
Received June 11, 2019, accepted July 3, 2019, date of publication July 23, 2019, date of current version August 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929205

A Secure Cloud Storage Framework With
Access Control Based on Blockchain

SHANGPING WANG 1, XU WANG 2, AND YALING ZHANG 2
1School of Science, Xi’an University of Technology, Xi’an 710048, China
2School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

Corresponding author: Xu Wang (xwang1628@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61572019, and in part by the Key

Research and Development Program of Shaanxi under Grant 2019GY-028.

ABSTRACT Now more and more data are being outsourced to cloud services. In order to ensure data

security and privacy, data are usually stored on the cloud server in the form of ciphertext. When a user

requests access to the encrypted data, an access key distributed by a third party is needed. However, if the

third party is dishonest, the security of the system will be threatened. Faced with this problem, in this paper,

we propose a new secure cloud storage framework with access control by using the Ethereum blockchain

technology. Our new scheme is a combination of Ethereum blockchain and ciphertext-policy attribute-based

encryption (CP-ABE). The proposed cloud storage framework is decentralized, that is, there is no trusted

third party in the system. Our scheme has three main features. First, as the Ethereum blockchain technology

is used, the data owner can store ciphertext of data through smart contracts in a blockchain network. Second,

the data owner can set valid access periods for data usage so that the ciphertext can only be decrypted during

valid access periods. Finally, as the creation and invocation of each smart contract can be stored in the

blockchain, thus, the function of the trace is achieved. The analysis of the security and experiment shows

that our scheme is feasible.

INDEX TERMS Cloud storage, access control, Ethereum, blockchain, smart contract.

I. INTRODUCTION

Recently, with the rapid development of cloud computing and

big data technology, more and more businesses and individu-

als choose to outsource their data to the cloud service.Most of

the data stored in the cloud is highly sensitive, for examples,

personal medical records and internal data of a company.

In order to ensure the security of data and the privacy of users,

data is usually stored on the cloud server in the form of cipher-

text. In order to achieve access control of the data, encryption

technology can be regarded as a security guarantee. But how

to achieve access control for encrypted data is a big chal-

lenge. In 2007, ciphertext-policy attribute-based encryption

(CP-ABE) was firstly introduced by Bethencourt [1].

In CP-ABE mode, a ciphertext is associated with an access

policy, and a user’s private key is associated with an attribute

set. The user can decrypt the given ciphertext if and only

if his attribute set satisfies the access policy established by

the data owner. The data user obtains the corresponding key

from the attribute authority center according to the attribute

The associate editor coordinating the review of this manuscript and
approving it for publication was Petros Nicopolitidis.

set he owns. The data owner can control the access of the data

according to access policy.

In the CP-ABE scheme, one or more fully trusted attribute

authorities or center authority are required. If the center

authority is corrupted, it will endanger the entire system.

Therefore, in the field of access control technology, decen-

tralized system is urgent to get rid of the potential threat of

trusted center authority.

Although in recent years, some people have studied

blockchain-based access control schemes, most of them pro-

pose a framework or idea for such schemes. There is no spe-

cific solution to realize the integration of the decentralization

idea of blockchain technology and access control technol-

ogy. There is still a lot to be done in this area. Therefore,

the decentralized access control research based on blockchain

has important value and significance.

In this paper, we introduce the Ethereum blockchain tech-

nology to a ciphertext-policy attribute-based encryption algo-

rithm, and use Ethereum smart contract technology to store

the publicly available information into the blockchain net-

work, at the same time to achieve the role of supervision

and track the behavior of the data access. All access records

VOLUME 7, 2019
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 112713

https://orcid.org/0000-0002-8964-5328
https://orcid.org/0000-0003-4950-6013
https://orcid.org/0000-0002-1759-6678

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

are recorded in the blockchain network. In our framework,

decentralization of access control scheme is achieved without

any trusted center authority by using blockchain technology.

Our contributions

The contributions of this paper are as follows:

(1) A secure cloud storage framework with access control

based on blockchain is proposed, which is a combi-

nation of Ethereum blockchain and ciphertext-policy

attribute based encryption (CP-ABE) algorithm,

the aim is to realize fine-grained access control for

cloud storage. No trusted attribute authority is required

in our scheme. The key information is stored in the

blockchain network by Ethereum smart contract tech-

nology. Thus, decentralization is achieved in our cloud

storage framework.

(2) When an attribute set is assigned to the data user,

the data owner can append an effective access period

for the data user, and store an access period time of

information on the Ethereum blockchain. Only when

the valid access period time and the attributes of data

user satisfy the access control policy, the data user can

perform data decryption algorithm correctly.

(3) In the environment of Ubuntu linux system, smart con-

tracts were created and deployed on the local Ethereum

private network. The corresponding performance and

cost were analyzed, the experiment show that our

scheme is feasible.

The rest of the paper is organized as follows. In the

section II, related work is presented. The section III intro-

duces some basic knowledge of Ethereum blockchain. The

section IV shows the system model of our scheme. The

specific construction of our scheme is described in detail

in section V. And the performance and security analysis are

discussed in section VI. Finally, the conclusions and future

research directions are given.

II. RELATED WORK

The existing attribute-based encryption access control

scheme is mainly based on single-center authority. When

the center authority is untrusted or maliciously attacked,

it may lead to key leakage. In response to this problem,

some scholars have proposed a multi-authority attribute-

based encryption access control scheme to decentralize the

power of the center authority. In 2007, Chase [2] proposed

a multi-authority attribute-based encryption scheme so that

multiple authorities can assign attributes to users in the

system, easing the threat of a single center authority’s failure.

In 2010, Lin et al. [3] proposed a threshold multi-authority

fuzzy identity encryption scheme without center authority,

which improved the security level of multi-authority systems.

In 2011, Lewko and Waters [4] proposed a decentralizing

attribute-based encryption scheme, which is essentially a

multi-authority scheme without any center authority. In 2012,

Yang K and other scholars [5] designed a multi-authority

access control framework and constructed a specific multi-

authority access control scheme. This scheme not only

mitigates the threat of single point of failure brought by a

single authority, but also supports the attribute update of data

users in a multi-authority scheme. In 2016, Wei et al. [6]

proposed a safe and efficient multi-authority access control

scheme, which adopted linear secret sharing, in which multi-

ple authorities effectively reduced the pressure on individual

authority.

In 2008 Nakamoto [7] first introduced blockchain technol-

ogy, till now many applications based on blockchain technol-

ogy has penetrated into various industrial areas, especially in

those areas where a third trusted party is needed. The decen-

tralized and distributed structure of the blockchain can be

trusted in global. Since the blockchain technology is a useful

tool for large-scale collaboration between peoples without

mutual trust. It can therefore be used in many traditional cen-

tralization areas to deal with transactions that were originally

handled by intermediaries.

In 2015, Zyskind et al. [8] proposed a point-to-point decen-

tralized computing model that allows different parties to store

and run data together while keeping the data completely

private. This model achieves automatic control of personal

data by eliminating the need for trusted third parties. In 2017,

Jemel and Serhrouchni [9] introduced a decentralized access

control mechanism based blockchain. The blockchain nodes

verify the legitimacy of user and add a time dimension to the

shared file which is encrypted by ciphertext-policy attribute-

based encryption. Xia et al. [10] presented a data sharing

model between cloud service providers based blockchain.

The model leverages the advantages of smart contracts and

access control mechanisms to effectively track data access

behavior and revoke access authorization for violation of

access rules, addressing the problem of medical data sharing

in an untrusted environment. In 2018, Xu et al. [11] pro-

posed a decentralized capacity-based access control mecha-

nism (BlendCAC), which can effectively protect the security

of equipment, services and information in the large IoT

(Internet of things) system. Liu et al. [12] design a frame-

work using smart contracts and blockchain technology for

tracking, managing and enforcing such data sharing agree-

ments. Lin et al. [13] present a blockchain- based system

for secure mutual authentication to enforce fine-grained

access control policies, which provide privacy and security

guarantees.

Generally speaking, scholars have recognized that the

combination of blockchain technology with access control

scheme is an effective way to solve the trust problems

still existing today. For example, the literature [16] uses

blockchain technology to store user’s access control lists,

the literature [19] uses blockchain technology for biomed-

ical and health care applications, [20] uses three smart

contracts for access control for the Internet of Things.

However, blockchain technology has just emerging. Most

of the researches on the decentralization of access control

technology are just in the stage of framework, such as the

literatures [14], [15], [17], [18], and there are few specific

schemes.

112714 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

TABLE 1. The notation table.

Therefore, in this paper, we propose a new secure decen-

tralized cloud storage scheme with access control by using

Ethereum blockchain technology. In this scheme, by intro-

ducing the blockchain technology, the problem of potential

single point failure of the center authority in the original

scheme is solved to some extent. At the same time, the intro-

duction of a blockchain is equivalent to adding a logging

system to the access control scheme to record all access

operation records. The introduction of blockchain makes all

access operations records non-tamperable and undeniable,

which is more convincing as supervision.

III. PRELIMINARIES

In this section, we briefly review the relevant knowledge in

order to better understand our scheme. Table 1 presents some

of the notations used throughout the paper.

A. BILINEAR MAPPING

Let G and GT be two groups of prime order q. g is the

generator ofG. A bilinear mapping e : G×G → GT satisfies

the following properties:

1. Bilinearity: For any u, v ∈ G, and a, b ∈ Zp, it has

e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: There exists u, v ∈ G, such that

e(u, v) 6= 1.

3. Computability: For all u, v ∈ G, there is an efficient

computation for e(u, v).

B. ACCESS TREE

The access structure defines an authorized access set to

describe the access policy. Let Ŵ denote an access tree. The

tree contains leaf nodes and non-leaf nodes. The leaf nodes

are associated with attributes, and the non-leaf nod- es are

associated with threshold values. Let numx indicates the num-

ber of child nodes of the node x. Let kx denotes the threshold

of the node x, 1 ≤ kx ≤ numx . When kx = numx , the node

denoted ‘‘and’’ gate in the logic. When kx = 1, the node

denoted ‘‘or’’ gate in the logic.

FIGURE 1. An access tree.

parent(x) : It means the parent node for node x except the

root node.

att(x) : It represents the attributes associated with leaf

node x.

index(x) : It indicates the number of child nodes for each

non-leaf node x.

Figure 1 below is an access control tree based on an access

policy, where a leaf node represents an attribute and a non-leaf

node represents a threshold. Suppose that there are four

attributes in this access tree. Assume that the attribute set is

as follows: {graduate, professor, computer science, network

security}. As it can be seen in the figure, only two types of

people who satisfy the access tree. The first attributes set S1 is

{computer science, network security, professor}. It represents

the professors in the Institute of Network Security at the

School of Computer Science. The second attributes set S2 is

{computer science, network security, graduate}. It denotes

the graduate students in the School of Network Security at

the School of Computer Science.

C. BLOCKCHAIN TECHNOLOGY AND ETHEREUM

Blockchain technology [29] was introduced to the world by

‘‘Bitcoin’’. Bitcoin is a P2P encrypted digital currency. Since

‘‘Nakamoto’’ [7] developed Bitcoin in 2008, its popularity

have been increasing. In the Bitcoin system, the blockchain

supports payment systems and complete digital currency,

which is secure and decentralized. In other words, it is

a user-driven and peer-to-peer network with no center

authority.

As Bitcoin begins to draw attention, developers use the

advantages of blockchain technology to create their own

platform as an infrastructure (except for the primary use of

convenience in digital currency transfer in Bitcoin). On the

one hand, some platforms use the Bitcoin network as an

infrastructure for notarization, crowdfunding, dispute reso-

lution, and spam control. On the other hand, some plat-

forms have emerged and are in the form of tokens which

is a blockchain-based cryptocurrency designed to improve

Bitcoin’s capabilities by implementing its own features

and functions. Up to now, there are almost 2,000 kinds

of tokens, but the most attractive are Litecoin [23] and

Dogecoin [24]. In this paper, we will use the Ethereum

platform.

VOLUME 7, 2019 112715

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

In 2013, Ethereum [22], [25]–[27] was proposed by Vitalik

Buterin. Ethereum is a blockchain-based distributed comput-

ing platform with the ability to build and run decentralized

applications with smart contracts.

Ethereum’s development was successful through online

crowdfunding in mid-2014, and the platform went live

in 2015. Since then, Ethereum has received great attention

and is the pioneer of Blockchain 2.0 [27], which is said

to be the next generation of blockchain. D. ETHEREUM

VIRTUAL MACHINE

The core of Ethereum is the Ethereum Virtual Machine

(EVM) [22], [29], which can execute code with arbi-

trary algorithm complexity. Ethereum is ‘‘Turing complete’’.

Developers can use existing programming languages to create

applications that run on Ethereum virtual machines, such

as Javascript, Python, and more. In order to maintain the

consistency of the entire blockchain, each network node runs

an Ethereum virtual machine. The decentralized consistency

makes Ethereum extremely fault tolerant, guarantees zero

downtime, and data stored on the blockchain are immutable

and anti-censorship. The calculations in the Ethereum virtual

machine are paid for by ETH, which is the token used by

Ethereum.

D. ETHEREUM ACCOUNTS

A basic component of Ethereum [29] is account. Ethereum

uses two types of accounts, namely External Owned

Accounts (EOA) and Contract Accounts. The External

Owned Account (EOA) is controlled by a corresponding

private key. An EOA has an ether balance, and EOA can send

the transaction (forwarding some ether to another account

or triggering a contract code) and there is no relevant code.

An EOA is similar to a bitcoin address and consists of hex-

adecimal digits, such as 0x6695a16ef848d5fc520c2ea8a4-

f09406f2cc9b1b. Consequently, An EOA is anonymous and

can be shared publicly. A contract account has its own ether

balance and associated code, and all actions are performed

through the transactions created by EOAs. Execution of the

contract code means receiving a transaction from an EOA.

The contract code can also be triggered by messages from

other contract accounts. Compared to Bitcoin scripts, con-

tracts perform Turing-complete calculations and are written

in high-level languages such as Solidity [28], Serpent, and so

on. The behavior of a contract is entirely dependent on its

code and the transactions initiated to it, creating the possibil-

ity for a decentralized system.

E. SMART CONTRACT

A smart contract [22], [26] is essentially a program written in

a computing programming language that runs in a container

provided by the blockchain system. At the same time, this

program can also be automatically run under the activation

of some external and internal conditions. The combination of

those features of smart contract with blockchain technology

can not only avoid artificial malicious tampering to rules,

but also bring the high efficiency and low cost advantages

TABLE 2. The specific parameters of the transaction information.

of Smart Contracts into full play. Since the code of the

smart contract is stored in the blockchain, the operation of

the smart contract is also in the container provided by the

blockchain system. Combined with the cryptographic prin-

ciples used by blockchain technology, smart contracts are

naturally tamper-proof and anti-counter- feiting. The results

produced by the smart contract are also stored in the block,

so that the execution from the source, the execution process

and the result are all executed in the blockchain, which

ensures the authenticity and uniqueness of the release, exe-

cution and record of smart contract.

F. TRANSACTION INFORMATION

The deployment of smart contracts [22], [26] is essentially

a transaction initiated on Ethereum. Ethereum transaction

is a type of signature packet that allows some ether to be

transferred from one account to another. In addition to trans-

ferring ether, it can also trigger the execution of code in smart

contracts through transactions. The transaction includes the

account address of the transaction, the account address of the

transaction, gasPrice, gasLimit, the transferred ether value,

the additional data field, etc. (the specific parameters of the

transaction information are as shown in Table 2 below). The

account that initiated the transaction can put the data into

additional data field of the transaction. Similarly, in smart

contracts, the binary bytecode of the smart contract code is

placed in an additional data field. In this scheme, we mainly

store and acquire ciphertext information through smart con-

tracts. Each time a smart contract is called, it is an Ethereum

transaction and triggers the execution of the relevant code in

the contract.

IV. SYSTEM MODEL

In our scheme, we will use Smart Contract to store infor-

mation about encrypted file. More importantly, data users

and data owners use Ethereum smart contracts to store and

retrieve ciphertext data to run encryption and decryption

algorithms. Every contract call is recorded on the blockchain.

112716 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

FIGURE 2. System model.

Therefore, the information transferred between data users and

data owners is non-tamper with and non-repudiation.

There are four entities in our scheme, namely Cloud server,

Ethereum blockchain, Data owner and Data user.

Cloud server: Responsible for storing encrypted files

uploaded by data owners;

Ethereum blockchain: Deploy smart contracts on

Ethereum, the smart contracts is of interfaces to store data

and get data;

Data Owner(DO): Responsible for creating and deploying

smart contracts, uploading encrypted files, defining access

control policies, assigning attribute sets and appending valid

access periods to data users;

Data User(DU): Accessing an encrypted file stored in

the cloud server. When its attribute set satisfies the access

structure embedded in a given ciphertext, it can decrypt the

received ciphertext to obtain the content key to decrypt the

encrypted file.

The description of the steps in the Figure 2 is as follows:

① The smart contract named StorageSC is deployed byDO

in Ethereum.

② After the smart contract is deployed successfully, the

contract address is returned.

③ DO stores the file ID hash H(ID) in the smart contract.

④ DO package the contract address contractAddress, file

ID, and encrypted file Eck (M) and then upload to the cloud

server.

⑤ DO records file path returned by cloud server.

⑥ DO stores the ciphertext of the encrypted document key

in the Ethereum.

⑦ DU sends a access request to DO.

⑧ DO adds the effective period to DU and stores it in the

smart contract.

⑨ DO encrypts the secret key of DU and stores it in the

smart contract.

⑩ DO sends the contract address with user information

through a secure channel.

©11 DU downloads encrypted file from the cloud server.

©12 DU obtains effective period from the smart contract.

©13 DU obtains his secret key ciphertext from the smart

contract.

The secure cloud storage framework with access control is

based on blockchain is composed of the following algorithms:

Setup(1k ,U) → (PK ,MSK) : The setup algorithm is

executed by DO with the security parameters k and the uni-

versal set U of attributes as inputs. Through the execution of

the algorithm, the public key PK and the master key MSK

are generated. At the same time, the smart contract named

StorageSC is deployed in Ethereum. As shown in step ①② in

Figure 2.

Before DO uploads the encrypted file to the cloud server,

the fileM with the file ID is encrypted by the AES symmetric

encryption algorithm, and is recorded as Eck (M) (where ck is

the encryption key). At the same time, the file name ID is

hashed to H(ID) by a hash algorithm sha256. Next, the file

ID hash H(ID) is stored in the smart contract, and the contract

address contractAddress, file ID, and encrypted file Eck (M)

are packaged and uploaded to the cloud server. DO records

file path returned by cloud server. As shown in step ③④⑤ in

Figure 2.

Encrypt(PK , ck, Ŵ) → CT . The encryption algorithm

takes the public key PK , access structure Ŵ and the symmet-

ric encryption key ck as inputs, and outputs the ciphertext

CT . The ciphertext CT is stored by DO in smart contract.

As shown in step ⑥ in Figure 2.

KeyGen(MSK , S) → SK : The key generation algorithm

is still executed by the data owner DO.DU sends a access

request to DO, then DO assigns an attributes set to DU and

adds the effective access period to DU .The algorithm sets

the attribute set S of DU , the master key MSK as inputs,

and outputs the private key SK of DU . After DO and DU

share the common key (the common key is generated by the

Diffie-Hellman key exchange protocol), SK is symmetrically

encrypted by the AES algorithm with the common key as

encryption key. The ciphertext SK ′, which is the encrypted

private key, is stored in the smart contract to ensure its privacy.

As shown in step ⑦⑧⑨⑩ in Figure 2.

Decrypt(PK , SK ,CT) → ck : The decryption algorithm

is executed by DU . The DU obtains access period from

smart contract. Then DU performs decryption algorithm if

and only if the time is within the valid access period. DU

obtains CT and the private key’s ciphertext SK ′ from smart

contract. The SK ′ is decrypted as the private key SK by the

symmetric encryption algorithm AES by using the common

key as decryption key. The algorithm inputs the public key

PK , private key SK and ciphertext CT . If and only if SK

satisfies the access policy Ŵ, DU can recover the key ck

of the encrypted document, so that the encrypted document

is decrypted, otherwise the decryption will fail. DU obtains

the encrypted document Eck (M) from the cloud server,

decrypts the encrypted document M ′ by using key ck , and

VOLUME 7, 2019 112717

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

outputs the document M before DO encrypts. As shown in

step ©11 ©12 ©13 in Figure 2.

V. SCHEME CONSTRUCTION

Our proposed new secure cloud storage framework with

access control based on blockchain can be used in conjunc-

tion with most CP-ABE algorithm to achieve decentralized

fine-grained access control. The interaction between the data

owner and the data user is achieved through the Ethereum

smart contract technology, so that each data user’s access

is recorded in the Ethereum blockchain network. In order

to better illustrate our framework, The CP-ABE algorithm

in [30] is selected as an example in this paper, in which uses

access tree as access control policy to achieve fine-grained

access control of information.

A. CONCRETE CONSTRUCTION

Suppose that there are m attributes in the system, denoted as

U = {1, 2, · · · ,m}.

Let e : G0 × G0 → GT be a bilinear group, where G0 is

a bilinear group of prime order p with generator g. Let H :

{0, 1}∗ → G0 be a hash function, witch maps any attribute to

a random element of G0.

The details of our scheme are as follows:

1) PHASE 1: SYSTEM INITIALIZATION

Setup(1k ,U) → (PK ,MSK). The setup algorithm is exe-

cuted by DO, and outputs the public key PK and the master

key MSK of the data owner DO.

The system selects a CP-ABE algorithm, taking the

attribute-based encryption algorithm in [30] as an example.

The DO chooses a bilinear group G0 of prime order p with

generator g and two random elements α, β ∈ Zp. The public

key is published as: PK = {G0, g, g
α, gβ , e(g, g)β ,H} and

the master key is MSK = {α, β ∈ Zp}.

In Ethereum, DO and DU create their own Ethereum

accounts separately and ensure that the account balance is

sufficient.

2) PHASE 2: FILE ENCRYPTION

Before DO uploads the file to the cloud server, the smart

contract named StorageSC (See the next section for details)

is deployed by DO to Ethereum, and smart contract address

named contractAddress is obtained. The smart contract

address, the smart contract ABI and DO’s Ethereum account

public key are published (ABI’s full name is Application

Binary Interface, which contains several functions expressed

in JSON format), and the following processing is performed

on the uploaded file M :

(1) The DO chooses a unique identifier ID for the

file M . After the ID is hashed by the hash func-

tion sha256, it is recorded as H(ID). The H(ID) is

stored in the Ethereum by the execution of function

setHashFileId(HashFileId) (see Algorithm 1 in the

next section for details) in smart contract.

(2) The DO encrypts the file M with the file ID using a

symmetric encryption algorithm named AES, in which

the content key ck is randomly obtained in the key

space, and the encryption result is recorded as Eck (M),

and upload {contractAddress, ID,Eck (M)} to the cloud

server.

(3) The DO defines an access structure for access the

encrypted content key ck , thus the content key ck is

encrypted by selected attribute-based encryption algo-

rithm with this access structure. The access structure

in this selected attribute-based encryption algorithm

is an access tree Ŵ whose leaf nodes are attributes.

The ciphertext CT is output by running the following

algorithm.

Encrypt(PK , ck, Ŵ) → CT . The DO selects a polynomial

qx with degree dx . For each node x inŴ, these polynomials are

chosen in the following way in a top-down manner, starting

from the root node R. For each node x in access tree Ŵ, set

the threshold of the node to be (nx , kx). The threshold value

kx and the order dx of qx have the following relationship, kx =

dx + 1.

Starting from the root node R, the DO selects a random

number s ∈ Zp, and sets qR(0) = s. The DO then ran-

domly selects dR other coefficients of q
R
to obtain polynomial

qR(x). For any node x, set qx(0) = qparent(x)(index(x)),

where index(x) denotes the index of node x in its parent

node parent(x). Then randomly select dx other coefficients

to define qx until the leaf node is calculated.

For access tree Ŵ, set X be its leaf nodes set and the key

ck’s ciphertext CT is created as

CT =

{

Ŵ, C̃ = ck · e(g, g)βs,C = gs,

∀x ∈ X : Cx = gαqx (0),C ′
x = H (att(x))qx (0)

}

.

Because CT is stored as an object in experiments, it is

necessary to serialize ciphertext into binary files after gen-

erating CT . Finally, the hexadecimal encoding of the path

of the binary file containing the ciphertext is stored in

the Ethereum by the execution of the function named

setCipherText(HashFileId,CipherText) in the smart con-

tract. (The DO may upload more than one file. The DU can

return the corresponding ciphertext of different files by input-

ting different and valid file hashes HashFileId through the

execution of function named getCipherText(HashFileId). For

details, see Algorithm 5 and Algorithm 6 in the next section.)

3) PHASE 3: KEY GENERATION

The DU sends a request to the DO, including the Ethereum

account public key and its account address userAddress,

the expiration date of the access, and so on. The DO assigns

an attributes set S ⊆ U to the DU and adds the valid access

period for the DU through the execution of function named

setInterval(userAddress, Inerval) in the smart contract(See

Algorithm 7 in the next section for details). The key genera-

tion algorithm is executed by the DO, and the key by running

the selected attribute-based algorithm is generated as follows:

112718 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

KeyGen(MSK , S) → SK . The key generation algorithm

firstly choose a random number r ∈ Zp as a secret. Then for

each attribute j ∈ S, rj ∈ Zp is randomly selected. Finally, the

private key SK is generated as

SK = {D = gβ+αr , ∀j ∈ S : Dj = gr · H (j)rj ,D′
j = gαrj}.

DO uses the Diffie-Hellman key exchange protocol to

calculate the common key based on the data user’s Ethereum

account public key. SK is symmetrically encrypted by the

AES algorithm with the common key as encryption key. The

ciphertext SK ′ of encrypted private key SK is mapped to the

corresponding Ethereum user DU with address userAddress,

and is stored in the blockchain by executing a function named

setSecretKey(useraddress, sec retKey) in the smart contract

(see the next chapter, Algorithm 3)

4) PHASE 4: FILE DECRYPTION

During the file decryption phase, the execution of the decryp-

tion algorithm requires the ciphertext CT and ciphertext SK ′.

Firstly, the DU obtains the contract address contractAddress

and file ID from {contractAddress, ID,Eck (M)} uploaded by

the DO in the cloud server. The file hash HashFileId is

checked to see if it exists in Ethereum through the execu-

tion of function named checkHashFileId(HashFileId) in the

smart contract. (This function needs to input the hash value

HashFileId after hashing it by the hash algorithm sha256.

See the algorithm in the next section for details.) If it does

not exist, it cannot be continued (because the file ID hash is

required as an index to obtain ciphertext information).

The DU obtains the access permission through the execu-

tion of the smart contract function getInterval() (see Algo-

rithm 8 in the next section). The DU can proceed if the time

is within the valid access period set by theDO. The ciphertext

CT and the private key’s ciphertext SK ′ are obtained through

the execution of functions getCipherText(HashFileId) and

getSecretKey() respectively (see Algorithm 4 and Algo-

rithm 6 in the next section for details). (The SK ′ here is

encrypted by the common key of bothDO andDU , so it needs

to be decrypted to SK by the symmetric encryption algorithm

AES.) After obtaining the CT and SK of the parameters

required by the decryption algorithm, the decryption process

of the selected attribute- based algorithm is as follows:

Decrypt(PK ,CT , SK) → ck. Decryption process

is a recursive algorithm. It is in a down-top man-

ner, and therefore need to define a recursive algorithm

DecryptNode(CT , SK , x).

(1) If x is a leaf node. Let j = att(x). If j /∈ S,

DecryptNode(CT , SK , x) = null. If j ∈ S,

DecryptNode(CT , SK , x) =
e(Dj,Cx)

e(D′
j,C

′
x)

=
e(gr · H (j)rj , gαqx (0))

e(gαrj ,H (att(x))qx (0))

=
e(g, g)qx (0)·αre(H (j), g)qx (0)·αr

e(g,H (j))qx (0)·αr

= e(g, g)qx (0)·αr .

(2) If x is a non-leaf node, recursive algorithm Decrypt

Node (CT , SK , x) be defined as follows:

For all nodes z that are children of x, it performs Fz =

DecryptNode(CT , SK , z). Let Sx be an arbitrary kx− sized

child nodes set {z}, and Fz 6= null. If no such set exists then

Fx = null. Otherwise, Fx is calculated as follows:

Fx =
∏

z∈Sx

Fz
1j,S′

x
(0)

=
∏

z∈Sx

(e(g, g)qz(0)·αr)
1j,S′

x
(0)

=
∏

z∈Sx

(e(g, g)qx (index(z))·αr)
1j,S′

x
(0)

=
∏

z∈Sx

(e(g, g)qx (j)·αr)
1j,S′

x
(0)

= e(g, g)

∑

z∈S′
x

αr ·qx(j)1j,S′
x
(0)

= e(g, g)αrqx (0)

where j = index(z), S ′
x = {index(z) : z ∈ Sx} and 1j,S ′

x
(x) =

∏

j∈S ′
x ,j 6=i

x−j
i−j

is Lagrange interpolation coefficient.

Then the decryption process is as follows: it call function

DecryptNode for the root node R of Ŵ. If the DU ’s attributes

set S satisfies Ŵ, then

FR = DecryptNode(CT , SK ,R)

= e(g, g)αrqR(0)

= e(g, g)αrs.

Consequently, the content key ck can be pushed out: ck =

C̃ · FR

/

e(D,C).

After obtaining ck , the DU decrypts the encrypted doc-

ument Eck (M) obtained from the cloud server through a

symmetric encryption algorithm, and outputs the docu- ment

M .

B. SMART CONTRACT DESIGN

In this section, wemainly describe the interface and algorithm

logic related to smart contracts in our scheme. In Ethereum,

smart contracts are compiled in solidity [28] and deployed

on the Geth Ethereum client. In our scheme, smart contract

named StorageSC is created and deployed.

Smart Contract construction: This Contract defines some

variables of the contract and two structures when the contract

is created.

1) The DO is the creator of the contract, and its

Ethereum account address is recorded as owner. All Ethereum

account addresses that call smart contracts are recorded as

msg.sender .

2) The file ID hash is used as an index of file informa-

tion, and is recorded as HashFileId . DU’s Ethereum account

address is used as an index of user information, recorded as

userAddress.

3) The Smart Contract defines two structures: file infor-

mation named File and user information named User. File

VOLUME 7, 2019 112719

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

is used to store file related information, such as HashFileId .

User is used to store user related information, such as user-

Address.

There are eight function interfaces in this Smart Contract

named StorageSC listed as follows:

Algorithm 1 setHashFildId(HashFileId)

Input: HashFileId

Output: bool

1: if msg.sender is not dataOwner then

2: return false;

3: end if

4: HashFileIds[HashFileId] ⇐ HashFileId;

5: return true;

Algorithm 2 checkHashFildId(HashFileId)

Input: HashFileId

Output: bool

1: if HashFileId is Null then

2: return false;

3: end if

4: if HashFileId does not exist then

5: return false;

6: else

7: return true;

8: end if

Algorithm 3 setSecretKey (user Address, secretKey)

Input: secretKey

Output: bool

1: if msg.sender is not dataOwner then

2: return false;

3: end. if

4: if user Address is Null then

5: return false;

6: else

7: mapping secretKey ⇒ (userAddress);

8: and add it to User(userAddress, secretKey);

9: end if

10: return true;

1. setHashFileId(HashFileId) : This function can only

be executed by contract’s creator DO and is used to

store a hash H (ID) of unique identifier ID of the file M

uploaded by the DO. When the smart contract is invoked,

the caller’s Ethereum address will be retrieved and recorded

as msg.sender . The DO then uploads the smart contract

address contractAddress, file ID, and encrypted document

collection {contractAddress, ID,Eck (M)} to the cloud server.

2. checkHashFileId(HashFileId) :This function is called

by the DU to check whether the unique hash H (ID) of

the file ID uploaded by the DO exists in the Ethereum,

and the output is Boolean. The DU can download the

encrypted file in the cloud server to get the smart contract

address contractAddress. The file ID hash H (ID) stored in

the blockchain is retrieved by the contractAddress to check if

it exists in the Ethereum. If it does, proceed; otherwise ⊥.

3. setSecretKey(userAddress, secretKey) : This function

can only be executed by the contract’s creatorDO to store the

ciphertext SK ′ of the private key of the DO assigned to DU .

(The private key here is encrypted by the common key which

is negotiated by DO and DU with Diffie-Hellman protocol).

The SK ′ is stored in a structure named User . There are two

attributes in the structure: a private key of a string type, and a

valid access period of the string type. When storing the SK ′,

the data owner inputs the ciphertext of the Ethereum account

address userAddress of the DU and the SK ′ as a one-to-one

mapping relationship (EachDU has their own private key and

only needs their own account address userAddress to get the

private key).

Algorithm 4 getSecretKey()

Input: null

Output: secret Key

1: if msg.sender is not dataUser then

2: return false;

3: else

4: mapping ([msg.sender ⇒ secretKey);

5: return secretKey;

6: end if

Algorithm 5 setCipherText(HashFileId,CipherText)

Input: HashFileId,CipherText

Output: bool

1: if msg.sender is not dataOwner then

2: return false;

3: end if

4: if HashFileId is not exist in HashFileIds[HashFileId]

then

5: return false;

6: end if

7: [HashFileId].CipherText ⇐ CipherText;

8: return true;

Algorithm 6 getCipherText(HashFileId)

Input: HashFileId

Output: CipherText

1: if HashFileId does not exist then

2: throw;

3: else

4: return CipherText;

5: end if

4. getSecretKey() : This function is called by the DU to

obtain its own SK ′ (the ciphertext of the private key SK ′).

When the smart contract is invoked, the caller’s Ethereum

112720 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

address will be retrieved and recorded as msg.sender . There-

fore, the call of the function outputs the SK ′ by a one-to-one

mapping relationship of the account address of the calling

contract without inputting any parameters.

5. setCipherText(HashFileId,CipherText) : This func-

tion can only be executed by the DO to store the path of

the CT file obtained by the previous section of the encryp-

tion algorithm. This function needs to input the hash value

HashFileId of the file ID and the path to the CT with the

access policy. Since the CT exists in the form of an object,

the ciphertext object is serialized into a binary file format,

and its binary file path is converted into a hexadecimal format

encoding storage. The ciphertext path only needs to be stored

once, not limited by the number of accesses by DU .

Algorithm 7 setInterval (user Address, Interval)

Input: Interval

Output: bool

1: if msg.sender is not dataOwner then

2: return false;

3: end if

4: if user Address is Null then

5: return false;

6: else

7: mapping interval ⇒ (userAddress);

8: and add it to User (user Address, Interval);

9: end if

10: return true;

Algorithm 8 getInterval()

Input: null

Output: Interval

1: if msg.sender is not dataUser then

2: throw;

3: else

4: mapping ([msg.sender] ⇒ interval);

5: return Interval;

6: end if

6. getCipherText(HashFileId) : This function is called by

the DU to get the path of the CT stored in the Ethereum. The

corresponding hexadecimal ciphertext file path is obtained by

HashFileId , and then it needs to restore its hexadecimal to the

true ciphertext file path.

7. setInterval(userAddress, Inerval) : This function can

only be executed by DO, and DO adds a valid access period

for the DU making the request. The call to this function

inputs the public key address userAddress of the DU and the

valid access period Interval for that DU. The hexadecimal

encoding of the Interval is mapped to the userAddress in the

contract, and the userAddress and Interval are added to the

structure stored in the structure named User . If the addition

was successful, returns true; otherwise returns false.

8. getInterval() : This function is called by the data

consumer. The valid access period Interval (hexadecimal

coded form) set by the data owner for himself can be queried

through his own Ethereum account address. Valid access

period Interval can be obtained by hexadecimal decoding

into character type. And you can verify by code whether the

current time is within the valid access period. If the current

time is within the valid access period, the file is allowed to

access, otherwise access is not allowed.

In our scheme, the smart contract is mainly stored by two

mapping to the structure method, so that the data owner

can store multiple sets of data (that is, multiple encrypted

files can be uploaded). At the same time, the data user

obtains the corresponding key data through the file ID, and

obtains the corresponding effective access period through its

own public key address. In some cases, the contract cre-

ator needs to terminate the smart contract to get ether in

smart contract, and you need to call the self-destruct method

selfdestruct(). When the contract is self-destructed, if some-

one sends the Ethereum to the contract address, then the

Ethereum can no longer be redeemed and will disappear.

Therefore, the smart contract in this paper cannot easily

implement the self-destruction contract method to avoid eco-

nomic losses. The smart contract detailed code in this article

see https://github.com/xwangsharing/Storage.

VI. ANALYSIS AND EVALUATION

A. CASE EVALUATION

In our scheme, we introduces Ethereum’s smart contract tech-

nology to transform the traditional attributed based encryp-

tion scheme, the key interaction between the data owner node

and the data user node is realized by Ethereum network. Our

new scheme no longer relies on the attribute authority to

distribute the key.

1) ACCOUNT PROCESSING

All users, in this scheme, need to generate an Ethereum

account EOA, which is used to create smart contracts and

execute functions in contracts. Any of these users can upload

encrypted files as data owners and create smart contracts.

Other users need to call the method in the contract to access,

obtain the key information and execute the algorithm to

decrypt.

2) DATA OWNER COMPLETE CONTROL OVER DATA

After the DO uploads the encrypted file to the cloud server,

the setup algorithm is executed to obtain the public key and

the master key. After the DO formulates the access pol-

icy, the ciphertext is obtained through the execution of the

encryption algorithm. Through the execution of the smart

contract, the relevant information of the file, such as cipher-

text, is stored in the blockchain network, so that the data

cannot be tampered with and all of operations are transparent.

If aDU wants to access the data, the first thing need to do is to

get the decryption key, which requires the DU to request the

DO to assign the attribute set. According to theDU’s attribute

set, the DO generates a private key for DU and encrypts the

VOLUME 7, 2019 112721

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

private key, which is stored in the Ethereum through the smart

contract. The DU can obtain the private key’s ciphertext SK ′

simply by calling the contract. The private key SK is then

decrypted by the common key which is negotiated byDO and

DU with Diffie-Hellman protocol. Thereby the decryption

algorithm can be executed.

In addition, The data owner adds a valid access period

while assigning a attributes set to each data user. For example,

as a student, you can visit the e-school library, and the school

will add an expiration date to the student’s attribute each

semester. The effective access period for each data user’s

access is stored in the blockchain network through smart

contract, making it impossible to tamper with and transparent.

The setting of the effective access period can reduce the cost

of the data user’s attribute revocation to some extent.

The decryption can be successful if and only if the data

consumer is within the valid access period and its set of

attributes meets the access policy established by the data

owner. Therefore, in this scheme, the data owner’s complete

control over their data is implemented.

3) KEY SECURITY

This paper transforms the traditional ciphertext-policy

attribute based encryption scheme by introducing Ethereum’s

smart contract technology. More user access can overwhelm

the pressure of a single center authority that distributes keys

in the original solution. The key of the data user in this paper

is assigned by the data owner rather than the center authority.

The key of the data user of the scheme is assigned by

the data owner. Considering the security risks of the trans-

mission channel, the data owner and the data user negotiate

the encryption key using the Diffie-Hellman key exchange

protocol before transmitting the private key of the data user.

The data user obtains the encrypted private key ciphertext by

paying a small amount of ether and decrypts it to obtain its

own private key.

The smart contract in our scheme is implemented with the

function of restricted attribute. That is, the modifier in the

source code of the smart contract is implemented to restrict

the calls of the smart contract to specific users. For example,

a function in a smart contract that modifier is assigned to the

identity of the ‘‘onlyOwner’’ can only be called by the creator

of the contract. If a non-contract creator attempts to execute

these methods, the execution will fail.

Therefore, in this paper, the security of key information is

guaranteed.

4) LOG WITH PRIVACY PROTECTION

In this scheme, the deployment and invocation of smart

contracts are recorded in the Ethereum blockchain in the

form of transactions. The blockchain network is continuously

synchronized, so that the transaction information of all nodes

in the blockchain network is completely consistent. In other

words, the introduction of Ethereum blockchain technology

is equivalent to adding a log system to the access control

scheme of this paper to record all access operation records.

TABLE 3. Functional analysis and comparison.

The introduction of blockchain makes all access operation

records non-destructive and non-repudiation.

The execution of all functions in the smart contract is

reflected in the smart contract’s log file and the Ethereum

blockchain network. The data owner stores information such

as user information and uploaded files in ciphertext in the

blockchain network. Therefore, other users are unable to use

mandatory means to break the information on the blockchain.

The adversary cannot obtain user privacy information from

a large amount of transaction information in the Ethereum

blockchain network. In the transaction information of each

transaction, the transaction initiator’s account address can

be obtained. However, other related information of the user

cannot be obtained, so that the user information is effec-

tively protected. Therefore, the transaction information in the

Ethereum blockchain network can be used as a secure access

log for the user.

5) ALGORITHMIC FUNCTION ANALYSIS

The functional comparison with the attribute-based encryp-

tion scheme in recent years is shown in Table 3.

The performance of this scheme and the recent schemes

are compared by whether there is a center authority, whether

it is based on the blockchain, whether it has an access log,

and whether the validity period is added. Document [30] is a

traditional access control scheme for distributing keys by the

center authority. Document [4] is a multi-authority attribute-

based encryption access control scheme. Document [20] is a

smart contract-based access control scheme, which achieves

not only access control but also access log.

In this scheme, fine-grained access control is implemented,

and the center authority is removed, so that the access control

scheme is more dispersed. Thus, the problem of single point

of failure brought by the center authority in the original

scheme was solved. Because of the introduction of Ethereum

blockchain technology, the solution is indirectly accompa-

nied by incentives and access logs. Therefore, this solution

has better applicability and usability.

B. EXPERIMENT ANALYSIS

In this section, we give the experiment analysis of our

scheme. The specific configuration of the experimen-

tal platform and experimental environment is: Inter(R)

Core(TM)2 Duo CPU E8400@3.00GHz processor, 4 GB

RAM, and the system are Windows10 and Linux

ubuntu16.04 LTS. The programming language is java and

solidity. External helper is JPBC and web3j. The full name

112722 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

of the external auxiliary JPBC is Java Pairing-Based Cryp-

tography. JPBC is an implementation of the java version of

the bilinear pair encryption algorithm in cryptography. The

main encryption algorithm in this scheme is implemented

by relying on the jar package. Web3j is a lightweight Java

development library for integrating Ethereum functionality,

which is implemented in the Java version of the Ethereum

JSONRPC interface protocol. Web3j provides a package of

smart contracts for solidity that enables packaged objects

generated by web3j to interact directly with all methods of

smart contracts.

The implementation of this paper is based on the two oper-

ating systems, the Ethereum blockchain is deployed in the

Linux ubuntu16.04 LTS established in the virtual machine,

and the main encryption algorithm is implemented in the

Windows10 system. The smart contract was developed by the

Solidity programming language and deployed on the private

chain created by the Ethereum Geth client under the Linux

ubuntu 16.04 LTS system.

Under the Windows 10 system, use the development envi-

ronment of the Remix IDE to develop and test.This devel-

opment environment can be connected to the Ethereum Geth

client via IP to deploy the smart contract on the Geth client.

After the compilation is successful, use the web3j to gen-

erate the JavaBean from the smart contract to the Maven

project in eclipse. In the Maven project, the attribute encryp-

tion algorithm is written using eclipse by introducing the

jar package of JPBC. By relying on some jar packages of

web3j, the interaction between the data owner and the data

consumer for the smart contract is realized, which makes the

access control algorithm of this paper better by combining the

attribute encryption algorithm with the smart contract.

Taking the literature [30] as an example, the framework

is applied to the attribute-based encryption algorithm and

experiment. Because of the high value of the Ethereum, it is

necessary to test in the Ethereum private chain or the open test

chain before the smart contract is deployed on the Ethereum

main chain. The smart contract is deployed on the local pri-

vate chain of the Ethereum network to implement the solution

in this chapter. Compared with the traditional attribute-based

encryption scheme, the execution of the algorithm in this

chapter has additional consumption mainly reflected in the

gas consumption of the method call in the smart contract.

There are additional drains on the creation and execution

of smart contracts, and Table 4 lists the gas costs and costs of

some operations on smart contracts.

Since the price of the Ethereum in the Ethereummain chain

is erratic, in order to facilitate the analysis of the cost of the

experimental data in this section, the price of the Ethereum

is set to 1 ether ≈ 200 USD,and let 1 gasPrice ≈ 1 Gwei,

1Gwei = 109wei = 10−9ether .

Table 4 lists the costs of some operations for smart con-

tracts. The creation of a smart contract for each data owner

is created only once, consuming 1,272,934 gas and cost

about $0.50. After the data owner executes the key generation

algorithm, the ciphertext of data user’s private key is stored

TABLE 4. The smart contract cost (gasprice = 2 Gwei, 1 ether = 200 USD).

FIGURE 3. Run time of algorithm under different number of attributes.

in the Ethereum blockchain, and the setSecretKey operation

is performed, which requires a cost of about $0.36; After

the data owner uploads the encrypted document, the cost

of executing the setHashFileId operation is approximately

$0.027; The data owner assigns a valid access period to

the data consumer, and the cost of executing the setInterval

operation is approximately $0.035; The data owner develops

an access policy and stores the encrypted ciphertext in the

Ethereum blockchain. The cost of executing the setCipher-

Text operation is approximately $0.044.

Generally speaking, whenever the data owner uploads a

file as a share, he needs to spend less than $1 to deploy

a smart contract. Similarly, every time a data user accesses

data, he spend about $0.048. These costs are based on pro-

totypes deployed on the blockchain and can be reduced with

optimized code. If the size of the input parameters for these

functions is smaller, the cost can be further reduced.

Experiments have shown that the cost paid by data owners

to share files is small and will be further reduced as data users

increase. The more data users access, the more benefits the

data owner receives. Of course, the cost to the data user to

access the data owner’s file is very little.

The abscissa in Figure 3 is the number of attributes,

the number is 5, 10, 15, 20; the ordinate is expressed as the

running time of the access control algorithm. The broken

line of the blue diamond shape indicates the change trend

of the execution time of the algorithm in the literature [30]

with the increase of the attribute; and the broken line of the

VOLUME 7, 2019 112723

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

orange square indicates the change rule of the execution time

of the algorithm as the attribute grows. Similarly, the execu-

tion time of the original algorithm increases as the attribute

increases. The running time of the algorithm is almost con-

sistent with the trend of the running time of the original

algorithm. Since the framework of this chapter is based on

blockchain, it is slightly higher in efficiency than the original

scheme. The smart contract detailed code in this paper can be

seen in https://github.com/xwangsharing/Storage.

VII. CONCLUSION

In this paper, a secure cloud storage access control framework

based on blockchain is proposed. The traditional ciphertext-

policy attribute-based encryption algorithm is transformed by

introducing Ethereum’s smart contract technology. In order

to prevent the center authority from being attacked, the dis-

tribution key no longer relies on the center authority. Our

scheme is decentralized. A distributed access control scheme

is implemented through interaction between the data owner

node and the data user node. Experiments show that the cost

of accessing files is very small.

Further research work is still worth doing. This framework

is based on the cloud storage platform, the cloud storage

platform is semi-honest. Therefore, the program also lacks

research data integrity which ensure that data owner to upload

the document has not been tampered with. In the future, cloud

storage platforms may be replaced with decentralized storage

platforms, such as Inter Planetary File System (IPFS) [31],

Storj [32], etc.

REFERENCES

[1] J. Bethencourt, A. Sahai, and B. Waters, ‘‘Ciphertext-policy attribute-

based encryption,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2008,

pp. 321–334.

[2] M. Chase, ‘‘Multi-authority attribute based encryption,’’ in Proc. 4th The-

ory Cryptogr. Conf. (TCC). Amsterdam, TheNetherlands: Springer-Verlag,

Feb. 2007.

[3] H. Lin, Z. Cao, X. Liang, and J. Shao, ‘‘Secure threshold multi authority

attribute based encryption without a central authority,’’ Inf. Sci., vol. 180,

no. 13, pp. 2618–2632, Jul. 2010.

[4] A. Lewko and B. Waters, ‘‘Decentralizing attribute-based encryption,’’

in Advances in Cryptology—EUROCRYPT (Lecture Notes in Computer

Science), vol. 6632, K. G. Paterson, Ed. Berlin, Germany: Springer, 2011.

[5] K. Yang and X. Jia, ‘‘ Attributed-based access control for multi-authority

systems in cloud storage,’’ in Proc. IEEE Int. Conf. Distrib. Comput. Syst.,

Jun. 2012, pp. 536–545.

[6] J. Wei, W. Liu, and X. Hu, ‘‘Secure and efficient attribute-based access

control for multiauthority cloud storage,’’ IEEE Syst. J., vol. 12, no. 2,

pp. 1731–1742, Jun. 2018.

[7] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.

[Online]. Available: https://bitco.in/pdf/bitcoin.pdf

[8] G. Zyskind, O. Nathan, and A. S. Pentland, ‘‘Decentralizing privacy:

Using blockchain to protect personal data,’’ in Proc. IEEE Secur. Privacy

Workshops, May 2015, pp. 180–184.

[9] M. Jemel and A. Serhrouchni, ‘‘Decentralized access control mechanism

with temporal dimension based on blockchain,’’ in Proc. IEEE 14th Int.

Conf. E-Bus. Eng. (ICEBE), Nov. 2017, pp. 177–182.

[10] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani,

‘‘MeDShare: Trust-less medical data sharing among cloud service

providers via blockchain,’’ IEEE Access, vol. 5, pp. 14757–14767, 2017.

[11] R. Xu, Y. Chen, E. Blasch, and G. Chen, ‘‘BlendCAC: A smart contract

enabled decentralized capability-based access control mechanism for IoT,’’

in Proc. IEEE Int. Conf. Blockchain, Jul./Aug. 2018, pp. 1027–1034.

[12] K. Liu, H. Desai, and L. Kagal, ‘‘Enforceable data sharing agreements

using smart contracts,’’ 2018, arXiv:1804.10645. [Online]. Available:

https://arxiv.org/abs/1804.10645
[13] C. Lin, D. He, X. Huang, K.-K. R. Choo, and A. V. Vasilakos ‘‘BSeIn:

A blockchain-based secure mutual authentication with fine-grained access

control system for industry 4.0,’’ J. Netw. Comput. Appl., vol. 116,

pp. 42–52, Aug. 2018.
[14] Q. Xia, E. Sifah, A. Smahi, S. Amofa, and X. Zhang, ‘‘BBDS: Blockchain-

based data sharing for electronic medical records in cloud environments,’’

Information, vol. 8, no. 2, p. 44, Apr. 2017.
[15] H. G. Do andW. K. Ng, ‘‘Blockchain-based system for secure data storage

with private keyword,’’ search,’’ in Proc. IEEE World Congr. Services,

Jun. 2017, pp. 90–93.
[16] P. J. Lu, L.-Y. Yeh, and J.-L. Huang, ‘‘An privacy-preserving cross-

organizational authentication /authorization/accounting system using

blockchain technology,’’ in Proc. IEEE Int. Conf. Commun. (ICC),

May 2018, pp. 1–6.
[17] G. Magyar, ‘‘Blockchain: Solving the privacy and research availability

tradeoff for ehr data: A new disruptive technology in health data man-

agement,’’ in Proc. IEEE 30th Neumann Colloquium (NC), Nov. 2017,

pp. 135–140.
[18] S. Alansari, F. Paci, and V. Sassone ‘‘A distributed access control system

for cloud federations,’’ inProc. IEEE 37th Int. Conf. Distrib. Comput. Syst.,

Jun. 2017, pp. 2131–2136.
[19] T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, ‘‘Blockchain distributed

ledger technologies for biomedical and health care applications,’’ J. Amer.

Med. Inform. Assoc., vol. 24, no. 6, pp. 1211–1220, Nov. 2017.
[20] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, ‘‘Smart contract-

based access control for the Internet of Things,’’ IEEE Internet Things

J., vol. 6, no. 2, pp. 1594–1605, Apr. 2019.
[21] Diffie-HellmanKey Exchange. Accessed: Oct. 3, 2018. [Online]. Available:

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
[22] W. Gavin, ‘‘Ethereum: A secure decentralised generalised transaction

ledger,’’ Ethereum Project Yellow Paper, 2014. [Online]. Available:

https://ethereum.github.io/yellowpaper/paper.pdf
[23] Litecoin. Accessed:Jul. 20, 2018. [Online]. Available: https://litecoin.org/
[24] Dogecoin. Accessed:Jul. 10, 2018. [Online]. Available: http://dogecoin.

com/
[25] Ethereum Homestead Documentation. Accessed: Dec. 2, 2018. [Online].

Available: https://buildmedia.readthedocs.org/media/pdf/ethereum-home

stead/latest/ethereum-homestead.pdf
[26] Ethereum Blockchain App Platform. Accessed: Feb. 1, 2018. [Online].

Available: https://www.ethereum.org/
[27] M. Ulieru, ‘‘Blockchain 2.0 and beyond: Adhocracies,’’ in Banking Beyond

Banks and Money (New Economic Windows), P. Tasca, T. Aste, L. Peliz-

zon, and N. Perony, Eds. Cham, Switzerland: Springer, 2016.
[28] C. Dannen, Introducing Ethereum and Solidity: Foundations of Cryptocur-

rency and Blockchain Programming for Beginners. New York, NY, USA:

Apress, 2017.
[29] J. P. Cruz, Y. Kaji, and N. Yanai, ‘‘RBAC-SC: Role-based access control

using smart contract,’’ IEEE Access, vol. 6, pp. 12240–12251, 2018.
[30] P. Zhang, Z. Chen, K. Liang, S.Wang, and T.Wang, ‘‘A cloud-based access

control scheme with user revocation and attribute update,’’ in Information

Security and Privacy (Lecture Notes in Computer Science), vol. 9722, J.

Liu and R. Steinfeld, Eds. Cham, Switzerland: Springer, 2016.
[31] J. Benet, ‘‘IPFS—content addressed, versioned, P2P file system,’’ 2014,

arXiv:1407.3561. [Online]. Available: https://arxiv.org/abs/1407.3561
[32] C. Gray. (2014). Storj Vs. Dropbox: Why Decentralized Storage is the

Future. [Online]. Available: https://bitcoinmagazine.com/articles/storj-vs-

dropbox-decentralized-storage-future-1408177107

SHANGPING WANG received the B.S. degree in

mathematics from the Xi’an University of Tech-

nology, Xi’an, China, in 1982, the M.S. degree

in applied mathematics from Xi’an Jiaotong Uni-

versity, Xi’an, in 1989, and the Ph.D. degree in

cryptology fromXidianUniversity, Xi’an, in 2003.

He is currently a Professor with the Xi’an Univer-

sity of Technology. His current research interests

include cryptography and information security.

112724 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

XU WANG received the B.S. degree from

the School of Telecommunication Engineering,

HaoJing College, Shaanxi University of Science

and Technology, Xi’an, China, in 2016. He is cur-

rently pursuing the M.S. degree with the School

of Computer Science and Engineering, Xi’an Uni-

versity of Technology, Xi’an. His research inter-

ests include information security and blockchain

technology.

YALING ZHANG received the B.S. degree in com-

puter science from Northwest University, Xi’an,

China, in 1988, and the B.S. degree in computer

science and the Ph.D. degree in mechanism elec-

tron engineering from the Xi’an University of

Technology, Xi’an, in 2001 and 2008, respectively,

where she is currently a Professor. Her current

research interests include information security and

privacy protection.

VOLUME 7, 2019 112725

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	BILINEAR MAPPING
	ACCESS TREE
	BLOCKCHAIN TECHNOLOGY AND ETHEREUM
	ETHEREUM ACCOUNTS
	SMART CONTRACT
	TRANSACTION INFORMATION

	SYSTEM MODEL
	SCHEME CONSTRUCTION
	CONCRETE CONSTRUCTION
	PHASE 1: SYSTEM INITIALIZATION
	PHASE 2: FILE ENCRYPTION
	PHASE 3: KEY GENERATION
	PHASE 4: FILE DECRYPTION

	SMART CONTRACT DESIGN

	ANALYSIS AND EVALUATION
	CASE EVALUATION
	ACCOUNT PROCESSING
	DATA OWNER COMPLETE CONTROL OVER DATA
	KEY SECURITY
	LOG WITH PRIVACY PROTECTION
	ALGORITHMIC FUNCTION ANALYSIS

	EXPERIMENT ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	SHANGPING WANG
	XU WANG
	YALING ZHANG

