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ABSTRACT Recently, with the establishment of new thermal regulation, the energy efficiency of buildings
has increased significantly, and various deep learning-based methods have been presented to accurately
forecast the heating load demand of buildings. However, all of these methods are executed on a dataset
with specific distribution and do not have the property of global forecasting, and have no guarantee of data
privacy against cyber-attacks. This paper presents a novel approach to heating load demand forecasting based
on Cyber-Secure Federated Deep Learning (CSFDL). The suggested CSFDL provides a global super-model
for forecasting heating load demand of different local clients without knowing their location and, most
importantly, without revealing their privacy. In this study, a CSFDL global server is trained and tested
considering the heating load demand of 10 different clients in their building environment. The presented
results, including a comparative study, prove the viability and accuracy of the proposed procedure.

INDEX TERMS Heating load, forecasting, energy management, building, cyber-secure federated learning,
deep learning.

ABBREVIATIONS
HVAC Heating, ventilation and air conditioning
ANNs Artificial neural networks
ELM Extreme learning machine
MILP Mixed-integer linear programming
DNN Deep neural network
LSTM Long short-term memory
CSFDL Cyber-secure federated deep learning
SVR Support vector regrssion
GRNN General regression neural network
Bi-LSTM Bidirectional long short-term memory

The associate editor coordinating the review of this manuscript and

approving it for publication was Hao Wang .

FDL Federated deep learning
FedAvg Federated average
CNN Convolutional neural network
R2 Correlation coefficient
RMSE Root mean square error
MAE Mean absolute error
MAPE Mean absolute percentage error
RNNs Recurrent neural networks

I. INTRODUCTION
Presently, energy is considered an essential resource for most
aspects of life, and plays an important role in human lifestyle.
On the other hand, sustainable economic development around
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the world follows the concept of energy security [1], [2].
Most of the world’s electricity is currently generated from
fossil fuels, and this trend will lead to an increase in
global warming. According to statistics provided by the
International Energy Agency, the Worldwide electricity
demand is expected to increase by more than 65% by the
year 2035 [3]. Recent studies have shown that about 60% of
the world’s energy is consumed in residential and commercial
buildings [4]. Accordingly, energy management in buildings
can be one of the most important tools in saving energy and
reducing CO2 in the environment.

Optimization and management energy consumption in
buildings require full identification and knowledge of energy
sources and major end-uses of the building. Typically, energy
sources in a building include electricity, heating supply,
and natural gas. The related major end-uses also include
heating, ventilation and air conditioning (HVAC), elevators,
domestic hot water, kitchen equipment, lighting, peripherals
and home appliances [5]. Fig. 1 shows the adopted ISO
Standard 12655:2013, which is related to the classification of
building energy consumption [6]. It should be noted that the
HVAC operation schedule and indoor/outdoor conditions are
two important factors that in addition to the above-mentioned
energy sources and major end-uses should be considered in
the analysis of building performance.

Among these, the heating load forecasting in buildings
plays a key role in energy management of buildings and in
guiding the optimal control objective of on-demand heating.
Heating load forecasting is a complex nonlinear optimization
problem that has attracted the attention of many researchers
in recent years [7]. Buildings’ heating load forecasting
should be done by considering various aspects such as fore-
casting objects, forecasting time horizons, and forecasting
techniques [8].

Heating load forecasting objects are mainly divided into
four categories: heat source, heat exchange station, and
building. In supply-side, the heat source is the target of
heating load forecasting, while buildings are the target on
the demand side, and the heat exchange station is the bridge
between the supply side and the demand side to achieve
efficient energy transmission [7].

So far, many studies have been done in this regard
and various techniques have been proposed to forecast the
heating load in commercial and residential buildings. These
methods can be categorized as statistical and numerical-
based techniques [9], [10], various regression and arti-
ficial neural networks (ANNs) [8], [11]–[13], extreme
learning machine (ELM) [14], [15], machine learning
applications [8], [16]–[19], deep learning techniques [4],
[7], [20]–[24], and hybrid models [25]–[27].

In [9], a mixed integer linear program (MILP) has been
proposed to forecast the integrated model in large-scale
buildings to evaluate the optimal performance of HVAC.
A global forecasting system sflux model, which is a
statistical-based procedure, has been suggested in [10] to
estimate the heating load demand of buildings. The method

FIGURE 1. The usage of energy in buildings [6].

proposed in this study that is based on weather conditions,
advances the forecasting process.

In [11], the heating and cooling loads forecasting in the
buildings has been done using ANNs and the extraction of
a black box model by considering the meteorological data
as input variables. In this study, cooling and heating loads
are investigated for five office buildings. Eighteen different
models are formulated in the different number of inputs and
different parameters for each of the five buildings, using
recent weather history and load data in the past three hours.
The heating load forecasting of a building using a back-
propagation neural networks called nonlinear autoregressive
in [12] with the meteorological parameters and the HVAC
equipment parameters playing the role as input variables.
This study forecasts the heating load for a commercial
building based on various objectives such as access to high
thermal comfort and the possibility of resetting the air
temperature setpoint without compromising the comfort level
of the occupants. The process of implementing the proposed
goal has been done by considering issues such as optimizing
the parameters and size of the network and determining the
appropriate value for the number of training data.

Building heating load forecasting based on modeling
the design and structural features of a building has been
performed in [15] via the ELM technique and via its improved
version called online sequential ELM. The main purpose
of this study is to develop an ELM-based model that can
extract the correlation between features, mutual information
their association strengths, and their relation with heating
and cooling loads based on the structural characteristics of
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the building. Lack of participation of climatic parameters
related to the study area can be considered as one of
the most important disadvantages of this study. In [18],
various machine learning applications such as support vector
machine, random forest, Gradient Boosted Regression Trees,
and XGBoost have been utilized to forecast the heating
and cooling loads of a commercial building. In this study,
predictions have been made by considering the available
historical and meteorological data as input variables. The
control of district heating systems in [19] has been done
based on the heating load forecast of 10 residential buildings
located in Rottne, Sweden by introducing a hybrid model
of ANN and SVM techniques. In this study, the proposed
methods are trained and tested based on a 27-month thermal
load dataset obtained from 10 residential buildings along with
outdoor temperature information received from a weather
forecast service. Heating and cooling loads forecasting
based on the technical specifications of the building has
been described in [8] using two multilayer perceptron
and support vector regression techniques. This study aims
to manage and optimize the consumption of cooling and
heating loads. However, the developed machine learning-
based forecasting models are trained and tested based on
building specification parameters and without being affected
by climatic variables. In [17], the forecasting of building
heating load by considering meteorological data as input
variables has been done by one of the machine learning
applications called decision tree.

Forecasting the heating and cooling loads of a residential
building to inside energy management has been presented
in [20] using deep neural network (DNN). In this study,
the technique used forecast the heating and cooling loads
based on the technical characteristics of the building.
Another deep learning application called short-term memory
network (LSTM) has been used in [21] to forecast the lighting
loads, heating loads, and miscellaneous electrical loads in
two office buildings in United State. In this study, the main
focus is on introducing, preprocessing, and selecting the
most appropriate features for training the forecasting models.
Thus, the effectiveness of the proposed approaches with a
focus on results, which indicates a reduction in internal heat
gains forecasting errors from 12% to 8% in building A, and
from 26% to 16% in building B. In another study in [22], deep
learning applications called recurrent neural network, LSTM,
and gated recurrent units have selected to forecast indoor
energy in residential and commercial buildings. In this study,
deep learning-based forecasting models are used to extract
and analyze 24-hour profiles related to building cooling
loads. This process is performed by considering the time
variables, outdoor variables that describe the conditions of
the outdoor environment, operational variables that introduce
the condition of chiller plants, and energy variables that
include the power consumption of systems, as the input of
each network. The short-term internal energy forecasting
of a residential building has been performed in [23] by
presenting a hybrid approach of ELM technique and a deep

learning stacked auto-encoder. Another application of deep
learning called convolutional neural network to forecast the
heating load in residential buildings has been suggested and
used in [7]. This study is conducted for four heat exchange
stations located in Anyang, China in the 2018 heating
season. Heat load forecasting is considered a complex
nonlinear optimization problem to be solved by providing
deep learning-based approaches. It should be noted that
the expression of the effectiveness of the proposed solution
is done in a comparative approach with other advanced
algorithms based on machine learning and deep learning. The
hourly heating load forecasting in residential buildings by
considering historical data and climatic information as input
variables has been described in [24] using a LSTM technique.
This study focuses on providing a robust forecasting model
for modeling the time-series mode of input data. Thus, the
proposed model is implemented in an online system of a
power plant in Shandong province, China, and is able to make
a continuous forecast without human intervention for four
months during the hot season of 2018.

A multilayer hybrid model based on the ARX and particle
swarm optimization neural network has been proposed in [25]
to forecast the heating load of a residential building. One of
the most important objectives of this study is to set up and
develop an energy performance management system as an
effective method to deal with the high growth demand for
electricity in China’s urbanization process in order to prevent
the expansion of existing fossil power plants. It should
be noted, the technical specifications of the building and
weather data are considered as the input variables for the
developed forecasting model in this study. Regarding energy
management and conservation, an enhanced integration
model (stacking model) has been presented in [26] for
forecasting the heating load of two educational buildings in
Tianjin, China. A hybrid approach based on deep learning
applications called hybrid spatial-temporal attention long
short-termmemory has been introduced in [27] to forecast the
heating load for energy management in residential buildings.

From the literature review presented above, two points can
be concluded: 1) all of them point out the importance of
energy management and the need to forecast heating loads
in a variety of buildings; 2) various methods have been
proposed to address this problem, however, each method
suffers from specific issues. In particular, the statistical and
numerical methods have complex numerical calculations and
require strong processing systems and experienced people to
solve the forecasting problem. In addition, the predictions
made by these techniques are not very accurate. In machine
learning and ANN-based methods, accurate model extraction
for forecasting requires a large amount of effective data.
However, these techniques cannot model time-series mode
related to input variables such as weather parameters, and
real-time prediction models are not very accurate. Deep
learning-based techniques have been able to significantly
improve the problems associated with previous methods.
However, these techniques also suffer from generalizability to
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different buildings. A very important point to consider is the
complete dependence of all conventional and used techniques
on the training data of each region. Thus, if complete and
comprehensive data from the work history is not available,
it will be impossible to make any forecasting, and this can
be considered the main limitation of the techniques used.
In addition, none of the studies have addressed the issue
of data privacy and the performance of proposed methods
against cyber-attacks. Therefore, addressing issues such as
time-series state modeling related to input data, providing
data-independent forecasting models or as little as possible
with less dependence on training data, developing general-
izable forecasting models that can extract the relationship
between input variables relevant to different regions, and
ultimately protecting the privacy of data from cyber-attacks
that can be significant for industry or government owners,
can significantly improve the forecasting process, and are
welcomed by researchers and stakeholders that are active in
this field.

In this paper, a novel hybrid technique called cyber-secure
federated deep learning (CSFDL) is presented to improve
the process of forecasting the building’s heating load and to
maintain the privacy of the data used. The proposed CSFDL
technique can be viewed as a hybrid framework combining
federated learning and CNN models. The federated network
is responsible for maintaining data security against various
types of cyber-attacks and forms a global super-model. The
CNN technique is used to extract features from the input data
and forecast the heating load based on the extracted features.
In addition, the presentation of a global super-model that can
be generalized and forecast the heating load of unknown and
new buildings without the need for training data is one of the
most important contributions of this paper. Also, in order to
provide a comparative approach, other conventional learning-
based techniques, called Support Vector Regression (SVR),
General Regression Neural Network (GRNN), LSTM, and
Bidirectional LSTM (Bi-LSTM) are used to forecast the
heating load studied in this paper. Evaluation of the results
indicates the effectiveness of the proposed technique in
comparison with other conventional techniques.

The remainder of this paper is organized as follows.
Section II describes in detail the applied deep learning
techniques including CSFDL and CNN. The case study of
heating load demand in a building environment is described
in Section III. The prediction results are presented in Section
IV. Finally, Section V contains the conclusions of the paper.

II. FEDERATED DEEP LEARNING
Over the past decade, deep learning models have experienced
significant growth and have been used in a variety of
applications. With increasing data availability and improved
computational power,more efficient deep learning algorithms
have spawned a plethora of new applications, including smart
energy systems, smart buildings, automatic driving, etc.

The accuracy of these algorithms usually depends on
the availability of a large amount of data. Typically, this

amount of data is stored on a central server, which may
cause some problems for the entire network. First, given
the increasing bandwidth availability, and the possibility of
remote data storage and retrieval, it is easy to reach these
servers and therefore they can easily be a target for an
attacker. Second, collecting a large amount of data on a
single server requires more computational processing. Last
but not least, devices connected to servers might accumulate
data of sensitive nature that is subject to secrecy rules and
regulations. Therefore, it is important to overcome these
problems by applying more powerful ways of decentralized
data storage. The one used here is Federated Deep Learning
(FDL), which was recently introduced by Google [28]–[30].

FDL provides a shared global model to connect deep
learningmodels with local participants without knowing their
location and, more notably, without revealing privacy. This
method aims to achieve a global model with a federation
of multiple participating machines that preserve the security
of their own data when clients are typically abundant and
have Internet connections. Moreover, this method needs less
computational processing and even does not need a main
server to receive data from local parties. After each training
iteration, a broadcasted model is downloaded from the main
server in the cloud, and then the local parities train their local
data and send updated weights back to the server for the next
iteration. In the server part, aggregation is performed to obtain
a new global model on the server.

Mathematically, considering K enabled clients and letting
k denotes the index of each client, the FDL algorithm in a
distributed scheme that intends to solve the following loss
function:

min
θ
` (θ) =

K∑
k=1

nk
n
Lk (θ ) (1)

where nk is the number of local samples in each parties and
Lk (θ) can be formulated as:

Lk (θ) =
1
nk

∑
i∈Pk

`i(θ ) (2)

where Pk is a set of data indexes whose length is nk , i.e.,
nk = |Pk |. A typical FDL operation consists of one server
and K clients, depicted in Fig. 2. The process could be
summarized in four main steps. First, in each local party,
initial training is done by receiving the parameters θt from
the central server. The second step is model aggregation,
where the server receives the parameters θkt from each
client and provides a secure aggregation over the clients.
The most commonly used method for aggregation is the
federated averaging (FedAvg) [30], that is based on averaging
local stochastic gradient descent. The third step is parameter
broadcasting from the server, when new parameters θt+1 are
sent back to each local client to perform new training on their
own dataset. Finally, all clients update their individual models
with respect to the aggregated parameters and evaluate the
effectiveness of the new models.
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FIGURE 2. Architecture of secure federated deep learning (SFDL) model.

A. CYBER-SECURE FEDERATED DEEP LEARNING (CSFDL)
The CSFDL-based heating load forecasting process
explained in Algorithm 1 and the general flowchart of
the CSFDL process implementation based on the proposed
method are shown in Fig. 3. As shown in this flowchart,
the CSFDL-based heating load forecasting is divided into
four main steps. In the first step, local customers perform
an initial training with their own local data and calculate the
performance of this model. Then, the encrypted parameters of
the performance results are sent to the server. In the second
step, the server aggregates all the parameters of the clients
without knowing the local information of the clients. In the
third step, the server sends the aggregated parameters to
N clients. In the fourth step, the local participants update
their respective models with the decrypted gradients. Finally,
a security check is performed on the updated models,
which then leads to the next iteration. The reason for
this security control and the main procedure explained in
following.

Data protection and privacy preservation are among
the most important features of the FDL. However, recent
research [31], [32] has shown that this method is the new
target of adversary threats. The principle of FDL is the
communication of parameters between clients and the server.
Therefore, leaking any information during this transmission
could compromise the confidentiality of the whole model.
Moreover, to build the final global model, several model
updates are exchanged periodically to achieve the optimized
model. These communications and model updates may result
in unintended information leaks that could be exploited by an
attacker.

One of the reported threats to FDL is the manipulation
of gradient updates [32], which causes the injection of false
information into the network. To avoid this threat and keep the
model secure, we use two security strategies. First, we employ

model averaging, which reduces the disclosure of gradient
updates and available information to the adversary. Second,
we use dropout [33], the most common regularization
technique used to prevent overfitting in neural networks.
Moreover, it also has an interesting property that helps to keep
the FDL secure. Due to the nature of dropout, it limits the
activation between neurons. As a result, these deactivations
weaken the information leak, and the attacker observes fewer
gradient updates compared to the active neurons and provides
the CSFDL.

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN has been used as a powerful tool for image and video
processing, classification, forecasting, and feature extraction.
This technique has been able to solve many problems
related to machine learning methods, including feature
extraction and pattern recognition, by providing a layer-by-
layer structure [4], [34]. As shown in Fig. 4, convolution
layers, pooling layers, fully connected layers, and Softmax
layer forms the architecture of a CNN network. Each of these
layers completes the function of this architecture by playing
a unique role. Each convolution layer consists of kernels that
act as filters on the data. The kernels come in a variety of sizes
and are used to extract features from data [35].

In each convolution layer, various features are extracted
based on the dimensions of the kernels. The summing of
prominent features is done by the pooling layer to create a
feature map and transfer it as input to the next convolution
layer. Max pooling is a well-known type of pooling operation
that forms the feature map of each layer by collecting the
maximum extracted features. Mathematically, the CNN in
layer l and filter i operates as follows [4], [36]:

ai,l+1 = F
(∑

ωi,lai,l + bi,l
)

(3)
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FIGURE 3. Flowchart of the implementation of the heating load forecasting process based on the proposed method.

Algorithm 1 Cyber-Secure Federated Deep Learning
(CSFDL)
Step 1: Initialization of θt on the Sever;

Step 2: for each t = 1.2. . . .where t is communication round:

Calculate m = C × K when C ∈ (0.1) and K is the
numbers of clients;

Download θt for all of clients;

for all client k ∈ m keep it for

synchronization:

θt =
∑m

k=1
nk
n θ

k ;

End for.

End for.

Step 3: In client K , θk = θ t ;

Step 4: for each iteration between 1 to E (E is the training

iterations):

For batch b ∈ B where B is the size of each

mini batch:

θk = θk−η∇Lk (θk .b) where η is the learning

rate;

End for.

End for.

Step 5: Return θk to server.

where ω and b are weights and bias which are updated
according to the following equations:

1ωl (t+ 1) = −
xλ
r
ωl −

x
n
∂c
∂ωl
+ m1ωl(t) (4)

1bl (t+ 1) = −
x
n
∂c
∂bl
+ m1bl(t) (5)

where t , c,m, n, x and λ are the update step, the cost function,
the momentum, the training examples, the learning rate, and
the regularization parameter, respectively.

FIGURE 4. The structure of a CNN network.

The output of the last convolution layer is considered as
the input of the fully-connected layer. The fully-connected
layer is a kind of feed forward neural network that determines
the weight and bias of the extracted features. The output of
this layer is used as the input of the last CNN layer, the
classification or estimation layer, to make the final CNN
prediction in this layer. The CNN training process is based on
minimizing the training error between actual and forecasted
values by updating the network parameters [34], [35]. The
training error is determined by the equation:

E (ω, b) =
1
n

i=1∑
n

L(ω, b, xi, yi) (6)

where L is the loss function and (xi, yi) are training samples.
The loss function is given by

L(ω, b, xi, yi) = (yi − f (ω, b, xi))2 (7)

where f represents the predicted value computer by the whole
CNN network as follows:

f (ω, b, xi) = F
(∑

ωi,lF
(
ωi,l−1F

(
. . .F

(∑
ωi,1xi,0

+ bi,0
)
. . .
)
+ bi,l−1

)
+ bi,l

)
(8)

III. CASE STUDY BUILDING ENVIRONMENT
The high variability of heating load type is a feature of
thermal energy measurement. Consumption of heating load
in various commercial and residential buildings depends on
many factors such as technical specifications of the building
and daily weather parameters, each of which is effective
in forecasting the heating load. This paper uses data from
a building in Tomsk, Russia, that are collected on a daily
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basis [37]. The collected dataset includes the mass of input
and output waters (heat carrier) per day, difference between
mass of input and output waters, average temperature of the
heating carrier in the input of the heating system, average
temperature of the heating carrier in the output, temperature
difference, amount of the consumed heating in Gcal, heating
or heating plus hot water, type of the heating system (opened
or closed), code system-load (4 digits: the first digit 1 is
opened system and 2 is closed system. The second digit 0 is
heating, 1 is heating and hot water supply. The third and
fourth digits is floors amount (01, 02, 03, . . . , 17)), area of
building that heating meter is served, amount of building
floors, walls material, year of building construction, total area
of building, and outdoor temperature.

In this paper, data related to 10 floors of this building
were studied. In this building, the physical and structural
characteristics of each floor are completely different. So that
each floor can be considered as an independent building
unit. In this paper, according to the structure of the
Federated Learning network, data related to 7 classes were
selected to training in each client and recognize behavioral
patterns related to heating load in it. After completing the
training process and forming a global supermodel based on
data related to 7 building units, data related to the other
3 units were utilized to test the supermodel and evaluate its
performance in forecasting heating load. Table 1 shows the
historical characteristics, the number of training, and the test
data related to the floors of the building that was used to train
and test the network.

The performance of Federated Deep Learning is perfect
when the data has the property of Non-independent and
identically distributed (Non-IID). In this work, the utilized
data is related to a real dataset from a building in Tomsk,
Russia, which is collected daily and satisfies the condition
of Non-IID. Since the data was recorded from one building
on 10 different floors, the dataset depends (Non-independent)
on the following factors: walls materials, year of construction
of the building and outdoor temperature. In addition,
the data are not identically distributed because the data
were recorded from 10 different customers with different
characteristics in heating energy consumption. For further
clarification, Fig. 5 shows the distribution of the data on
main features of the dataset in the form of boxplots. This
figure justifies the different distribution of the data on each
client.

IV. HEATING LOAD DEMAND FORECASTING RESULT
In this paper, building’s heating load forecasting is done
with the aim of presenting a generalized global forecasting
model and maintaining data privacy. This is based on the
Federated Learning technique and using the CNN algorithm.
The designed federated network consists of 7 clients. In each
client, the training process for extracting features from the
data related to each building is performed by the CNN
technique. The behavioral patterns recognized in each client
form the global forecasting supermodel that is then used to

TABLE 1. The number of training and test data considered from each
region.

perform the forecasting process in other new and unknown
buildings.

Network performance in each of the training and test stages
was measured based on various performance evaluation
metrics such as correlation coefficient (R2), root mean
square error (RMSE), mean absolute error (MAE), and
mean absolute percentage error (MAPE). The values for
each of these metrics represent a specific definition of the
performance of the method used. Thus, the highest value of
R2 indicates the high accuracy of the network, while other
indicators are related to the amount of forecasting errors and
in the best possible case should have the lowest value close
to zero. Each of the mentioned metrics is calculated based on
the following equations:

R2 =

∑N
i=1 (Xi − X̄ )(Yi − Ȳ )√∑N

i=1 (Xi − X̄ )
2∑N

i=1 (Yi − Ȳ )
2

(9)

RMSE =

√√√√ 1
N

N∑
i=1

(Xi − Yi)2 (10)

MAE =
1
N

N∑
i=1

|(Xi − Yi)| (11)

MAPE =
1
N

N∑
i=1

∣∣∣∣Xi − YiXi

∣∣∣∣× 100 (12)

where Xi and Yi represent the real heating load values and
forecasted values, respectively. X̄ and Ȳ represent the mean
of real heating load values and average of forecasted heating
load values, respectively.

By designing the CNN network structure in each client, the
training process was performed based on the data specified in
Table 1. Training time is evaluated as an important indicator
in the use of learning-based techniques. Accordingly, in this
paper, the processing and training time of each of the
techniques used has been calculated and evaluated. The
runtime of CPU for the federated learning process to train and
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FIGURE 5. Distribution of the used data on main features of the dataset in the form of boxplots.

test the model of 7 clients and to fully test the performance of
the server model on 3 clients is 16 minutes and 43 seconds.
While the training and test time related to each of the
methods SVR, GRNN, LSTM, and Bi-LSTM for the data
related to each client (each floor) were 13 minutes and
08 seconds, 11 minutes and 37 seconds, 8 minutes and
19 seconds, and 6 minutes and 51 seconds, respectively.
This computation time shows the superiority of the proposed
Federated Learning procedure in terms of processing time as
well as its efficiency and robustness.

It should be noted that the federated learning algorithm
converges after 20 interactions. Fig. 6 illustrate the conver-
gence process of evaluation indicators on test dataset of a
sample client.

The results of CNN feature extraction and performance on
each client are presented in Table 2. Evaluation of the results
presented in Table 2 shows that the CNN technique was able

to learn the behavioral patterns of the heating load input
variables well in each client during the training process. This
process allows the trained network to extract the relationship
between input variables to forecast the heating load and use
this modeling to test the network and forecast new data. It can
be seen that the training process has been such that the test
of trained networks in each client has been done with the
highest accuracy and the lowest error values. After test each
of the trained networks and confirming the training and test
process in each client, a global supermodel containing the
extracted features is formed in each client. This supermodel is
a kind of estimation toolbox based on the behavioral patterns
of the data examined in each client. The aim is that this
supermodel be able to respond to and forecast the heating
load for buildings that have no training data and had no effect
on the training process of any client and are considered as
new and unknown buildings. To achieve this, and to evaluate
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FIGURE 6. The convergence process of evaluation indicators on test
dataset of a sample client.

TABLE 2. Results of CNN performance evaluation in feature extraction
from data related to each floor in each client.

the performance of this global supermodel, input data from
three buildings (as states in Table 1), which are new and
unknown buildings, are now used as super model input.
Fig. 7 compares the heating load predictions made for data
on new and unknown buildings by the global supermodel with
actual heating load values. In addition, this figure presents a
comparative approach to the forecasted and actual values of
the heating load for different seasons of the year. The results
show that the global supermodel has been able to model the
behavioral pattern of the heating load of new buildings with
acceptable accuracy.

Table 3 shows the results of the forecasts made for the
new buildings by the supermodel with different evaluation
metrics. The results indicate that the designed supermodel
was able to test and forecast the heating load for each
new client who had no role in the training process and
the formation of the supermodel, with acceptable accuracy
coefficients and low forecasting errors. The performance
evaluation of the global supermodel and its generalizability
for various residential and commercial buildings in fore-
casting the heating load was performed with acceptable
results. As stated in Section III, the heating load forecasting
in this paper was based on various input variables, each of
which is effective in determining the amount of heating load.
Increasing the number of modeling input parameters and
exploring the correlation between them makes it difficult to
determine the output value. Thus, the network used should

TABLE 3. Performance evaluation of the global supermodel designed to
forecast the heating load of new and unknown buildings.

model the relationship between the input variables and their
effect on the output value. In this paper, to emphasize
the high ability of the proposed method, various types of
parameters affecting the heating load values, such as technical
specifications of the building and climatic characteristics
were used. In order to show the effect of each of the
considered parameters in determining the amount of heating
load of the building, a sensitivity analysis and correlation
analysis were performed between them. Fig. 8 shows the
results of the sensitivity analysis and the correlation between
the input variables in determining the heating load values.
The results presented in Fig. 8 show that the input variables
have different correlations with each other and some of them
can increase the forecasting error in addition to increasing
the forecast accuracy. Therefore, choosing a method that
can model the correlation between input variables in a way
that increases the accuracy of forecasting and determining
the value of the output parameter, is one of the most
important issues in choosing the ideal method for performing
forecasting approaches.

In the last part of the paper, in order to present a
comparative approach, some common techniques called
SVR, GRNN, LSTM, and Bi-LSTM are used to predict the
heating load of the building. Each of these techniques has
been used in a variety of applications related to power and
energy systems and are described in detail below.

SVR is a regression version of the support vector
machine that is mainly used for regression, forecasting, linear
mapping, and function approximation with only a few fewer
different applications [38]. The SVR has several versions, but
the classical model (ε-SVR) is mainly considered in science
and engineering and has been employed in this work as well.
The structural model and mathematical formulation of this
technique are presented in detail in [39].

GRNN is one of the most powerful regression applications
based on machine learning techniques, mainly used for
regression, linear and nonlinear modeling, and classification
applications [40]. The GRNN is based on a completely
parallel structure with a very high training speed and is
usually defined as a type of radial-basis function network.
Modeling of nonlinear relationships between input data is
one of the most important features of this technique, even for
very small volumes of data. The structural architecture and
mathematical modeling of GRNN are fully presented in [41].

LSTM is one of the most well-known deep learning
techniques that was first introduced in 1997 to improve
the performance of recurrent neural networks (RNNs) [38].
Since its introduction, this technique has been able to solve
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FIGURE 7. Comparison of the heating load forecasted by the global supermodel in each new building with the actual values of the heating load;
(a) client 8, (b) client 9, (c) client 10.

RNNs- related gradient vanishing and exploding problems
and be used as a powerful tool for regression, prediction,

linear and nonlinear modeling, and classification applica-
tions. High-dimensional data processing and high training
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FIGURE 8. Sensitivity analysis of input variables in determining the output heating load values.

TABLE 4. Comparing and evaluating the results of techniques SVR, GRNN, LSTM, and Bi-LSTM in forecasting the heating load of buildings.

speed are the obvious advantages of LSTM. Reference [42]
introduces the complete structural schematic and mathemati-
cal formulation of LSTM.

Bi-LSTM is one of the well-known applications of deep
learning, which was proposed to improve the performance of
LSTM [43]. Thus, the transfer of information in this network

is done in twoways and can forecast the data with information
about past and present times. The Bi-LSTM has been able
to significantly solve time-series data modeling problems
and become a powerful tool for doing so. The layer-by-
layer structure and mathematical modeling of Bi-LSTM are
presented in [44].
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Each of the introduced techniques is applied to the data
of each client from the federated network to compare
and evaluate the results with the results of the proposed
CSFDL technique. Table 4 compares and evaluates the
results of techniques SVR, GRNN, LSTM, and Bi-LSTM
in forecasting the heating load of buildings. The results
presented in Table 4 show that each of the mentioned
techniques based on their abilities is able to forecast the
heating load of each building in clients 1 to 7. However,
it can be observed that each of the SVR, GRNN, LSTM, and
Bi-LSTM techniques does not performwell in forecasting the
heating load associated with the data available on clients 8, 9,
and 10, and these results indicate the lack of generalizability
of these techniques. Thus, in the results presented in Table 3,
it is observed that the proposed CSFDL approach, due to
its generalizability, is able to provide an acceptable forecast
of buildings that does not have any training data. It should
be noted that the proposed SDFL procedure can be used
as a powerful tool in all matters related to forecasting in
power and energy systems, where data privacy is also of great
importance.

V. CONCLUSION
Forecasting of energy demand in buildings, especially
heating load demand, which is the main part of energy
consumption inbuildings, is very important to improve the
energy efficiency of buildings and energy management
tasks. Various forecasting approaches based on artificial
intelligence methods have been presented in the literature to
accurately predict the energy demand of buildings. In this
paper, a novel forecasting model has been presented to cover
all the critical issues that could not be addressed in previously
published works.

Many machine learning and deep learning techniques
presented for energy demand forecasting rely on this
assumption that training and testing data have the same
distribution. Indeed, when the data are split into a training
and a testing part, this statistical consistency is satisfactory.
However, in the real experiment, the new input data has a
different distribution than the data with which the model has
already been trained with. The presented CSFDL method
has this property and the global server as a super model can
accurately forecast data sets with different distributions.

Maintaining the confidentiality of the collected data is
another concern that any failure allows the external attacker to
successfullymodify the data, and the energy supplier operates
on the basis of an incorrect demand forecast. The proposed
method applies novel techniques in edge computing to avoid
the transmission of data to the central server and analyze it
locally with a federation of multiple participating machines
that preserve the security of the local parties.

The accuracy of the presented CSFDLmethod was verified
by the following procedure. First, the collected heating load
demand data from 7 clients were divided into training and
testing parts with a ratio of 80-20. Each local client has its
own CNN network which downloaded the proposed model

from the main server in the cloud. The primary evaluation
test of the server was performed on 20% of each client’s data
that the server works perfectly for all clients with the lowest
forecasting error and correlation coefficient of 99.00%.
Second, the performance of the generated supermodel was
tested on 3 clients whose distribution was unfamiliar to the
server and considered as out-of-sample data. It was observed
that the global supermodel was able to predict the heating load
demand with a correlation coefficient of 98.00%, 93.00%
and 70.00%. Finally, four conventional techniques based
on artificial intelligence named SVR, GRNN, LSTM, and
Bi-LSTMwere applied to the data used in each client in order
to forecast the heating load. The results of the mentioned
techniques were compared and evaluated with the results of
the proposed CSFDL method. It was observed that due to the
fact that no training data was available in clients 8, 9, and 10,
techniques SVR, GRNN, LSTM, and Bi-LSTMwere not able
to make predictions for these buildings. While the proposed
SFDL technique was able to provide high impact for these
clients based on its generalizability. Overall, the presented
results show the high capability of the proposed CSFDL
method to produce acceptable forecasts while preserving data
privacy and eliminating the dependence of the model on the
training data.
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