

www.astesj.com 1307

A Secure Communication Framework for ECUs

Ali Shuja Siddiqui*1, Yutian Gui1, Jim Plusquellic2, Fareena Saqib1

1Dept. of Electrical and Computer Engineering, University of North Carolina at Charlotte, U.S.A.

2Dept. of Electrical and Computer Engineering, University of New Mexico, U.S.A.

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 24 April, 2017
Accepted : 24 June, 2017
Online: 01 August, 2017

 Electronic Control Units (ECUs) generate diagnostic and telemetric data that is
communicated over the internal vehicular network. ECUs are resource constraint devices
and have limited resources to devote for data security. In recent times, threats against
vehicular networks have emerged that require attention of the research community. In this
paper, we demonstrate data security threats in automobile, present a hardware based
security framework that provides real time secure communication using lightweight
cryptographic primitives and propose hardware based authentication protocol.
Implementation details, performance and security analysis of proposed framework are
presented.

Keywords:
Automotive Security
Controller Area Network
Physical Unclonable Functions

1. Introduction

Vehicles are no longer composed of just mechanical
components with limited control operations of electrical
components. Digital transformations in electronics have
contributed in the advancement of automotive industry in terms of
customer interactions and experience in improving the overall
driving experience of a vehicle and critical operations. Some
examples of on-board electronic components are air-fuel mixing,
temperature-control, thermostats, vents, doors-locking, seat-
adjustments, radio, wind-shield wipers, transmission, ignition,
engine, steering, brakes, acceleration, air-bags, navigation, in-dash
entertainment, cameras, braking system, etc. Electronic systems
that are connected with on-board systems are called Electronic
Control Units (ECU). ECUs work in cooperation with each other,
and need to communicate their state with one another. Instead of
using dedicated signal wires for information exchange, that may
require a lot of wiring and effort on part of the car manufacturer,
the automotive industry has moved towards using data
communication networks. Similar to traditional data
communication networks, data security of the ECU network is
becoming a concern. Following section covers the vulnerabilities,
and recent attacks on on-board car networks and the new security

requirements. The security vulnerabilities are demonstrated and
existing countermeasures and their limitations are discussed. This
is an extension to the paper [1] which was presented in IEEE
Vehicular Networking Conference 2016. Columbus, OH, U.S.A.

1.1. Recent Documented Attacks

In 2014, a group of researchers were able to remotely control a
Jeep Cherokee[2]. The vehicle is equipped with an on-board
infotainment system. To gather local information, it uses an
internet connection to connect to its server. The researchers could
remotely hack into the dashboard system, using software
vulnerability. The dashboard system is also connected to the
internal network of connected ECUs using a popular network
standard known as Controller Area Network (CAN)[3]. This gives
access to all the other actuation units such as the brakes,
accelerator, steering control etc. A more recent attack is discussed
in [4]. The authors extracted master global shared encryption keys
from deciphering the software code using a wireless key fob. This
gave the researchers access to shared keys used by all the vehicles
using the wireless key fob system from the affected brand.

1.2. Current Security Needs

A robust and secure framework is needed to improve the
resiliency to malicious attacks. Traditional cryptographic
primitives are computation intensive and rely on secrecy of shared

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Ali Shuja Siddiqui, Dept. of Electrical and Computer
Engineering, University of North Carolina at Charlotte, U.S.A.
Email: asiddiq6@uncc.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1307-1313 (2017)

www.astesj.com

 Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj0203165

A. S. Siddiqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1307-1313 (2017)

www.astesj.com 1308

or session keys, and are applicable on large systems like servers
and secure databases. These are unsuitable for embedded devices
with fewer resources to allocate dedicated hardware for
implementing security protocols with extra storage requirements.
Alternatively, if external Hardware Security Modules (HSM) are
considered to provide security, they are costly and require
additional physical area and power.

This paper demonstrates a hardware based light authentication
framework integrating strong physical unclonable function for
secret key generation and light cryptographic primitives, such as
Elliptic Curve Cryptography to improve authentication protocol
for small and resource constrained embedded devices at lower
levels of composition. We evaluate the security methods for CAN
protocol and propose techniques to mitigate those attacks on
ECUs. Furthermore, the framework addresses the issue of
unauthorized physical access to a vehicle via electronic means, and
to the connected digital components within a vehicle.

2. The CAN Bus Protocol

The CAN bus, known as ISO 11898 architecture is a multi-
master bus connecting embedded components, I/O interfaces as
well as gateways to communicate with the external world. It
consists of three signals, CAN High, CAN Low and Ground, and
the CAN standard specifies three data rates 125kbps, 500 kbps and
1Mbps. In the more recent standard for CAN Bus, named CAN
Flexible Datarate, CAN allows transfers of additional frames at
non-standard and faster speeds.

Figure 1 describes the standard data frame of CAN bus. The
SOF bit denotes the start of frame, 11 bits store destination ID,
Data field of 64 bits and CRC field is 15 bits to hold the checksum
of the entire packet. The length of the standard CAN frame is 108
bits whereas 131 for an extended CAN frame. On the physical
medium CAN uses Non-Return to Zero (NRZ) encoding, that is
after five consecutive zeroes on the stream, an extra ‘1’ bit will be
added to that position before putting it on the bus.

3. Threat Models

CAN is susceptible to replay, man in the middle and stealing
identifiers attacks. We demonstrate these attacks on CANBus, with
the testbed using Raspberry Pi 2, PiCAN Duo CANBus Shield,
Arduino UNO and CAN-BUS Shield.

The PiCAN shield with two CAN nodes is connected with the
Raspberry Pi. These nodes are considered to be legitimate nodes
on the network. These nodes are referred as CAN0 and CAN1, as
shown in Figure 2. The malicious node CAN2 is a CAN shield
which is connected to an Arduino UNO. Figure 3 describes the
block diagram of the complete setup.

3.1. Eavesdropping

CANBus is an insecure communication medium that transmits
data in broadcasting the unencrypted packets to all connected
nodes on the network. Malicious node getting physical or remote
access to CANBus network has access to all the packet transfers
and payload. Figure 4 shows traffic of packets on CANBus. The
messages and destination identifiers are broadcasted and sent
unencrypted on CAN. CAN0 messages for other nodes can be seen
and recorded by CAN1. Similarly, any other device physically
connected to the CAN bus can read all the communication over the
network.

To mitigate eavesdropping, the information passing on the bus
needs to be securely encrypted. In [5], the authors present an
external security solution, and [6] proposes 3DES encryption and
an external controller for the transfers and traffic monitoring. The
added area, power requirements and slower performance of the
software based encryption and decryption processes make the
solution impractical.

3.2. Stealing Identifiers

As shown in the Figure 4, the destination address in the
identifier field are visible to the hacker/ attacker on the CAN bus.
All devices probe the ID field of each message received and based
on the ID, deduce if the message was meant for them or not.
Malicious device records these identifiers and can launch attacks
against other nodes.

CAN0 CAN2 CAN1
CANH CANL CANH CANL CANLCANH

120Ω 120Ω

CANH

CANL
Figure 3 Block diagram of the Experimental Setup.

SOF Arbitration Control Data CRC Field End of Frame

1 bit 12 bits 6 bits 0 – 64 bits 16 bits 7 bits

ACK

2 bits

Figure 1 Standard CAN Bus Frame.

Figure 2 Experimental Setup.

Figure 4 Screenshot of data transfer on the CAN.

A. S. Siddiqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1307-1313 (2017)

www.astesj.com 1309

In [7], an authentication and encryption mechanism is
described, but it requires about three times more CPU cycles than
the cycles required for normal operation of a CAN node.

3.3. Non Repudiation

The frame consists of the destination identifier and not source

identifier. The communication network cannot confine the attack
or identify the originating node based on the network analysis. This
results in incorporating non-repudiation requirements at each

device (ECU).

3.4. Denial of Service

Denial of Service attacks makes the resources or services
unreachable; the CAN communication channel is made
inaccessible by the malicious node CAN2 by broadcasting random
messages on the bus without pause as demonstrated in figure 5,
while CAN0 and CAN1 are exchanging information. With the
vendor provided code, the legitimate nodes stopped operation and
notified about receiving a buffer overflow error as shown in Figure
6.

In section 4 we propose a hardware based framework to introduce
secure communication over CANBus and provide countermeasure
against the discussed attacks.

4. Hardware Based Encryption and Digital Signature
Solution

The limited processing power available on the hardware and
real time constraints bound the traditional software based
cryptographic solutions to provide secure communication. In
embedded systems with a software solution, an attacker can extract
the executable source code of the device using various methods to
reverse engineer cryptographic algorithms and keys[8][9][4].

We propose hardware based secure enhancements to each
connected electronic control unit (ECU). The secure framework
can be embedded into the processor fabric itself as a co-processor.
The hardware design is made to minimize software dependency on
the resource scarce devices. Additionally, with incorporation of
hardware based obfuscation techniques, reverse engineering

attacks or attempts for extraction of keys using hardware based
attacks can be further mitigated. The proposed framework requires
no secret keys to be stored on non-volatile memory within the
nodes/ECUs, thus eliminating the probing attacks.

The security framework is based on client server architecture.
A local server node present on the network is responsible for
handling all ECU nodes that are joined on the network. Each client
must first be registered and authenticated at the server before they
can communicate with the other nodes on a network. This process
takes place in a secure and trusted environment, referred to as
registration. Registration can be performed during manufacturing,
assembly of vehicle components or at the trusted diagnostic
centers. Figure 7 illustrates the local on-board server.

Figure 8 shows the enhancements and design flow in form of
block diagram of each secured ECU. Our framework assumes the
server is secure and trusted. Following subsections discuss each of
the components and their function in the framework.

4.1. PUF Block

Physical unclonable function (PUF) is an emerging physical
layer cryptographic primitive used in hardware security and
privacy protocols. These are embedded structures that utilize
inherent manufacturing process variations to extract unique but
reproducible secrets [10][11]. PUFs are based on a challenge-
response pair (CRP) mechanism. The challenge for a PUF is
defined as a digital input, usually in the form of a bitstring of ‘0’s
and ‘1’s. The output of a PUF is also digital but for most PUFs,
this requires an on-chip mechanism to convert the small analog
variations leveraged by the PUF to be digitized.

There two different types of PUFs, namely Weak and Strong
PUFs. A major difference between the two is that the weak PUFs
have few challenges for which they can uniquely generate a key
whereas strong PUFs have a large challenge space and therefore
have a unique response for most of the challenges. The bit-

Figure 8 Secure block implemented at each client node.

Figure 5 Screenshot of CAN2 flooding the network.

Figure 6 Screenshot demonstrating buffer-overflow occurring at CAN0.

Figure 7 Server locally connected to the nodes.

A. S. Siddiqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1307-1313 (2017)

www.astesj.com 1310

generation for cryptographic applications is a two-step process that
is enrollment and registration. During the enrollment process, each
PUF is given a set of challenges and the response pairs are
recorded. Later when the PUF is in field, these responses are
regenerated for use in identification and encryption applications.

During the registration, each ECU produces a unique
reproducible response/key that serves as private key. This response
is reproduced using the error correction code and is used to
generate public private pair. Helper data for reproducing the
secrets is stored on the NVM of ECU for the given challenge and
public key is communicated to the secure server, where it is stored.
PUF based authentication is implemented within vehicle
network[11]. All client nodes (or devices) are enrolled at the server
before they can be used. The registration process is summarized in
Table I.

Table I. Registration of nodes in a trusted environment.

Algorithm: Registration process of client nodes in a trusted
environment.
Input: Challenge c, configuration parameters for the ECC curve.
Output: Public key Ka of ECU.
1: At each client node, input a challenge c for the PUF Block.
2: PUF block computes a response r.
3: Generate a public private key pair (a, Ka) using PUF response r
and configuration parameters.
4: Ka for each ECU is stored communicated to server, where it is
stored in a public database accessible to every node on the bus.
5: Public key of the server, Ks is stored in non-volatile memory at
each client node for later access.

4.2. Private/Public Key Generation Block

We implement Elliptic Curve Cryptography Diffie-Hellman
(ECDH) based asymmetric key exchange and encryption engine in
hardware. ECC algorithm is suitable for the resource constraint
devices, providing same strength of security as RSA. ECC
algorithms are implemented in Galois Field(GF) which limit the
range of output values and thus reducing the resource
requirements. ECC implementations have been presented over two
types of Galois Fields, namely Prime Fields (GF(Fp)) and Binary
Fields (GF(F2^m)). National Institute of Standards and
Technology (NIST) provides a set of recommended elliptic curves
(http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur
.pdf).

This block is used to generate public and private keys for a
node. It is used in the one-time registration process (as described
in the previous subsection). Based on the reliable PUF response,
public and private keys are generated at each ECU during the
authentication process that is initiated every time the vehicle starts
(turning on of the ignition).

4.3. Authentication and Shared Key Generation Process

During the startup, each connected device requires
authentication with the server to enable trusted environment. ECU
sends a packet with its own id as target identifier and its public key
encrypted with the shared key formed using ECC in the payload.
The shared key block is used to generate a shared key between two
communicating nodes to have an encrypted communication. At the
startup of vehicle each device/ECU, the private key of the current
node and the public key of the server, are used in Elliptic curve

Diffie-Hellman (ECDH) algorithm for the secret shared key
generation. This shared key is used in symmetric key encryption
algorithm. All generated keys are stored in the volatile memory for
the whole time vehicle is running and requires real time
communication.

Server decrypts the payload and compares the public key with

the sender ID sent in the arbitration bits. Once the ECU is

authenticated, server shares the public keys of the other ECUs the

requesting node is allowed to communicate.

Table II. Algorithm for authentication performed at the beginning of each
session.

Algorithm: Authentication process.
Input: None.
Output: None.
1: Each ECU generates PUF response r using stored challenge c,
and helper data.
2: With r as the input to the Public / Private Key Generator Block,
generate public and private keys, Ka and a respectively.
3: With public key of the server Ks and private key a, generate
shared symmetric encryption key Shab using the Shared Key
Generation Block.
4: Encrypt the generated public key Ka with the shared key Shab.to
form message Em.
5: Transmit Em to the server while setting the node ID IA of the
current node as CAN message arbitration ID.
6: At the server, once an encrypted message Em is received, Server
decrypts it using the shared encryption key associated with IA to
get message m, which holds the public key of node A, Ka.
7: If Ka received is equal to the Ka stored in the database then
consider node A authorized for the rest of the session.
8: Wait for other nodes to register themselves.
9: Server prepares a message for each ECU encrypting with the
ECU’s shared key containing the public keys of all the registered
nodes.
10: Once this message is received at a node, decrypt it using the
shared key.
11: Each node communicates with the other nodes and generates
session keys using both its private key and other nodes public key.

The authentication process is a timed process. If any node fails
to authenticate itself with the server in the time allocated, then it is
blacklisted for communication for the entirety of that session.
Private keys for all nodes are generated at run time and are not
stored to ensure security. No private keys leave the node and are
erased at the end of session. Figure 9 illustrates the sequence of
communication during authentication of a node.

Figure 9 Sequence Diagram for Authentication.

A. S. Siddiqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1307-1313 (2017)

www.astesj.com 1311

4.4. Key Storage

The key storage block consists of a non-volatile memory
(NVM) to store:

 Input challenges to capture unique responses from PUF on
each ECU.

 Helper data consists of tuning stages configuration to re-
produce PUF response for private key(discussed in the next
section).

 Public key Ks of the server for server authentication.
 Parameters to generate public private key pairs.

The framework allows each ECU to generate the private key
on fly thus does not require it to be stored in a NVM. Private keys
can be stored temporarily in volatile storage along with the shared
session keys between ECUs. For each pair of communicating
nodes, the following elements are stored in the volatile key storage:

 Shab: Generated Shared secret key for encryption for each pair
of nodes (a being the source node and b the node being
destination node).

 Kb: Public key of the communicating node.
No access is possible to the storage other than to the nodes

connected to it.

4.5. Encryption / Decryption Block

Once shared keys are generated for each pair of nodes, these
keys can be used for encryption and decryption for the given
session. Every message that is sent must first be encrypted before
it can be transmitted. Selection of a symmetric key algorithm is
dependent on the choice of the system designer, for example an
AES-128 engine. The message is sent to the Encryption /
Decryption Block that encrypts the message at the sender and
decrypts the message at the receiving node using the shared key.

5. Implementation and Performance Analysis

Following section discusses the implementation details of
framework and its performance evaluation. Xilinx Kintex KC705
FPGA Evaluation Board is used to implement the design IP with
the clock speed of 200 MHz.

5.1. PUF Implementation

The Arbiter PUF is a strong PUF with multiple CRPs that
utilizes the process variations in the identical delay lines to
generate response bits. The traditional Arbiter PUF
implementation is hard to implement on FPGAs because of limited
capability on place and route process. This causes systematic bias
and the bitstream is not random. An alternative Arbiter PUF
implementation is proposed in [12] that utilizes the internal delays
of an LUT as a source of entropy for the process variation. The
FPGA implementation design details with symmetric delay lines
are in further explained in [12].

A single stage of the delay line is illustrated in figure 10. The
output is a function of A1, where A2 to A6 inputs decides the route
of input to output. LUT is configured as an invertor, when the input
signal A1 is 0, the output changes to 1 and vice versa. A rising edge
is propagated to the first LUT of both upper and lower path that
propagated through 64 stages. In our implementation, we have
instantiated 16 copies of lower and upper delay lines to produce
16-bit output response for each given challenge. The routing
between the stages is shown in Figure 11.

Figure 12 PUF Response stored in DFF. Figure 10 Implementaion of a single PUF stage.

Figure 11 Section of a PUF delay line.

A. S. Siddiqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1307-1313 (2017)

www.astesj.com 1312

In order to fine tune the delay difference due to routing, tuning
stages are added to the end of the delay lines as described in [12].

Each delay line ends at an arbiter, in our implementation, we are
using a D Flip Flop. The difference in the delay caused by the

physical variation will result in either capture of a ‘0’ or a ‘1’ based
on whether the lower or upper rising edge is reached on the flip-
flop clk or D input respectively. The capture stage is illustrated in

figure 12. The implementation uses a total of 2416 LUT slices.

5.2. Key Generation Subsystem

ECC engine operating over the binary field GF (2^163)is used
[13]. The ECC engine is only used on boot up to generate the
public and the shared keys. Figure 13 shows the internal
configuration of the ECC core.

The selected implementation of the ECC engine is organized
as a pseudo multi-core processor and has a total of three cores for
finite field (FF) computation. They are connected using a RISC
like instruction controller. For computation of a single point
multiplication, the ECC core requires a total of 1428 cycles. Since
our target platform is running on 200 MHz, the total time to
compute a single multiplication point is 7.14 microseconds. In the

process for shared key generation, there is a need for two single
point multiplication operations at each node. On our target
platform, the ECC core uses a total of 25,454 LUT slices.

5.3. Encryption/ Decryption

The encryption/decryption module consists of AES-128 for
encryption. The AES engine uses the shared key generated by the
ECC subsystem to encrypt any traffic leaving the node and decrypt
any traffic coming in. AES-128 engine takes a total of 22 clock
cycles for encryption and decryption and a total of 110
nanoseconds. The AES engine has a footprint of 2560 LUT slices.

Table III shows a comparison of different block computation
speeds at different clock speeds.

Table III. Comparative analysis of block computation speeds at different system
clock rates.

 AES-128 FF Multiplication
At 60 MHz 366.66 ns 23.8 µs
At 100 MHz 220 ns 14.28 µs
At 200 MHz 110 ns 7.14 µs

5.4. Storage Elements

For implementing the storage elements of the framework, we
are using the FPGA’s on-fabric block RAM resources. A block
RAM of 128-bit width and 512 elements is instantiated. On our

target board, a total of two 36K BRAM elements were used. This
memory element has a read and write speed of one cycle.

5.5. Timing Analysis

The framework has system clock speed of 200MHz and CAN
speed is 1Mbps. Time for transmitting one bit at the data rate of
1Mbps is 1µs. We are ignoring bit stuffing due to NRZ encoding
in our computation. The time required to transmit one data frame
is 1 x 108µ = 108 µsecs. Each frame has a total of 64 data bits, to
send an AES-128 encrypted 128-bit message, two data frames are
required. The total time for transmission for an encrypted message
is 108µ x 2 = 216 µsecs.

During Authentication

At the time of boot up, at each node the first the public key is
generated using the private key. This process requires one point
multiplication operation to be performed in the ECC core. As
stated in subsection 5.2, this operation requires a total of
7.14µsecs. Using the stored public key of the server, another point
multiplication operation will be required to generate the shared
encryption key. Per Table II, this key is encrypted before it is sent
to the server. The encryption operation takes 110 ns. Therefore, the
total minimum time required from boot-up to sending the server
the shared key is:

(7.14µ x 2) + 110ns +(2 x 108µ) = 230.39µs.

For each node that has been authenticated by the server, the
server will send a 3-part message (as described in figure 12) to all
the connected nodes. The first part contains the node ID of the node
authenticated, and the two parts (total of 128 bits) will consist of
the encrypted public key of an authenticated node.

Time taken to send these three messages is:

108µ x 3 = 324 µs.

This process will be repeated for all successfully authenticated
nodes.

Since the public key of an authorized node is encrypted in the
message, it needs to be decrypted. This process will take another
110 nanoseconds. To generate the shared key for that public key
requires another 7.14 µs by the ECC unit.

During normal operation

During normal operation, CAN message is encrypted, it will
take a total of two frames to transmit a message. Table IV gives a
message overhead incurred for authentication on CANBus
communication operation.

Table IV. Overhead overview at standard can connection speeds.

 125 kbps 500
kbps

1 Mbps

Time for sending one frame 864µs 216µs 108µs
During Authentication

Node sending encrypted
message to server (2 frames)

1.728ms 432µs 216µs

Server’s reply (3 frames) 2.592ms 648µs 324µs
Normal Operation

For a message (2 frames) 1.728ms 432µs 216µs

Figure 13 Block Diagram of the ECC Core.

Receiver ID ID Packet 1 ID Packet 2

Figure 14 Server's reply to a node after authentication.

A. S. Siddiqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1307-1313 (2017)

www.astesj.com 1313

6. Security Analysis

The proposed framework assumes a secure server, and the
legitimate/authorized ECUs are not compromised and does not
allow unauthorized code execution. In the proposed framework,
the payload of CAN Bus packets are encrypted. There are no
private key storage or exchanges in the untrusted field. An ECU
node stores only the public key of the server. This makes it difficult
for an attacker to retrieve keys through probing or man in the
middle attack.

No new device can be added in the field, since the device needs
to register with the server in a trusted environment before the
server can send the shared key of this node to the other connected
ECUs, it must be authenticated. Since the malicious node’s public
key is not stored in the server, it will not authenticate it and
therefore will not communicate its ID with the other nodes. Thus,
eliminating backdoors for accessing the network physically. All
the nodes have different keys and as such on compromise of a
single node, even if an attacker can retrieve a private key from one
node, the private key to the other node will still be unknown to the
attacker.

In the scenario where an attacker has acquired the public key
of a legitimate node on the network or in case of a server database
compromise, an adversary can only retrieve the public keys of
participating ECUs. Once a communication from the adversary is
initiated, the legitimate node will reject it since public key was not
initially sent by the server.

7. Conclusion

In this paper, we investigate the threat models of internal
vehicular network communication using CANBus. We present a
secure framework for authentication and point to point encrypted
communication for ECUs. Paper presents the architecture and
implementation details and area overhead of FPGA
implementation. The hardware based security solution for the
resource constraints and time critical applications are viable for the
automotive industry.

Acknowledgement

This work is supported by National Science Foundation under grant
no. 1566530 and 1623299.

References

[1] A. S. Siddiqui, Y. Gui, J. Plusquellic, and F. Saqib, “Poster: Hardware based
security enhanced framework for automotives,” in 2016 IEEE Vehicular
Networking Conference (VNC), 2016, pp. 1–2.

[2] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered Passenger
Vehicle,” Black Hat USA, 2015.

[3] BOSCH, “BOSCH CAN Specification,” 1991.

[4] F. Garcia, D. Oswald, and T. Kasper, “Lock It and Still Lose It–On the (In)
Security of Automotive Remote Keyless Entry Systems,” in USENIX
Security 2016, 2016.

[5] A. Hanacek and M. Sysel, “Design and Implementation of an Integrated
System with Secure Encrypted Data Transmission,” Springer International
Publishing, 2016, pp. 217–224.

[6] G. Singh, “A study of encryption algorithms (RSA, DES, 3DES and AES)
for information security,” Int. J. Comput. Appl., 2013.

[7] Q. Wang and S. Sawhney, “VeCure: A practical security framework to
protect the CAN bus of vehicles,” in 2014 International Conference on the
Internet of Things (IOT), 2014, pp. 13–18.

[8] S. Ravi, P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security as
a new dimension in embedded system design,” in Proceedings of the 41st
annual conference on Design automation - DAC ’04, 2004, p. 753.

[9] D. Papp, Z. Ma, and L. Buttyan, “Embedded systems security: Threats,
vulnerabilities, and attack taxonomy,” in 2015 13th Annual Conference on
Privacy, Security and Trust (PST), 2015, pp. 145–152.

[10] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Unclonable
Functions and Applications: A Tutorial,” Proc. IEEE, vol. 102, no. 8, pp.
1126–1141, Aug. 2014.

[11] W. Che, F. Saqib, and J. Plusquellic, “PUF-based authentication,” in 2015
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
2015, pp. 337–344.

[12] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using
programmable delay lines,” in 2010 IEEE International Workshop on
Information Forensics and Security, WIFS 2010, 2010.

[13] Y. Zhang, D. Chen, Y. Choi, L. Chen, and S.-B. Ko, “A high performance
pseudo-multi-core ECC processor over GF(2 ^ 163),” in Proceedings of
2010 IEEE International Symposium on Circuits and Systems, 2010, pp.
701–704.

https://reporting.research.gov/rppr-web/rppr?execution=e1s1&_eventId=awardDetail&awardId=1623299

