satisfied, i.e.,

V (θi, xi)� πi � V (θi, xi�1)� πi�1 (22)

and x1  x2  · · ·  xI , then for 8j  i, j 2 I, IC

constraints will hold, i.e., V (θi, xi)� πi � V (θi, xj)� πj .

Proof. Consider the LDICs for three types θi�1 < θi <
θi+1, we have

V (θi+1, xi+1)� πi+1 � V (θi+1, xi)� πi (23)

and (22). According to Lemma 2, since the SMC is satisfied,

for θi+1 > θj and xi � xi�1, we have

V (θi+1, xi)� V (θi+1, xi�1)) � V (θi, xi))� V (θi, xi�1) (24)

According to (22) – (24), we have

V (θi+1, xi+1)� πi+1 � V (θi+1, xi�1)� πi�1 (25)

By iterating, we can conclude that the LDICs hold for all

types θj , 8j  i, indicating that IC constraints are satisfied.

This completes our proof.

Lemma 5. Local upward incentive constraints (LUICs): for

all types θi, i 2 I, if the LUICs are satisfied, i.e.,

V (θi, xi)� πi � V (θi, xi+1)� πi+1 (26)

and x1  x2  · · ·  xI , then for 8j � i, j 2 I, IC

constraints will hold, i.e., V (θi, xi)� πi � V (θi, xj)� πj .

Proof. This proof is similar to Lemma 4.

Here, we summary the necessary and sufficient conditions

for feasible contracts through the following lemma.

Lemma 6. For any contract Ψ = {(xi,πi)} , i = 1, 2, · · · , I ,

it’s feasibility is equivalent to the following constraints:

8

<

:

x1  x2  · · ·  xI (27)

0  π1  V (θ1, x1) (28)

πk�1 + φ  πk  πk�1 + ϕ, k = 2, 3, · · · , I (29)

where φ = V (θk�1, xk) � V (θk�1, xk�1) and ϕ =
V (θk, xk)� V (θk, xk�1).

Proof. see Appendix A.

In addition, we prove that the best price is unique for any

fixed feasible energy demands through Lemma 7.
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Lemma 7. If the aggregator’s utility is maximized with fixed

demand x1  x2  · · ·  xI , then the unique optimal price

{π⇤

i } satisfies:
(

V (θ1, x1)� π⇤

1 = 0

V (θi, xi)� π⇤

i = V (θi, xi�1)� π⇤

i�1, i=2, 3,· · ·, I
(30)

Proof. see Appendix B.

C. Optimality of Contract

Based on the above analysis in Lemmas 1 � 7, IR and IC

constraints can be replaced by equations (32) – (34), and the

optimization problem P1 in (16) can be simplified as:

P2 : max
{(xi2Ω,πi2Π)}

I
X

i=1

τi(πi � C(θi, xi)) (31)

s.t.

8

<

:

x1  x2  · · ·  xI (32)

V (θ1, x1)� π1 = 0 (33)

V (θi, xi)�πi=V (θi, xi�1)�πi�1, i�2 (34)

To derive the optimal contracts in the problem P2, we first

solve the relaxed problem without the monotonicity constraint

(32), then we check whether the acquired solution meets this

constraint. By iterating on (33) and (34), we can acquire the

price assignment as follows:

πi = V (θ1, x1) +
i
X

k=1

ϕk (35)

where

ϕk =

(

V (θk, xk)� V (θk, xk�1), k = 2, · · · , I

0, k = 1
(36)

Substituting (35) into (31), the relaxed problem of (31) without

monotonicity constraint (32) can be further replaced by

max
{(xi2Ω,πi2Π)}

I
P

i=1

τi

✓

V (θ1, x1) +
i
P

k=1

ϕk � C(θi, xi)

◆

(37)

Let

ψi =

(

V (θi, xi)� V (θi+1, xi), i = 1, ..., I � 1

0, i = I
(38)

Note that
I
P

i=1

τi
i
P

k=1

ϕk =
I
P

i=1

τiV (θi, xi) +
I
P

i=2

τi
i�1
P

k=1

ψk and

I
P

i=2

τi
i�1
P

k=1

ψk =
I
P

i=1

ψi

I
P

k=i+1

τk, then we can rewrite (37) as

max
{(xi2Ω,πi2Π)}

I
P

i=1

 

τiV (θi, xi) + ψi

I
P

k=i+1

τk � τiC(θi, xi)

!

(39)

Let Λi = τiV (θi, xi) + ψi

I
P

k=i+1

τk � τiC(θi, xi), then the

optimal demand can be achieved by maximizing Λi, i.e.,

x̄⇤

i = argmax
xi2Ω

Λi (40)

Obviously, x̄⇤

i can be attained at the point which satisfies
∂Λi

∂xi
|xi=x∗

i
= 0 and ∂2

Λi

∂xi
2 |xi=x∗

i
< 0 simultaneously, or at the

boundary points, i.e., 0 and Ci

ηi
. If ∆ > 0 is satisfied, then the

optimal energy demand x̄⇤

i can be attained, i.e.,

x̄⇤

i =

8

>

<

>

:

αAB �AC �BC +
p
∆

2ABC
, i = 1, 2, · · · , I � 1

α

C
� 1

A
, i = I

(41)

where A, B, C, h, and ∆ are abbreviations for
8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

A = ωθi + ω0(1� θi) (42)

B = ωθi+1 + ω0(1� θi+1) (43)

C = (cpv � rpv)θi + pg(1� θi) (44)

h =

I
X

k=i+1

τk/τi (45)

∆ = (αAB �AC �BC)2

� 4ABC · (C � αA� α(A�B)h)
(46)

If {x̄⇤

i } is a feasible demand assignment, i.e., {x̄⇤

i } is a non-

decreasing sequence, then we have {xi
⇤} = {x̄⇤

i }. However,

for general distribution of EV types, {x̄⇤

i } may be infeasible

and should be adjusted by bunching and ironing mechanism

[55]. The following lemma is introduced to design such a

mechanism.

Lemma 8. Suppose that Xi(x), i = 1, · · · ,K are concave

functions on x, and x̄i = argmax
xi

Xi(xi). If x̄1 � x̄2 � · · · �
x̄K , then we can obtain x⇤

1 = x⇤

2 = · · · = x⇤

K , where

x⇤

k = argmax
xi

K
X

k=1

Xi(xi), 8k = 1, · · · ,K (47)

and x1  x2  · · ·  xK .

We refer to [57] for the detailed proving process. Accord-

ingly, if {x̄⇤

i } is infeasible, an infeasible subsequence can

be defined as {x̄⇤

m, x̄⇤

m+1, · · · , x̄
⇤

n} ✓ {x̄⇤

i }. By means of

Lemma 8, we can adjust the infeasible subsequence to be

feasible by solving the single variable problem in (47) using a

binary searching approach. The detailed process is presented in

Algorithm 3, where the maximum iteration number in step 5 –

step 8 is I�1. Therefore, the optimal demand assignment {x⇤

i }
can be derived. Substituting x⇤

i into (35), then the optimal price

assignment {π⇤

i } can be acquired as

π⇤

i = V (θ1, x
⇤

1) +

i
X

k=1

ϕ⇤

k (48)

where ϕ⇤

k can be obtained by substituting x⇤

i into (36).

D. Energy Allocation

In the above analysis, we assume the total available RES is

sufficient for EV charging in optimal contracts, i.e., Eres �
I
P

i=1

Niθix
⇤

i . Where Eres is the total available solar energy for

EV charging. However, in practical implements, the solar ener-

gy generation in SC is always limited, i.e., Eres <
I
P

i=1

Niθix
⇤

i ,

especially for the system with a large number of EVs. Thus,

a proper energy allocation scheme should be designed to

efficiently allocate the limited RES to EVs.
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Here, each type-θi EV will select the optimal contract

(x⇤

i ,π
⇤

i ) designed by the aggregator. According to (5), the

utility of the aggregator by selling energy x⇤

i to a type-θi EV

is

R(x⇤

i ) = π⇤

i � C(θi, x
⇤

i ) (49)

We define x̂i as the social optimal energy demand for type-θi
EV, i.e., x̂i = argmax

xi

S(θi, xi), where S(θi, xi)) is the social

surplus defined in (8). x̂i can be attained by the first-order

optimality condition for S(θi, xi)) with respect to xi, i.e.,
∂S(θi,xi))

∂xi
= ∂V (θi,xi)

∂xi
� ∂C(θi,xi)

∂xi
= 0. Here, the aggregator

and EVs are assumed to be selfish and rational, so the social

optimal demands may not be adopted by both sides in the

energy market. However, the maximum social surplus provides

an upper bound of the sum of utilities for both sides. Then,

the difference between the utilities that the aggregator obtains

from a type-θi+1 EV and a type-θi EV can be acquired as

R(x⇤

i+1)�R(x⇤

i )

= π⇤

i+1 � π⇤

i � C(θi+1, x
⇤

i+1) + C(θi, x
⇤

i )

= V (θi+1, x
⇤

i+1)� V (θi+1, x
⇤

i )� C(θi+1, x
⇤

i+1) + C(θi, x
⇤

i )

= S(θi+1, x
⇤

i+1)� S(θi+1, x
⇤

i ) + C(θi, x
⇤

i )� C(θi+1, x
⇤

i )

To analyse the above utility difference, firstly we rewrite

Λi in (40) as Λi = τiS(θi, xi) + ψi

I
P

k=i+1

τk. Note that

∂S(θi,xi)
∂xi

|xi=x̂i
= 0 and ∂Λi

∂xi
|xi=x∗

i
= 0. Since ∂ψi

∂xi
=

α(ω�ω0)(θi�θi+1)
[1+(ωθi+ω0(1�θi))xi][1+(ωθi+1+ω0(1�θi+1))xi]

< 0 and τi > 0,

then we have
∂S(θi,xi)

∂xi
|xi=x∗

i
> 0. Since

∂2S(θi+1,xi)
∂xi

2 < 0, we

can conclude that
∂S(θi,xi)

∂xi
is monotonically decreasing with

x. Thus, due to
∂S(θi,xi)

∂xi
|xi=x∗

i
> ∂S(θi,xi)

∂xi
|xi=x̂i

= 0, we

have x⇤

i  x̂i. Considering that {x⇤

i } is the non-decreasing

sequence, we can further obtain

x⇤

i  x⇤

i+1  x̂i+1 (50)

Since
∂2S(θi+1,xi)

∂xi
2 < 0 and

∂S(θi+1,xi)
∂xi

|xi=x̂i+1
= 0, it is

obvious that S(θi+1, x) is monotonically increasing with x
when x  x̂i+1. Thus, we can obtain S(θi+1, x

⇤

i+1) �
S(θi+1, x

⇤

i ). Since
∂C(θi,xi)

∂θi
= (cpv � rpv � pg)xi  0, we

have C(θi, x
⇤

i ) � C(θi+1, x
⇤

i ).
From the above analysis, we can conclude R(x⇤

i+1) �
R(x⇤

i ). It means that the aggregator can achieve higher utility

from a higher type EV other than a lower one in optimal

contracts. Thus, the aggregator can maximize its utility by se-

lectively selling the RES to EVs with higher type in the limited

energy trading market. We define θc 2 Θ as the critical type

which satisfies
I
P

i=c

Niθix
⇤

i � Eres and
I
P

i=c+1

Niθix
⇤

i < Eres.

The aggregator will sell the limited RES to EVs upon the

critical type. Therefore, in limited energy trading, the optimal

contract Ψ̃ = {(x̃i, π̃i) | 8θi 2 Θ} is given by:

(x̃i, π̃i) =

(

(0, 0) , if θi < θc

(x⇤

i ,π
⇤

i ) , if θi � θc
(51)

Obviously, the set of EV type engaged in limited energy

trading is Θ̃ = {θc, θc+1, · · · , θI}. Note that there must be

Algorithm 3 Dynamic optimal contract assignment and

energy allocation algorithm

1: Input: Λi, Ni, θi, Θ, Ω

2: for θi 2 Θ do

3: initiate x⇤

i = x̄⇤

i = argmax
xi2Ω

Λi by (31);

4: end for

5: while {x⇤

i } is not feasible do

6: find an infeasible sub-sequence {x̄⇤

m, x̄⇤

m+1, · · · , x̄
⇤

n};

7: assign the optimal demand by

x⇤

k = argmax
x

n
X

i=m

Λi(x), 8k = m,m+ 1, · · · , n (53)

8: end while

9: for θi 2 Θ do

10: assign the optimal price π⇤

i by (48);

11: end for

12: if Eres <
I
P

i=1

Niθix
⇤

i then

13: adjust the optimal contracts by (51);

14: end if

15: Output: The optimal contract Ψ̃ = {(x̃i, π̃i) | 8θi 2 Θ},

and the maximum utility of the aggregator R̃ by (52).

some EVs that cannot acquire energy from the aggregator.

Therefore, the overall utility of the aggregator is no longer

given by (3) and is denoted as:

R̃ =
X

θi2Θ̃

τi (π
⇤

i � C(θi, x
⇤

i )) (52)

Here, a dynamic optimal contract assignment and energy

allocation algorithm is proposed to obtain the optimal contract

in the limited energy trading market, which is presented in step

12 – step 14 in Algorithm 3.

VI. PERFORMANCE EVALUATIONS

A. Simulation Setup

In the simulation, we consider the scenario that one aggrega-

tor provides feasible contracts for 100 EVs in a SC. The upper

and lower bound of EV type are set as 1 and 0, respectively.

The cleanliness of traditional energy ω0 is set as 1. The daily

PV output data is acquired from a typical day in [58]. Other

parameters are listed in table I.

B. Simulation Results

Fig. 2 and Fig. 3 show the optimal demand and price with

respect to various environmental friendliness coefficient ω,

respectively. We observer that both the demand and price in

optimal contract increase with ω, as well as the critical type

value θc. The reason behind is that higher ω indicates higher

satisfaction of energy consumption, leading to higher energy

demand and correspondingly higher price that each EV should

pay to the aggregator. However, due to the total available RES

is limited, the aggregator will not provide energy for EVs

whose types are lower than the critical type value according
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TABLE I
SIMULATION PARAMETERS

Parameters Values

I: the number of EV i. 100
ω0: the cleanliness of traditional energy. 1
ω: the cleanliness of clean energy. 10
θi: the type of EV i. uniform in [0,1]
Ci: the capacity of EV i. 25 kW
Cess: the capacity of ESS. 100 kW
ηi: the charging efficiency of EV i. 90%
ηess: the discharging efficiency of ESS. 90%
α: the satisfaction coefficient of EV. 4.0
cpv : the unit cost of solar power generation. 3.0 cents/kWh
rpv : the unit subsidy for solar power generation. 1.0 cents/kWh
pg : the market energy price of the power grid. 6.0 cents/kWh
c0: the fixed cost of the aggregator. 10.0 cents

Fig. 2. Optimal energy demand x∗(θ) with different EV types and ω.

Fig. 3. Optimal energy price π∗(θ) with different EV types and ω.

to aforementioned analysis. Meanwhile, due to higher energy

demand of each EV, the critical type value also increases.

Fig. 4 and Fig. 5 present the optimal energy demand and

price under different distributions of EV type, respectively. In

case (a), EV’s type θ is independent and follows the uniform

distribution. In case (b), EV’s type θ is independent and

follows the binomial distribution with the parameter p = 0.5.

The red stellate curves in Fig. 4 and Fig. 5 denote the social

optimal demand which maximizes the social surplus and the

related social optimal price, respectively. It can be seen that

the demand in optimal contract is less than the social optimal

demand. From economic aspect, comparing with social surplus

maximization, the aggregator tends to reduce the demands for

EVs with lower type and accordingly raises the prices for EVs

Fig. 4. Energy demand assignments x(θ) in the optimal contracts with
different distributions of EV type θ.

Fig. 5. Energy price assignments π(θ) in the optimal contracts with different
distributions of EV type θ.

Fig. 6. Operator’s utility R in three schemes with different ω.

with higher type for maximizing its utility. Fig. 2 and Fig. 4

also prove that the optimal energy demand in the optimal

contracts satisfies the monotonicity condition, i.e., constraint

(32) with various values of ω and different distributions of θ,

respectively.

In Fig. 6 and Fig. 7, we compare the proposed scheme

with two conventional schemes: the two-part tariff scheme and

the fixed scheme. In the two-part tariff scheme, the relation

between energy demand and its corresponding price can be

acquired as π(θ) = P · x(θ) + Z, where the operator only

specifies a unit energy price P and a constant charging fee Z
for each type of EV. In the fixed scheme, the unit price P and
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Fig. 7. EV’s utility U in three schemes with different ω.

the charging fee Z are same for all types of EVs.

Fig. 6 and Fig. 7 illustrate the utility of the operator and

70-th EV under various ω, respectively. The higher ω means

cleaner generation of RES, and higher EV’s satisfaction of

energy consumption. From Fig. 6, our proposal attains higher

utility of the aggregator than other two schemes. The utility

increases with ω in the proposed scheme and the two-part tariff

scheme, while basically stays unchangeable in the flat scheme.

In the flat scheme, the unit price is fixed and identical for all

types of EVs, thus the operator cannot adjust the unit price for

higher utility. In the two-part tariff scheme, the energy price is

linear with the energy demand, leading the operator’s utility to

grow slowly. In the proposal, the relationship between energy

price and energy demand is nonlinear, thus the operator’s

utility is relatively high and can be maximized by designing

optimal contracts.

From Fig. 7, our proposal attains higher utility of 70-th

EV than other two schemes. The utility increases with ω in

three schemes. The reason is that higher ω means higher EV’s

satisfaction of energy consumption, leading to higher EV’s

utility. In the two-part tariff scheme, EV can relatively improve

its utility than that in the fixed scheme since the unit price and

the charging fee are adjustable. In the proposal, EV’s utility

can be maximized through selecting the optimal contracts.

According to the above-mentioned results, the optimal con-

tract in limited energy trading market can be acquired in our

proposal. In addition, the aggregator and EV can separately

attain an improved utility in the proposal scheme.

VII. CONCLUSION

In this paper, we have proposed a contract based secure

charging scheme for EVs in energy blockchain system. Firstly,

we have formulated an energy blockchain system in SC

integrated with EVs and RES. Secondly, a reputation based

DBFT algorithm has presented to reach the consensus effi-

ciently in the permissioned blockchain. Thirdly, the optimal

contracts have been analysed based on the contract theory to

satisfy EVs’ individual energy consumption preferences and

maximize the operator’s utility. Finally, simulation results have

shown that the optimal contracts can be acquired and our

proposal outperforms the conventional schemes for achieving

higher utilities of the operator and EVs. For the future work,

we will further extend this work into the multi-operator market

with competition influence.
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APPENDIX A

PROOF OF LEMMA 6

Proof. (1) necessity. First, we prove that if all contracts are

feasible, i.e., IR and IC constraints are satisfied, then the above

three constraints hold. The necessity of condition (27) can be

proved by Lemma 3. The necessity of the conditions (28) and

(29) can be proved through IR and IC contractions. According

to IR constraint for type θ1, we have V (θ1, x1) � π1  0.

According to IC constraints for type θk�1 and θk, we have

V (θk�1, xk�1)� πk�1 � V (θk�1, xk)� πk and V (θk, xk)�
πk � V (θk, xk�1)�πk�1, respectively. Thus, constraints (27)

– (29) hold if if all contracts are feasible.

(2) sufficiency. Next, we need to prove that if the three

conditions are satisfied, then all contracts are feasible. Ob-

viously, if there is only one EV type, then only IR constraint

should be considered, i.e., V (θ1, x1)� π1 � 0. According to

constraint (28), we can conclude that in this case the contract

is feasible. Since constraint (28) holds, according to Lemma

1, we can conclude all IR constraints hold. Since constraints

(27) and (29) are supposed to be met, according to Lemma 4
and Lemma 5, we can conclude all IC constraints hold. Thus,

all contracts are feasible if constraints (27) – (29) hold. This

completes our proof.

APPENDIX B

PROOF OF LEMMA 7

Proof. (1) Optimality. It is obvious that the conditions in

Lemma 6 are satisfied, then the contract Ψ = {(xi,πi)} is

feasible. Here, due to the demand {xi} is fixed, the sum

of cost, i.e.,
I
P

i=1

τiC(θi, xi), is constant. Then the maximum

utility can be obtained by maximizing the sum of prices,

i.e.,
I
P

i=1

τiπi. We assume there exists a feasible price {π̃i}

which satisfies
I
P

i=1

τiπ̃i >
I
P

i=1

τiπ
⇤

i . Obviously, there is at

least one price π̃i > π⇤

i . To satisfy the feasibility of the

contract, according to Lemma 4, {π̃i} should satisfies π̃i�1 �
π̃i � V (θi, xi) + V (θi, xi�1). Since π̃i > π⇤

i , combining with

(30), we can obtain

π̃i�1 > π⇤

i � V (θi, xi) + V (θi, xi�1) = π⇤

i�1 (54)

Continuing the above process until i = 2, we have π̃1 > π⇤

1 =
V (θ1, x1), which contradicts with the IR constraint for type

θ1. Thus, {π̃i} does not exist and {π⇤

i } is the optimal price.

(2) Uniqueness. We assume there is a feasible price as-

signment {π̃i} 6= {π⇤

i } which satisfies
I
P

i=1

τiπ̃i =
I
P

i=1

τiπ
⇤

i .

Glen Tian


Glen Tian




2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2869297, IEEE Internet of

Things Journal

12

Clearly, there exists at least one price π̃i 6= π⇤

i . Without loss

of generality, we assume π̃i > π⇤

i . Here, the same logic leads

to the same conclusion that π̃1 > π⇤

1 = V (θ1, x1). Thus, {π̃i}
does not exist and the optimal price in (30) is unique. This

completes our proof.
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