
RESEARCH Open Access

A secure data deduplication system for
integrated cloud-edge networks
Shynu P. G.1, Nadesh R. K.1, Varun G. Menon2, Venu P.3, Mahdi Abbasi4* and Mohammad R. Khosravi5,6

Abstract

Data redundancy is a significant issue that wastes plenty of storage space in the cloud-fog storage integrated

environments. Most of the current techniques, which mainly center around the static scenes, for example, the

backup and archive systems, are not appropriate because of the dynamic nature of data in the cloud or integrated

cloud environments. This problem can be effectively reduced and successfully managed by data deduplication

techniques, eliminating duplicate data in cloud storage systems. Implementation of data deduplication (DD) over

encrypted data is always a significant challenge in an integrated cloud-fog storage and computing environment to

optimize the storage efficiently in a highly secured manner. This paper develops a new method using Convergent

and Modified Elliptic Curve Cryptography (MECC) algorithms over the cloud and fog environment to construct

secure deduplication systems. The proposed method focuses on the two most important goals of such systems. On

one side, the redundancy of data needs to be reduced to its minimum, and on the other hand, a robust encryption

approach must be developed to ensure the security of the data. The proposed technique is well suited for

operations such as uploading new files by a user to the fog or cloud storage. The file is first encrypted using the

Convergent Encryption (CE) technique and then re-encrypted using the Modified Elliptic Curve Cryptography

(MECC) algorithm. The proposed method can recognize data redundancy at the block level, reducing the

redundancy of data more effectively. Testing results show that the proposed approach can outperform a few state-

of-the-art methods of computational efficiency and security levels.

Keywords: Convergent encryption (CE), Modified elliptic curve cryptography (MECC), Edge computing, Integrated

cloud and fog networks, Hash tree. Secure hash algorithm (SHA)

Introduction

The data gathered through different sources and the

Emergence of the Internet of Things in all aspects of ap-

plications increases data volume from petabytes to yotta-

bytes, necessitating cloud computing paradigm and fog

networks to process and store the data. Cloud comput-

ing (CC) produces a network-centered environment vi-

sion to users which provides access to the internet, to a

collective pool of programmable grids, servers, software,

storage, and amenities that could be quickly freed, with

less supervision and communication to the cloud service

provider. Data processing in all ways is carried out

remotely in the cloud server with the help of internet

connectivity. Fog computing provides the local infra-

structure to process the application locally and then

connects to the cloud. The fog environment reduces

delay when compared to the application connected to

the cloud for processing. The application developed to

process and store the data needs end-to-end security,

communication protocols, and resources to access infor-

mation stored in the cloud and fog environments. Smart

applications are built with the help of sensors and actua-

tors, and the data is stored in the cloud environment;

and edge computing facilities are also used along with

the local infrastructure, termed as fog, to process the

data without delay. Internet of Things does not end up

with an information system but tries to build a cyber-

physical system [1]. Edge computing provisions the

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: Abbasi@basu.ac.ir
4Department of Computer Engineering, Engineering Faculty, Bu-Ali Sina

University, Hamedan 65178-38695, Iran

Full list of author information is available at the end of the article

Journal of Cloud Computing:
Advances, Systems and Applications

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications

 (2020) 9:61

https://doi.org/10.1186/s13677-020-00214-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00214-6&domain=pdf
http://orcid.org/0000-0002-5373-5778
http://creativecommons.org/licenses/by/4.0/
mailto:Abbasi@basu.ac.ir

feature of mobility for the user to process and store data

on the move. Mobile edge computing provides seamless

integrity among multiple applications, vendors, mobile

subscribers, and enterprises [2].

Sending data to the cloud was the bulbous trend in

the past decades, which is now changing to fog, edge,

and cloudlet due to delay-sensitive and context-aware

services. To address these challenges, the centralized

cloud computing paradigm is moving to distributed edge

cloud computing and this makes computing transparent

[3]. Fog computing is an attractive solution to the

distributed edge cloud computing for any type of appli-

cations and benefits in low-latency, mobility, and geo-

distributed services distinguished from the cloud with

several access control schemes [4–6]. When fog comput-

ing is considered the one-step solution for reducing

computation tasks’ latency, some schemes are described

for offloading the task focusing on reducing the latency,

energy efficiency, and reliability [7]. Admission control,

computational resource allocation and power control are

some of the critical parameters considered before off-

loading the intensive task from the cloud. The perform-

ance can be further improved only by the efficient

resource allocation methods available for cloud and fog

environment, thus increasing the reliability and transpar-

ency in application processing [8]. Resource allocation in

a period allows the moving user to offload the task to

the nearest cloudlet and extend the services from the fog

environment. This type of offloading reduces delays in

computational tasks with more significant mobility fea-

tures [9].

Various application services impulse the possibility of

edge computing by offering cloud capabilities at the net-

work edge closer to mobile devices. Edge computing is

an encouraging paradigm to decide several vital chal-

lenges in the Internet of Things in all domains, such as

delay, low bandwidth, energy issues, latency in transmis-

sion, and data security and privacy [10, 11]. A compre-

hensive study of information security and privacy

requirements, tasks, and tools in edge computing, cloud

computing, fog computing and the cryptography-based

technologies for solving security and privacy issues are

analyzed before incorporating the cloud and fog net-

works [12, 13]. Hybrid encryption techniques using AES

in CBC Mode and HMAC-SHA-1 (Hash-based Message

Authentication Code) with lightweight procedures im-

prove the robust encryption at user-level security in a

cloud computing environment [14]. There are many

more technical developments, but they exhibit other is-

sues that have to be resolved, encompassing processing

and storing data, securing sensitive information, and

protecting user privacy [15].

Data deduplication (DD) stands as a universal data re-

dundancy removal technology. DD primarily classifies

identical data, stores one copy of data, and substitutes

other similar copies with undirected references instead

of keeping full copies [16]. DD involves three major pro-

cesses: a) chunking, b) hashing, and c) comparing hashes

to recognize redundancy. The chunking process breaks a

file into many smaller files termed as chunks. The chunk

level deduplication method ameliorates the storage of

unique chunks by contrasting it with all incoming

chunks for duplicate recognition [17]. Once the data is

being uploaded to the cloud, the owner could not assure

the security of the data in remote storage systems. Per-

forming encryption is necessary to make data secure;

simultaneously, performing deduplication is imperative

for attaining optimized storage. Hence, encryption and

deduplication should be done simultaneously for ensur-

ing optimized and secured storage [18]. DD could be

employed within a file, across files, across applications,

or across clients over a particular period of time. It is

utilized in archiving and backing up the file systems, da-

tabases with low change rate, Network Attached Storage,

VMware environment, Local Area Network, and Storage

Area Network. By adopting them, the key utilized for en-

cryption and also decryption is itself attained from the

data and would resist further attacks [19].

This paper proposes a secure data deduplication sys-

tem using convergent and MECC algorithms over the

integrated cloud-fog-edge environment. The convergent

encryption appears to be the right choice for the imple-

mentation of deduplication with encryption in the cloud

storage domain. But there is the possibility of dictionary

attacks concerning this scheme as the encryption key is

formed using the plaintext. An intruder who has gained

access to the storage can compare the ciphertexts pro-

duced after the encryption of distinguished plaintext

values from a dictionary where the ciphertexts are being

stored. Moreover, even if encryption keys are encrypted

with the users’ private keys and stored somewhere else,

the cloud provider, who has no access to the encryption

key but has access to the encrypted chunks (blocks), can

efficiently perform offline dictionary attacks and deter-

mine the expected data. Hence, to solve the above prob-

lem, the encrypted and deduplicated data using the CE

are once again encrypted by the proposed modified ellip-

tic curve cryptography (MECC) technique. The com-

bined CE and MECC technique ensure efficient

deduplication and secured encryption of cloud-fog-edge

storage with less computational overhead compared to

existing data deduplication techniques.

The significant contributions of this paper can be

summarized as follows.

� A new method of constructing a secure

deduplication (DD) system using Convergent and

Modified Elliptic Curve Cryptography (MECC)

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:61 Page 2 of 12

algorithms over the cloud and fog/edge

environment.

� Performance evaluation of the proposed technique,

based on its computational efficiency and level of

security is done.

� We validated the proposed deduplication

technique’s ability to recognize data redundancy in

the level of blocks, which can reduce the

redundancy of data more effectively to minimize the

storage space in the cloud environment.

The draft structure of the manuscript is arranged as

follows: section 2 surveys the associated works, section 3

provides the proposed methodology, section 4 explores

the tentative outcome and section 5 contains the conclu-

sion and scope for future work.

Related works

The secure deduplication system abandons the duplicate

copies of data, and it also proffers security to the data.

Convergent Encryption (CE) is utilized to encrypt or de-

crypt the data to the file level with a convergent key that

is generated as the file content itself [20]. After encrypt-

ing such files, the cloud user just holds the encryption

key and outsources the ciphertext (CT) to the CS to save

storage space. By updating the CT saved in the central

cloud and user-level public keys without knowing the

private keys, consistent privacy is rendered [21].

Kwonet al [22]. proffered a secure deduplication frame-

work with user revocations. The system comprises of ‘3’

phases, namely: upload, revocation, and download. The

proffered framework is executed via a privilege-centric

re-encryption methodology over convergent-encryption.

Liet al [23]. recommended Dekey, a construction

wherein users need not handle any keys but rather se-

curely disseminate the convergent key shares across

multi servers. Dekey upholds the block-level and file-

level deduplication. File-level deduplication eradicated

the storage of any redundant files, and block-level dedu-

plication separated the files into a smaller variable or

fixed-sized blocks and wiped out the storage of any re-

dundant blocks. Security analysis delineated that Dekey

was secure. The Dekey centric Ramp secret centered

framework elucidated that Dekey incurred limited over-

head in factual environments.

Kwon et al. [24] recommended a deduplication frame-

work at the server-side for the encrypted data. It permits

the Cloud Server to control the access to the outsourced

data even while the ownership altered dynamically with

the secured ownership group key distributions and

exploited randomized CEs. It can avert data leakage to

the revoked users though they formerly owned the data

and even to the cloud storage. The system assures data

integrity like the tag inconsistency attack. The efficiency

estimation results corroborated that the scheme was al-

most as effectual as the former framework, while the

extra overhead in computations was insignificant.

Yuanet al [25]. developed a primitive termed and a fully

randomized framework (R-MLE2). It comprises of ‘2’

schemes: i) static and ii) dynamic, where the latter one

permitted tree adjustment by elevating specific computa-

tion cost. The primary trick of the framework was to

utilize the interactive protocol centered on dynamic or

static decision trees. The security and performance ana-

lyses evinced that the frameworks were Path-PRV-CDA2

secured which attained multiple orders of magnitude

and high-level performance for the data equality tests,

more than the R-MLE2 framework, when the count of

data items was comparatively large. Han et al. [26] pro-

pounded a multi-bit secret channel in the cloud storage

service, and also recommended a framework that

attained good security and high-level data transmission

rate. In the recommended algorithm, the data upload

was simplified via multi-bit file depiction. It eradicated

the need to upload “0” to diminish the number of

uploaded files, thereby made it hard for the attacker to

spot the covert channel and also effectually ameliorated

the security of cloud user data upload. Tawalbeh et al.

[27] reconsidered the security and privacy for cloud and

fog environments with the case study of health care sys-

tems using fog simulator and enhanced the performance

and trust among the end-users. Similarity and emer-

gence centered indexing for high-performance dedupli-

cation of data was introduced by Zhanget al [28]. which

provides quick responses to fingerprint queries. Houet al

[29]. suggested to check the truthfulness of cloud data

beneath the condition that the remote server stores only

a single copy of the same file from different users.

Deduplication has confirmed to achieve great space

and cost investment, and a higher number of distributed

storage suppliers are currently embracing it. Deduplica-

tion can weaken capacity needs by up to 90–95% for

corroboration [30]. As more users outsource their data

to remote server storage, the latest data breach occur-

rences make end-to-end encryption increasingly desir-

able. Enhanced Secure Threshold Data Deduplication

Pattern for remote storage helps to maintain end-to-end

encryption [31]. A flexible admission control tool called

Proxy re-encryption (PRE) has been recently hosted.

PRE is an effective tool for creating cryptographically

imposed admission control systems [32]. These schemes

show competence in computational cost and ciphertext

size.

A confidentiality-preserving deduplication technique for

remote storage in public cloud services is discussed in

[33]. The authors have proposed a secure file deduplica-

tion mechanism on the encrypted file, supporting public

reliability and auditing in the deduplication of the cloud

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:61 Page 3 of 12

storage system. A chaotic fuzzy transformation method is

projected to provision protected fuzzy keyword indexing,

storage, and query for fog systems that aid in raising the

privacy and confidentiality of the end-user data and also

by saving the resources of the mobile user devices [34]. A

comprehensive study on various security problems associ-

ated with outsourced data on the cloud and their existing

solutions is described using access control models for the

cloud computing environment [35].

A framework to mine structures statically and

dynamically from malware that imitates the perform-

ance of its code, such as the Windows Application

Programming Interface (API) classifies malware with

high accuracy and low false alarm rates [36]. The

public-key-based schemes obviate the security vulner-

ability inherent to symmetric-key-based μTESLA-like

schemes. But their signature verification is time-

consuming [37].

Fig. 1 a Uploading the file into the cloud server using the proposed system. b Downloading the file from the cloud server using the

proposed system

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:61 Page 4 of 12

Proposed secure deduplication approach

Cloud Service Provider provides many resources to users

as a service, for instance, vastly available storage space.

Managing the ever-elevating volumes of data in the cloud

is a noteworthy task. The DD technique makes data

management more scalable in CC. But security is the main

problem in Data Deduplication. To overcome this

problem, this paper proposes a secure data deduplication

system using convergent and MECC algorithms over the

integrated cloud-fog environment.

The proposed methodology is analyzed in four ways, i.e.,

a) when a new user tries to upload a new file, b) when the

same user tries to upload the same file c) when different

users try to upload the same file to the cloud server and d)

when the users try to download the file. The proposed

methodology could be expounded in detail using the block

diagram evinced in Fig. 1a and b.

When a new user tries to upload a new file

Initially, the new user browses a file and uploads it to the

CS. Then, the CS generates the hash code (HC) key for

the appropriate file using SHA 512 algorithm. The input

file is then appended with padding and fixed 128bit length

field. The enlarged message is partitioned as blocks. A

64-bit word is derived as of the current message block

utilizing 8 constants based on the square root of the first 8

prime numbers. In the subsequent level, a 512-bit buffer is

updated. SHA-512 operation can be comprehended using

Fig. 2, and then, the original input file is split into blocks.

Next, tag values are assigned for each block and hash code

(HC) is created for each tag value of a particular block

utilizing the same SHA 512 algorithm. Cloud server (CS)

verifies whether the hashtag is available in the HT. If it is

unavailable, then the hash tree is generated for Proofs of

Ownership (PoW) grounded on the hashtag value. Next,

the file is encrypted using a convergent encryption (CE)

method. The CE takes the HC key of the file as input.

Next, the convergent based encrypted file is again

encrypted utilizing the MECC algorithm.

The encryption process is done for securely uploading

the data to the CS. The CE and MECC based encryption

of the particular file is expounded as follows.

Convergent encryption (CE)

In data deduplication, CE improves data confidentiality.

The convergence key (CK) is denoted as the generated

hash code (HC) value of the file. Using this CK, all blocks

of data copy are encrypted. To detect the duplicate file in

the CSP, a tag will be derived for each data block. If two

data files are the same, the same tags will be provided.

Before storing the data file to the CSP, its tag would be

forwarded to the CSP for detecting duplicate data files. At

last, this encrypted data block, along with its tag, is saved

in the CSP. The phases in Convergent encryption (CE) are

described as follows.

Fig. 2 Structure of the SHA-512 algorithm [35]

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:61 Page 5 of 12

Convergent encryption

During encryption, the original file (f) and κh are given as

input for the encryption algorithm and Ey is the encryption

function. Finally, this encryption algorithm gives ciphertext

(Ct) as output.

Ct ¼ Ey f ; κhð Þ ð1Þ

Convergent decryption

During decryption, the encrypted file f or Ct is inputted to

the decryption algorithm. Finally, this decryption algorithm

outputs f and Ct.

f ¼ Dy Ct ; κhð Þ ð2Þ

The CE algorithm gives better performance when com-

pared with other existing methods, but it has a limitation

as the CE is not secure since it may be affected by the dic-

tionary attack. To avoid this, the proposed methodology

once again encrypts the above convergent encrypted file

utilizing the Modified ECC algorithm, which is discussed

as follows.

Elliptic Curve Cryptography (ECC) algorithm is

centered on a curve with specific base points and a prime

number function. This function is utilized as a maximum

limit. ECC is a kind of algorithm that is used in the

implementation of public-key cryptography. The mathem-

atical model of the ECC with g and e as integers is given

below.

w2 ¼ v3 þ gvþ e; 4g3 þ 27e2≠0 ð3Þ

In a cryptographic procedure, the potency of the

encryption technique depends mainly on the mechanism

that is deployed for the key generation. In the recom-

mended system, three types of keys have to be generated.

The main step is to generate the public key (αk) from the

server and encrypting it. In the next step, a private key

(βk) is produced on the server-side, and the message is

decrypted. The last step is to generate a secret key (οk)

from αk, βk, and point on the curve (ρc). Using the

succeeding equation, the αk is generated,

αk ¼ βk�ρc ð4Þ

The eq. (5) elucidates οk generation,

οk ¼ αk�βk�ρc ð5Þ

After οk generation, the file is encrypted. This

encrypted file contains two CTs, and mathematically,

they are depicted as,

C1 ¼ K≔1; 2;…; n − 1ð Þð Þ�ρc
� �

þ οk ð6Þ

C2 ¼ f þ K≔1; 2;…; n − 1ð Þð Þ�αkð Þð Þ þ οk ð7Þ

Here, C1 and C2 represents the two CTs, K is the random

number generated in (1, ..., (n − 1)) interval. During

encryption, οk is added to the CTs. During decryption, οk is

subtracted with the two CTs, and the original file f is given

by,

f ¼ C2 − βk
� �

�C1

� �

− οk
� �

ð8Þ

When the same user tries to upload the same file

When the same user tries to upload the same file again,

the CS calculates the hash value with the CK by utilizing

the SHA 512 algorithm. Next, for every single input file,

the binary depiction of the file is split into fixed-sized

blocks. The size of the data block finds the level of granu-

larity of deduplication. As the data block size decreases,

the level of deduplication increases. Meanwhile, it might

bring complex metadata management. The proposed

approach considered the file block-sizes of 5MB, 10MB,

15MB, 20MB, and 25MB. Then, the tag key is created

for each of the divided blocks. Next, the hash value is

computed for all the tag keys utilizing the same SHA-512

algorithm.

In the uploading phase, the CS checks the hashtag (HT)

for a particular input file. If the hashtag value of the input

file is in that HT, then the CS queries the path of the hash

tree to the users. If a user sends the correct path, then the

CS verifies the user id. If the id is the same, then the CS

does not store the file again. Generally, the hash tree path

has the succeeding format,

P H tð Þ ¼ RLL;RLR; etc:f g ð9Þ

Where ,P(Ht) denotes the path of the hash tree, RLL

represents the “Root, Left, Left”, RLR, denotes the “Root,

Left, Right.” The leaf node is not added to the hashed tree

path. The same user trying to upload the same file is

mathematically denoted as,

Su →
Uploads

S f CS →
Informs

A

� �

ð10Þ

Where, Su denotes the same user, Sf represents the

same file, and CS means the cloud server, which informs

the file is previously available (A).

When different users try to upload the same file to the

cloud server

When different users try to upload the same files to the

CS, the file is split into several blocks, and a tag is created

for checking the duplicate data copies in CSP. Then, each

tag is converted into HC, and it is called a hashtag value.

The CS checks the HT for the input file grounded on the

hashtag value. If the hashtag value is available in the HT,

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:61 Page 6 of 12

then the CS asks the path of the hash tree of the input file.

If a user sends the correct path, then the CS verifies the

user id. If the id is different, then the CS sends the refer-

ence link of the particular stored file’s location to the user.

Different users trying to upload the same file to the CS is

expressed as,

Du →
Uploads

S f CS →
asks

P H tð Þ
� �

ð11Þ

P H tð Þmatched→ CS →
Send

Rl fð Þ
� �

ð12Þ

P H tð ÞNot matched→ CS →
Informed

Iu

� �

ð13Þ

Where Du denotes the different users. Rl is the reference

link and Iu denotes an invalid user.

When users try to download the file

Here, the user sends the tag value of the specified file.

Then, the CS generates the hash value utilizing the

SHA512 algorithm. The CS now checks the hashtag value,

whether it is in the HT. If the value is available, then the

CS lets the user download the file, else the CS considers

them as an invalid user. It is mathematically denoted as,

H Tð Þmatched→Du ↓ð Þ ð14Þ

H Tð ÞNotmatched→Iu ð15Þ

Where H(T) denotes the hashtag value. Pseudocode for

the proposed secure deduplication system is evinced below,

Result and discussions

The implemented deduplication methodology is de-

ployed in the JAVA programming environment with the

following system configuration. The system performance

is analyzed, centered on different file sizes varying from

like 5MB to 25MB with an increase of 5MB after each

iteration. In this section, the performance scrutiny is

done on the proposed system. First, the performance re-

vealed by the proposed MECC security algorithm is con-

trasted to the existing security algorithms, say, Diffie-

Hellman (DH), ECC and Rivest Shamir Adelman (RSA)

in respect of encryption time (Et), decryption time (Dt),

key generation time, and security analysis.

Performance analysis of proposed encryption technique

Encryption time

Et is considered as the time that an encryption algorithm

consumes to generate encrypted data as of the inputted

data. Encryption time is computed as the difference be-

tween the encryption ending time and encryption start-

ing time. It is evaluated as,

Table 1 Performance Comparison of Proposed MECC and

Existing Techniques in terms of Encryption Time

File
Size
in
MB

Encryption Time (sec)

Proposed MECC DH Existing ECC Existing RSA

5 6.21 10.22 14.47 12.44

10 10.04 19.64 22.56 21.76

15 15.54 28.32 28.00 30.35

20 21.0 36.33 36.65 35.61

25 27.55 46.29 44.32 47.28

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:61 Page 7 of 12

Et ¼ Ee − Es ð16Þ

Where Et is the encryption time, Ee is the encryption

ending time and Es is the encryption starting time.

Decryption time

Dt is defined as the difference between the decryption end-

ing time and decryption starting time. It is evaluated as,

Dt ¼ De −Ds ð17Þ

where Dt is the decryption time, De is the decryption

ending time and Ds is the decryption starting time.

Security

Security is highly essential for cloud storage. The secur-

ity level is computed by dividing the hacked data with

the number of the original text. The security level of the

system is expressed as,

S ¼ Hd

.

Od
ð18Þ

Table 2 Performance Comparison of Proposed MECC and

Existing Techniques in terms of Decryption Time

File Size
in MB

Decryption Time (sec)

Proposed MECC DH Existing ECC Existing RSA

5 5.28 12.21 13.50 11.51

10 10.22 18.11 22.66 20.53

15 16.74 26.43 29.43 28.54

20 20.36 34.56 38.64 36.87

25 25.44 45.44 45.81 48.43

Fig. 3 a Performance comparison of proposed MECC with existing techniques in terms of encryption time. b Performance comparison of

proposed MECC with existing techniques in terms of encryption time

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:61 Page 8 of 12

where S denotes the security level, Hd is a hacked data,

and Od denotes the number of original data.

Tables 1 and 2 elucidate the performance comparison

of proposed MECC with the prevailing DH, RSA, and

ECC techniques concerning Et and Dt. The comparison

is performed, centered on the uploaded file size. The Et
and Dt are denoted in seconds (s). The proposed MECC

takes 6 s to encrypt the 5mb file, whereas the existing

DH, ECC, and RSA take 10, 14, and 12 s to encrypt the

same 5mb file, which is high when contrasted to the

proposed MECC. Similarly, for the remaining file sizes

(10 to 25MB), the proposed method takes less time to

encrypt the data. For the same 5Mb file, the proposed

MECC takes 5 s to decrypt the data, but the prevailing

DH, RSA, and ECC takes 12, 13.5, and 11.5 s to decrypt

the data. So, it is inferred that the suggested MECC

Table 3 Performance Comparison of Proposed MECC and Existing Techniques in terms of Key Generation Time and Security Level

Sl. No Encryption Algorithms Key Generation Time (ms) Security (%)

1 Proposed MECC 425.21 96

2 ECC 612.32 90

3 RSA 765.54 87.5

4 DH 856.33 85

Fig. 4 a Performance comparison of proposed MECC with existing techniques in terms of key generation time. b Performance comparison of

proposed MECC with existing techniques in terms of security level

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:61 Page 9 of 12

algorithm takes less Et and Dt when contrasted to the

remaining techniques. Tables 1 and 2 are graphically

plotted and are displayed in Fig. 3a and b.

Fig. 3a and b analyze the performance proffered by

the proposed MECC approach with other existing

techniques. The Et and Dt time varies centered on

the file sizes. Here, the file sizes range from 5mb to

25mb. For 10mb file size, the Et and Dt of the MECC

are 10s, but the existing DH, RSA, and ECC take 19

s, 21 s, and 22 s for encryption and 18 s, 20s, and 22 s

for decryption. Similarly, for all file sizes, the pro-

posed MECC takes lesser Et and Dt. So, it is deduced

that the MECC attains the best performance when

contrasted to others.

Table 3 compared the performance rendered by the

proposed MECC technique with the prevailing

methods concerning the key generation time and se-

curity level. The proposed MECC takes 425 ms to

generate a key, whereas the existing ECC, RSA, and

DH methods take 612 ms, 765 ms, and 856 ms to gen-

erate a key. Here, the existing Diffie-Hellman (DH)

method takes more time for key generation. But the

proposed MECC takes less time to generate a key

when contrasted to other techniques. Furthermore,

the security level of the proposed and existing

methods is compared with existing techniques. The

proposed MECC gives the highest security value

(96%), but the existing ECC, RSA, and DH methods

give 90%, 87.5%, and 85% of security. So, it is inferred

that the proposed MECC proffers high performance

for both key generation and security. Table 2 is

graphically illustrated as displayed in Fig. 4a for the

Key Generation Time and Fig. 4b for the Security

Level.

Performance analysis of proposed deduplication

technique

The proposed deduplication scheme is contrasted to

existing techniques such as the Chinese Remainder

Theorem (CRT) centered secret sharing and Smart

Deduplication for Mobile (SDM) in respect of dedu-

plication rate, which is evinced in Fig. 5. Here, the

proposed deduplication scheme is contrasted to other

techniques concerning the deduplication rate and tree

generation time.

Figure 5 contrasts the performance of the proposed

deduplication with the prevailing methods, say CRT and

SDM. The deduplication rate varies centered on the file

size. For the 5mb file, the deduplication rate of the pro-

posed method is 26%, whereas the existing SDM and

CRT give 23% and 24%, which are relatively low when

contrasted to the proposed method. For the 25mb file,

the existing SDM and CRT give 23.5% and 24.2% of the

Fig. 5 Performance analysis of the proposed deduplication scheme with existing techniques in terms of deduplication rate

Fig. 6 Performance comparison of the proposed hash tree with

existing binary tree

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:61 Page 10 of 12

deduplication rate, but the deduplication rate of the pro-

posed method is 26.2%. Similarly, for other file sizes

such as 10mb, 15mb, and 20mb, the proposed dedupli-

cation scheme gives superior results contrasted to CRT

and SDM. The performance comparison of the proposed

hash tree used in deduplication with the existing binary

tree in respect of tree generation time is evinced in

Fig. 6.

Figure 6 contrasts the performance shown by the pro-

posed hash tree with the existing binary tree regarding

tree generation time. The proposed hash tree takes 245

ms to generate a tree, whereas the existing binary tree

takes 440 ms to generate a tree, which is high when con-

trasted to the proposed hash tree generation approach.

So it is deduced that the proposed hash tree approach

shows high-level performance compared to binary tree

generation methodology.

Conclusion

Deduplication is the utmost notable Data compression

methodology. Many existing methods introduced differ-

ent deduplication methods, but they provided low secur-

ity. This paper proposed a secure deduplication system

using convergent and MECC algorithms over the cloud-

fog environment. The proposed method is analyzed in

four ways: a) when new users try to upload the new file,

b) when the same user tries to upload the same file, c)

when different users try to upload the same file, and d)

when different users try to download the file. The per-

formance of the recommended system was analyzed by

using various file sizes ranging from 5MB to 25MB,

with an incremental of 5MB each in every iteration. The

performance analysis corroborated that the recom-

mended system has 96% security, which is a promising

result and higher than the other existing encryption

methods.

The assessment result elucidates that the recom-

mended system is extremely secure and effective for data

deduplication for an integrated cloud environment. This

proposed model may be extended in the future for any

kind of Internet of Things (IoT) applications that use dy-

namic resources management at the edge environment.

It can also be used in building cyber-physical systems by

studying the different use cases having different payload

with the variant data formats. The proposed technique

would certainly be a promising model for increasing the

security and optimizing the computation time and stor-

age in an integrated environment such as IoT or cyber-

physical systems.

Abbreviations

DD: Data deduplication; MECC: Modified Elliptic Curve Cryptography;

PoW: Proofs of Ownership; CE: Convergent Encryption; SHA: Secure Hash

Algorithm; CS: Cloud Server; CC: Cloud Computing; HMAC: Hash-based

Message Authentication Code; CT: Ciphertext; PRE: Proxy re-encryption;

ECC: Elliptic Curve Cryptography; CRT: Chinese Remainder Theorem (CRT);

SDM: Smart Deduplication for Mobile; DH: Diffie Hellman Algorithm

Acknowledgements

Authors thank editor and reviewers for their time and consideration.

Authors’ contributions

All authors have participated in the design of the proposed method and

practical implementation. SPG and MRK have coded the method. SPG, NRK,

VGM, VP, MA and MRK have completed the first draft of this paper. All

authors have read and approved the manuscript.

Authors’ information

Not applicable.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1School of Information Technology and Engineering, Vellore Institute of

Technology, Vellore 632014, India. 2Department of Computer Science and

Engineering, SCMS School of Engineering and Technology, Ernakulum, Kerala

683576, India. 3Department of Mechanical Engineering, SCMS School of

Engineering and Technology, Ernakulum, Kerala 683576, India. 4Department

of Computer Engineering, Engineering Faculty, Bu-Ali Sina University,

Hamedan 65178-38695, Iran. 5Department of Computer Engineering, Persian

Gulf University, Bushehr 75169-13817, Iran. 6Department of Electrical and

Electronic Engineering, Shiraz University of Technology, Shiraz 71555-313,

Iran.

Received: 23 March 2020 Accepted: 5 November 2020

References

1. Lohstroh M, Kim H, Eidson JC et al (2019) On enabling Technologies for the

Internet of important things. IEEE Access 7:27244–27256. https://doi.org/10.

1109/ACCESS.2019.2901509

2. Abbas N, Zhang Y, Taherkordi A, Skeie T (2018) Mobile edge computing: a

survey. IEEE Internet Things J 5:450–465. https://doi.org/10.1109/JIOT.2017.

2750180

3. Ren J, Zhang D, He S et al (2019) A survey on end-edge-cloud orchestrated

network computing paradigms: transparent computing, mobile edge

computing, fog computing, and cloudlet. ACM Comput Surv:52. https://doi.

org/10.1145/3362031

4. Zhang P, Liu JK, Richard Yu F et al (2018) A survey on access control in fog

computing. IEEE Commun Mag 56:144–149. https://doi.org/10.1109/MCOM.

2018.1700333

5. Menon VG, Jacob S, Joseph S, Almagrabi AO (2019) SDN powered

humanoid with edge computing for assisting paralyzed patients. IEEE

Internet Things J:1. https://doi.org/10.1109/jiot.2019.2963288

6. Menon VG, Prathap J (2017) Vehicular fog computing. Int J Veh Telemat

Infotain Syst 1:15–23. https://doi.org/10.4018/ijvtis.2017070102

7. Liu J, Zhang Q (2018) Offloading schemes in Mobile edge computing for

ultra-reliable low latency communications. IEEE Access 6:12825–12837.

https://doi.org/10.1109/ACCESS.2018.2800032

8. Li S, Zhang N, Lin S et al (2018) Joint admission control and resource

allocation in edge computing for internet of things. IEEE Netw 32:72–79.

https://doi.org/10.1109/MNET.2018.1700163

9. Nadesh RK, Aramudhan M (2018) TRAM-based VM handover with dynamic

scheduling for improved QoS of cloud environment. Int J Internet Technol

Secur Trans:8. https://doi.org/10.1504/IJITST.2018.093340

10. Ning Z, Kong X, Xia F et al (2019) Green and sustainable cloud of things:

enabling collaborative edge computing. IEEE Commun Mag 57:72–78.

https://doi.org/10.1109/MCOM.2018.1700895

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:61 Page 11 of 12

https://doi.org/10.1109/ACCESS.2019.2901509
https://doi.org/10.1109/ACCESS.2019.2901509
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1145/3362031
https://doi.org/10.1145/3362031
https://doi.org/10.1109/MCOM.2018.1700333
https://doi.org/10.1109/MCOM.2018.1700333
https://doi.org/10.1109/jiot.2019.2963288
https://doi.org/10.4018/ijvtis.2017070102
https://doi.org/10.1109/ACCESS.2018.2800032
https://doi.org/10.1109/MNET.2018.1700163
https://doi.org/10.1504/IJITST.2018.093340
https://doi.org/10.1109/MCOM.2018.1700895

11. Rajesh S, Paul V, Menon VG, Khosravi MR (2019) A secure and efficient

lightweight symmetric encryption scheme for transfer of text files between

embedded IoT devices, pp 1–21

12. Zhang J, Chen B, Zhao Y et al (2018) Data security and privacy-preserving in

edge computing paradigm: survey and open issues. IEEE Access 6:18209–

18237. https://doi.org/10.1109/ACCESS.2018.2820162

13. Nadesh RK, Srinivasa Perumal R, Shynu PG, Sharma G (2018) Enhancing

security for end users in cloud computing environment using hybrid

encryption technique. Int J Eng Technol 7

14. Abbasi M, Rafiee M, Khosravi MR et al (2020) An efficient parallel genetic

algorithm solution for vehicle routing problem in cloud implementation of

the intelligent transportation systems. J Cloud Comput 9. https://doi.org/10.

1186/s13677-020-0157-4

15. Subramanian N, Jeyaraj A (2018) Recent security challenges in cloud

computing. Comput Electr Eng 71:28–42. https://doi.org/10.1016/j.

compeleceng.2018.06.006

16. Jiang S, Jiang T, Wang L (2017) Secure and efficient cloud data

Deduplication with ownership management. IEEE Trans Serv Comput 12:

532–543. https://doi.org/10.1109/TSC.2017.2771280

17. Yoon MK (2019) A constant-time chunking algorithm for packet-level

deduplication. ICT Express 5:131–135. https://doi.org/10.1016/j.icte.2018.

05.005

18. Wang L, Wang B, Song W et al (2019) Offline privacy preserving proxy re-

encryption in mobile cloud computing. Inf Sci (Ny) 71:38–43. https://doi.

org/10.1016/j.jksuci.2019.05.007

19. Wang L, Wang B, Song W, Zhang Z (2019) A key-sharing based secure

deduplication scheme in cloud storage. Inf Sci (Ny) 504:48–60. https://doi.

org/10.1016/j.ins.2019.07.058

20. Kwon H, Hahn C, Kim D, Hur J (2017) Secure deduplication for multimedia

data with user revocation in cloud storage. Multimed Tools Appl 76:5889–

5903. https://doi.org/10.1007/s11042-015-2595-4

21. Akhila K, Ganesh A, Sunitha C (2016) A study on Deduplication techniques

over encrypted data. Procedia Comput Sci 87:38–43. https://doi.org/10.

1016/j.procs.2016.05.123

22. Kwon H, Hahn C, Kang K, Hur J (2019) Secure deduplication with reliable

and revocable key management in fog computing. Peer-to-Peer Netw Appl

12:850–864. https://doi.org/10.1007/s12083-018-0682-9

23. Li J, Chen X, Li M et al (2014) Secure deduplication with efficient and

reliable convergent key management. IEEE Trans Parallel Distrib Syst 25:

1615–1625. https://doi.org/10.1109/TPDS.2013.284

24. Koo D, Hur J (2018) Privacy-preserving deduplication of encrypted data with

dynamic ownership management in fog computing. Futur Gener Comput

Syst 78:739–752. https://doi.org/10.1016/j.future.2017.01.024

25. Liu J, Wang J, Tao X, Shen J (2017) Secure similarity-based cloud data

deduplication in ubiquitous city. Pervasive Mob Comput 41:231–242.

https://doi.org/10.1016/j.pmcj.2017.03.010

26. Li S, Xu C, Zhang Y (2019) CSED: client-side encrypted deduplication

scheme based on proofs of ownership for cloud storage. J Inf Secur Appl

46:250–258. https://doi.org/10.1016/j.jisa.2019.03.015

27. Tawalbeh LA, Saldamli G (2019) Reconsidering big data security and privacy

in cloud and mobile cloud systems. J King Saud Univ - Comput Inf Sci.

https://doi.org/10.1016/j.jksuci.2019.05.007

28. Zhang P, Huang P, He X et al (2017) Resemblance and mergence based

indexing for high performance data deduplication. J Syst Softw 128:11–24.

https://doi.org/10.1016/j.jss.2017.02.039

29. Hou H, Yu J, Hao R (2019) Cloud storage auditing with

deduplication supporting different security levels according to data

popularity. J Netw Comput Appl 134:26–39. https://doi.org/10.1016/j.

jnca.2019.02.015

30. Khanaa V, Kumaravel A, Rama A (2019) Data deduplication on encrypted big

data in cloud. Int J Eng Adv Technol 8:644–648. https://doi.org/10.35940/

ijeat.F1188.0886S219

31. Stanek J, Kencl L (2018) Enhanced secure Thresholded data Deduplication

scheme for cloud storage. IEEE Trans Dependable Secur Comput 15:694–

707. https://doi.org/10.1109/TDSC.2016.2603501

32. Zeng P, Choo KKR (2018) A new kind of conditional proxy re-encryption for

secure cloud storage. IEEE Access 6:70017–70024. https://doi.org/10.1109/

ACCESS.2018.2879479

33. Wu J, Li Y, Wang T, Ding Y (2019) CPDA: a confidentiality-preserving

Deduplication cloud storage with public cloud auditing. IEEE Access 7:

160482–160497. https://doi.org/10.1109/ACCESS.2019.2950750

34. Awad A, Matthews A, Qiao Y, Lee B (2018) Chaotic searchable encryption

for Mobile cloud storage. IEEE Trans Cloud Comput 6:440–452. https://doi.

org/10.1109/TCC.2015.2511747

35. Shynu P G, John Singh K (2016) A comprehensive survey and analysis on

access control schemes in cloud environment. Cybern Inf Technol 16:19–38.

https://doi.org/10.1515/cait-2016-0002

36. Alazab M (2015) Profiling and classifying the behavior of malicious codes. J

Syst Softw 100:91–102. https://doi.org/10.1016/j.jss.2014.10.031

37. Benzaid C, Lounis K, Al-Nemrat A et al (2016) Fast authentication in wireless

sensor networks. Futur Gener Comput Syst 55:362–375. https://doi.org/10.

1016/j.future.2014.07.006

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

P. G. et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:61 Page 12 of 12

https://doi.org/10.1109/ACCESS.2018.2820162
https://doi.org/10.1186/s13677-020-0157-4
https://doi.org/10.1186/s13677-020-0157-4
https://doi.org/10.1016/j.compeleceng.2018.06.006
https://doi.org/10.1016/j.compeleceng.2018.06.006
https://doi.org/10.1109/TSC.2017.2771280
https://doi.org/10.1016/j.icte.2018.05.005
https://doi.org/10.1016/j.icte.2018.05.005
https://doi.org/10.1016/j.jksuci.2019.05.007
https://doi.org/10.1016/j.jksuci.2019.05.007
https://doi.org/10.1016/j.ins.2019.07.058
https://doi.org/10.1016/j.ins.2019.07.058
https://doi.org/10.1007/s11042-015-2595-4
https://doi.org/10.1016/j.procs.2016.05.123
https://doi.org/10.1016/j.procs.2016.05.123
https://doi.org/10.1007/s12083-018-0682-9
https://doi.org/10.1109/TPDS.2013.284
https://doi.org/10.1016/j.future.2017.01.024
https://doi.org/10.1016/j.pmcj.2017.03.010
https://doi.org/10.1016/j.jisa.2019.03.015
https://doi.org/10.1016/j.jksuci.2019.05.007
https://doi.org/10.1016/j.jss.2017.02.039
https://doi.org/10.1016/j.jnca.2019.02.015
https://doi.org/10.1016/j.jnca.2019.02.015
https://doi.org/10.35940/ijeat.F1188.0886S219
https://doi.org/10.35940/ijeat.F1188.0886S219
https://doi.org/10.1109/TDSC.2016.2603501
https://doi.org/10.1109/ACCESS.2018.2879479
https://doi.org/10.1109/ACCESS.2018.2879479
https://doi.org/10.1109/ACCESS.2019.2950750
https://doi.org/10.1109/TCC.2015.2511747
https://doi.org/10.1109/TCC.2015.2511747
https://doi.org/10.1515/cait-2016-0002
https://doi.org/10.1016/j.jss.2014.10.031
https://doi.org/10.1016/j.future.2014.07.006
https://doi.org/10.1016/j.future.2014.07.006

	Abstract
	Introduction
	Related works
	Proposed secure deduplication approach 
	When a new user tries to upload a new file
	Convergent encryption (CE)
	Convergent encryption
	Convergent decryption

	When the same user tries to upload the same file
	When different users try to upload the same file to the cloud server
	When users try to download the file

	Result and discussions
	Performance analysis of proposed encryption technique
	Encryption time
	Decryption time
	Security

	Performance analysis of proposed deduplication technique

	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

