
IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019 4831

A Secure IoT Service Architecture With an

Efficient Balance Dynamics Based on

Cloud and Edge Computing
Tian Wang , Guangxue Zhang, Anfeng Liu , Md Zakirul Alam Bhuiyan , Senior Member, IEEE,

and Qun Jin , Senior Member, IEEE

Abstract—The Internet of Things (IoT)-Cloud combines the
IoT and cloud computing, which not only enhances the IoT’s
capability but also expands the scope of its applications. However,
it exhibits significant security and efficiency problems that must
be solved. Internal attacks account for a large fraction of the asso-
ciated security problems, however, traditional security strategies
are not capable of addressing these attacks effectively. Moreover,
as repeated/similar service requirements become greater in num-
ber, the efficiency of IoT-Cloud services is seriously affected. In
this paper, a novel architecture that integrates a trust evalua-
tion mechanism and service template with a balance dynamics
based on cloud and edge computing is proposed to overcome
these problems. In this architecture, the edge network and the
edge platform are designed in such a way as to reduce resource
consumption and ensure the extensibility of trust evaluation
mechanism, respectively. To improve the efficiency of IoT-Cloud
services, the service parameter template is established in the
cloud and the service parsing template is established in the edge
platform. Moreover, the edge network can assist the edge plat-
form in establishing service parsing templates based on the trust
evaluation mechanism and meet special service requirements.
The experimental results illustrate that this edge-based architec-
ture can improve both the security and efficiency of IoT-Cloud
systems.

Index Terms—Edge computing, efficiency, internal attacks,
Internet of Things (IoT), security, trust evaluation mechanism.

Manuscript received June 15, 2018; revised August 5, 2018; accepted
August 28, 2018. Date of publication September 13, 2018; date of current
version June 19, 2019. This work was supported in part by the National
Natural Science Foundation of China under Grant 61872154, Grant 61772148,
and Grant 61672441, in part by the Natural Science Foundation of Fujian
Province of China under Grant 2018J01092, in part by the Fujian Provincial
Outstanding Youth Scientific Research Personnel Training Program, in part
by the Subsidized Project for Cultivating Postgraduates Innovative Ability
in Scientific Research of Huaqiao University under Grant 1611314018, and
in part by 2017 and 2018 Waseda University Grants for Special Research
Projects under Grant 2017B-302 and Grant 2018B-288. (Corresponding

author: Qun Jin.)

T. Wang and G. Zhang are with the College of Computer Science
and Technology, Huaqiao University, Xiamen 361021, China (e-mail:
cs_tianwang@163.com).

A. Liu is with the School of Information Science and Engineering,
Central South University, Changsha 410083, China (e-mail:
afengliu@mail.csu.edu.cn).

M. Z. A. Bhuiyan is with the Department of Computer and Information
Sciences, Fordham University, New York, NY 10458 USA (e-mail:
zakirulalam@gmail.com).

Q. Jin is with the Department of Human Informatics and Cognitive
Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa
359-1192, Japan (e-mail: jin@waseda.jp).

Digital Object Identifier 10.1109/JIOT.2018.2870288

I. INTRODUCTION

T
HE Internet of Things (IoT) is based on a very large

number of objects/things that connect to the Internet to

help humans perceive the world and improve their quality of

life [1]. However, there are many IoT characteristics, such

as limited storage and processing capacity, that can reduce

the service performance of the IoT [2]. Cloud computing can

address these limitations associated with the IoT in terms of

management, storage, computation, and processing. Moreover,

cloud computing can create more services by integrating IoT

resources. Due to these advantages, the concept of IoT-Cloud

has been proposed. This concept combines the advantages of

the IoT and cloud computing technologies to provide more

and better services [3]. However, there are still some security

and efficiency problems with IoT-Cloud that must be solved.

The IoT is vulnerable to security threats, especially internal

attacks that frequently occur in the physical device layer

and the network communication layer [4]. Unlike internal

attacks, external attacks can be resisted by traditional security

mechanisms, such as encryption, authorization, and audit-

ing [5]. However, traditional security mechanisms cannot

resist internal attacks effectively, especially in the resource-

constrained IoT [6]. In an internal attack, the attacker is in

possession of some IoT devices and then conducts further

attacks using these captured devices [7]. The trust evaluation

mechanism, which is designed to solve internal attack issues,

is an effective supplement to the traditional security mecha-

nism [8]. However, many trust evaluation mechanisms in the

IoT consume a lot of resources, which has a large impact

on the IoT performance and lifetime. With increasingly many

types of internal attacks appearing, it is unlikely that the size

of the trust evaluation mechanism will be reduced.

With the increase in the number of IoT-Cloud applications,

increasingly more repeated/similar requirements are sent to the

cloud. It is inefficient for an IoT-Cloud system to address these

requirements one by one and constantly improving hardware

performance is not a long-term solution. In addition, there are

delay issues in IoT-Cloud services since the cloud is far away

from users and the IoT [9]. As failed services also reduce effi-

ciency, it is necessary to solve some uncertainties in the IoT,

such as device faults, network congestion, and large environ-

ment changes. In order to avoid these situations, monitoring,

and data analysis tasks can be performed, however, it is not

advised to perform these tasks in the cloud.

2327-4662 c© 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4819-621X
https://orcid.org/0000-0001-5190-4761
https://orcid.org/0000-0002-9513-9990
https://orcid.org/0000-0002-1325-4275


4832 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

To solve the above problems, an edge-based IoT-Cloud

architecture with a trust evaluation mechanism and service

template was established. Edge computing is performed at the

Internet’s edge with a lot of computing and storage nodes,

such as gateways, routers, mobile fog nodes, and edge servers,

which are close to the underlying network [10]. Edge comput-

ing also refers to cloudlets, micro datacenters, and fog nodes,

which has advantages in the quick response to cloud ser-

vices [11], [12]. The edge computing layer in this architecture

is divided into two main parts: 1) the edge network and 2) the

edge platform. The edge network is established on underly-

ing edge nodes (move/static powerful nodes) and is parallel to

the IoT. The edge platform is composed of edge nodes (edge

servers) that lie between the IoT and cloud, and this platform

is a central hub of the IoT-Cloud service architecture [13].

The main contributions can be summarized as follows.

1) An edge network was adopted to move a large part of

the trust evaluation mechanism out of the IoT. In the

IoT, devices perform the direct trust calculation and send

exceptions to the edge network. The edge network col-

lects trust information from devices and analyzes this

information for the entire trust state of the IoT.

2) Service templates were established in the cloud and on

the edge platform. The service parameter template in

the cloud stores the matching information while the ser-

vice parsing template on the edge platform stores the

matching information and parsing strategies.

3) The trust evaluation mechanism was integrated into IoT-

Cloud services via edge computing. In the process of

IoT service strategy establishment, the trust evaluation

mechanism enables the edge platform to select trusted

devices in order to generate or transfer data. Moreover,

the edge network can monitor the IoT network load with

balance dynamics and assist the edge platform in timely

adjusting strategies.

This paper is organized as follows. In Section II, related

work is introduced. The basic concept of a novel architecture

is presented in Section III. Section IV presents the detailed

design of the edge network, the edge platform and the func-

tions in the cloud. Experiment results and analyses are reported

in Section V. The final section concludes this paper.

II. RELATED WORK

To address internal attack issues, many trust mechanisms

have been proposed. The trust mechanism plays an important

role in many aspects, such as reliable data fusion and mining,

user privacy protection, information security enhancement, and

service assurance [14], [15].

In some cases, the IoT has both physical and social

attributes. Based on this feature, Chen et al. [16] proposed

a trust mechanism that can select effective feedback through

a similarity filtering method based on friendship, social con-

tact, and community of interest relationships. Moreover, to

minimize the trust convergence time and resist recommenda-

tion trust attacks, an adaptive filtering technique is designed to

find the best means of combining direct trust and recommen-

dation trust. To resist attacks aimed at the recommendation

trust, such as bad-mouthing, Alshehri et al. [17] proposed a

scalable trust management solution based on IoT clustering to

address practical and pressing issues. Of course, all storage

and computation tasks are performed by physical IoT devices,

which requires greater energy consumption. Considering trust

derivation, Duan et al. [18] proposed an energy-aware trust

derivation scheme that manages overheads through adopting

a game theoretic approach in the trust derivation process.

However, this scheme only provides partial security, and it

is difficult to accurately measure the level of security.

There are many trust-based intrusion detection systems

(IDSs) in wireless sensor networks (WSNs), which are used to

defend against internal attacks. However, the efficiency of IDS

is reduced on the IoT due to the very large amount of data that

is generated during a short period. Meng et al. [19] proposed

a Bayesian-based trust management method that incorpo-

rates traffic sampling into IDS under a hierarchical structure.

Liu et al. [20] proposed a physical IDS-to-gateway and virtual

IDS-to-gateway detection model that detects attacks against

both physical sensors and virtual sensors (VSs). In IDSs, false

alarm messages cannot be avoided and the intrusion detection

threshold is difficult to set.

To solve data error issues in WSNs, Yang et al. [21]

proposed a data error detection approach via which the cloud

can quickly detect and locate errors in large sensor data

sets. Data collection and transmission is an important part to

maintain the QoS of IoT-Cloud. To ensure trustworthy data

collection, Wang et al. [12] adopted mobile sinks to collect

sensor data and used a CTDC system to evaluate the trustwor-

thiness of both sensors and mobile sinks. To improve the data

transfer environment, Zhu et al. [22] proposed a trust-assisted

sensor-cloud (TASC) system that selects trusted sensors in

WSNs and trusted data centers in the cloud to constitute the

data transfer route from sensor to user. However, there are

still many problems to be solved in the data trust level, such

as time delays, data level attacks, and data integrity.

In IoT-Cloud, a very large number of connected devices

and services emerge, causing network load issues in the

centralized cloud architecture. To optimize IoT-Cloud ser-

vices, Barcelo et al. [23] defined the service distribution

problem (SDP) of IoT-Cloud as IoT-CSDP and solve this

problem through linear programming. For IoT-Cloud services,

one single service cannot meet users’ uncertain requirements.

Automatic service compositing is designed and used to real-

ize automatic matching of services and requirements with the

goal of fulfilling users’ requirements with the least number of

IoT-Cloud services. In a multiple Cloud-based IoT application

context, Baker et al. [24] proposed an optimization algorithm

to realize energy-aware service composition.

Service optimization problems (SOPs)—problems with ser-

vice selection and service resource scheduling—are caused by

the increasing number of services and increasing variety of

requirements. Based on service domain features, Xu et al. [25]

proposed a paradigm of service domain-oriented optimization

algorithms with artificial bee colony algorithms to solve

SOPs effectively. For services in IoT-Cloud systems, there

are two issues that deserve more attention to achieve the

goal of green and sustainable development; one is that many

users require the same data from the cloud and the other

is that multiple users request data from the cloud simul-

taneously. To reduce the resource cost due to these two

issues, Zhu et al. [26] proposed an MMDD scheme. In the



WANG et al.: SECURE IoT SERVICE ARCHITECTURE WITH EFFICIENT BALANCE DYNAMICS BASED ON CLOUD AND EDGE COMPUTING 4833

process of IoT-Cloud systems providing service, many appli-

cations require data from different regions, i.e., a single virtual

machine (VM) in a particular data center needs to integrate

many VSs from different data centers. To ensure high QoS and

maintain user satisfaction, Chatterjee et al. [27] designed an

optimal decision rule for selecting the appropriate data center,

which stores a single VM to serve users.

However, existing schemes have some shortcomings in

terms of security management and service provision, such as

one-sidedness, low expandability, high resource consumption,

large delay, and inefficiency. Moreover, few studies con-

sider the repeated/similar service issues encountered in many

fields, such as smart transportation, healthcare, and augmented

reality [28], [29]. Edge computing may present a more advan-

tageous platform for solving these issues via an integrated

approach; edge computing is an affordable and sustainable

computing paradigm to provide many services [30], [31]. For

the design, the edge network can reduce the unnecessary com-

munication in the trust evaluation mechanism, maintain the

IoT load balance, perform special IoT services, and ensure

data transfer reliability. Moreover, the edge network is more

suitable for mobile IoT. More fine-grained or integrated service

templates are saved in the edge platform, which is flexi-

ble and scalable to an increasing number of IoT services.

Moreover, many trust evaluation mechanisms can be estab-

lished in the edge platform, such as the device fault detection,

data error detection, and internal attack detection at the data

level because edge computing has a lower latency and can

identify problems with a smaller computational cost.

III. PRELIMINARY

A. Trust Evaluation Mechanism

The concept of trust is based on human social relationships.

There is no precise definition for such a thing in IoT-Cloud.

Zhu et al. [22] proposed a definition in the context of wireless

communications.

The trust of a node A in a node B is the subjective expec-

tation of node A receiving positive outcomes from interaction

with node B in a specific context.

B. Novel Service Architecture

The service architecture of the IoT-Cloud system is divided

into three layers: 1) the data collection layer; 2) the data pro-

cessing layer; and 3) the application service layer, as shown

in Fig. 1. In this novel service architecture, the edge network

lies in the data collection layer, the edge platform is located

in the data processing layer and the application service layer,

and the cloud is a part of the application service layer.

The edge network has the following primary advantages.

1) Replacing the recommendation/indirect trust.

2) Balancing the IoT load dynamically and selecting trusted

devices to perform the service by establishing the entire

trust state of the IoT.

3) Executing special user requirements, such as delay,

integrity, and precision.

The edge platform consists of four primary functions.

1) Virtualizing physical devices into virtual devices.

Fig. 1. Typical example for IoT-Cloud service.

2) Creating the parameter template Templateparameter and

the parsing template Templateparsing in the edge

platform.

3) Balancing dynamically the cloud load by providing some

service on the edge platform.

4) Cooperating with the edge network to ensure IoT relia-

bility at the data level.

The cloud mainly performs the following functions.

1) Parsing user requirements and finding the related

Templateparameter in the cloud, before sending the special

digital information to the target edge platforms.

2) Cooperating with the edge platform to create a

new Templateparsing when there is no corresponding

Templateparsing and storing this new Templateparameter.

3) Preferentially processing services that have more strin-

gent demands.

4) Storing a lot of historical data to be used for deeper data

mining and analysis.

C. Three Basic Service Scenes

There are three basic service scenes in which the user

requirements are limited to one IoT, as shown in Fig. 2. Many

mixed-service scenes where the user requirements are based

on multiple IoTs can be expressed as combinations of basic

scenes, for example smart environment applications, such as

smart transportation, healthcare [32], and augmented reality.

These smart environment applications have many users and

receive a large number of repeated/similar requirements.

In Scene 1, a user requires a service from IoT-1, as shown

in Fig. 2(a). The user enters their requirement in an applica-

tion/Web, and then the application/Web sends this requirement

to Edge-1. Edge-1 digitizes this requirement and checks

whether there is a corresponding Templateparameter. If there is

a Templateparameter, the user requirement is completed by the

corresponding Templateparsing in Edge-1. If not, Edge-1 sends

the digitized requirement to the cloud. The cloud then cooper-

ates with Edge-1 to establish a new Templateparsing according

the specifications of the IoT, such as its functions, limitations,

and precision. Finally, the cloud sends Templateparameter to

Edge-1.

In Scene 2, the required IoT-2 is closer to IoT-1. If Edge-1

has a Templateparameter for the user’s requirement, the require-

ment is completed by Edge-1. Edge-1 sends the special

digital information to Edge-2 and receives service results from

Edge-2. If Edge-1 has no Templateparameter, there are several

further steps to satisfy the user’s requirement, as shown in



4834 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

(a) (b) (c)

Fig. 2. Three types of service scenes. (a) Service Scene 1. (b) Service Scene 2. (c) Service Scene 3.

Fig. 3. Typical example of IoT.

Fig. 2(b). In step 1, the user sends the service requirement

to Edge-1. In step 2, Edge-1 digitizes this requirement. In

step 3, Edge-1 sends the digitized requirement to the cloud

because this requirement is beyond the capability of Edge-1.

In step 4, the cloud seeks Templateparameter, sends the special

digital information to Edge-2, and informs Edge-2 to commu-

nicate with Edge-1. If there is no Templateparameter, the cloud

cooperates with Edge-2 to establish a new Templateparsing.

Finally, Edge-2 communicates with Edge-1 to send the ser-

vice results to the user. Edges periodically obtain the latest

Templateparameter from the cloud, or the updating is triggered

by the users’ service requirements.

In Scene 3, the situation is similar to Scene 2 except

that Edge-3 is far away from Edge-1. As there is no

Templateparameter in Edge-1, the requirement is completed

by performing many steps, as shown in Fig. 2(c). Starting

with step 4, the following steps have some differences from

those described in Scene 2. In step 4, the cloud seeks a

Templateparameter and sends the special digital information to

Edge-3. If there is no Templateparameter, the cloud cooperates

with Edge-3 to establish a new Templateparsing. In step 5, Edge-

3 executes Templateparsing and returns the result to the cloud.

Finally, the cloud returns the service result to Edge-1.

IV. DESIGN OF THE PROPOSED NOVEL

SERVICE ARCHITECTURE

A. Coverage of the Edge Network

The design of IoT in IoT-Cloud systems is usually hierar-

chical, as shown in Fig. 3. Moreover, mobile IoTs are also

based on similar hierarchical architectures. It is ideal that the

edge network obtains high effective coverage through fewer

edge nodes in the IoT [33]. There are two means of managing

edge nodes: 1) the fixed mode and 2) the moving mode.

For the fixed mode, edge nodes are placed in fixed positions

of isoheight. However, this mode requires a large number of

edge nodes to achieve high coverage.

For the moving mode, edge nodes have a fixed isoheight

moving range; this mode needs less edge nodes but has slightly

weaker real-time performance. Internal attacks do not occur

all the time, so the moving mode is a good choice in cer-

tain situations. The key issue associated with this mode is

determining how to dispatch edge nodes to move and how

to update the trust state of the IoT in the edge network. As

an example, there are three isoheights and many edge nodes,

such as isoheight − 1: (D1, D2, and D3), isoheight − 2: (D4,

D5, D6, D7, D8, and D9), and isoheight − 3: (D10, D11, D12,

D13, D14, D15, D16, D17, D18, D19, D20, and D21). Every

inner edge node communicates with two outer edge nodes,

such as D1 with (D4, D5), D2 with (D6, D7), and D4 with

(D10, D11). For information interaction in the edge network,

the outer edge nodes perform interactions prior to the inner

edge nodes. In these circumstances, the inner edge nodes have

more comprehensive knowledge regarding the IoT. The infor-

mation updating is periodic or triggered by great changes, such

as devices moving across areas. The general process of infor-

mation updating is from the outside to the inside, and the inner

node is used as the information relay point between two fur-

ther nodes. If there are abnormal trust states for some devices,

inner edge nodes interact with corresponding outer edge nodes

to verify and even isolate malicious devices.

B. Physical Device Virtualization in the Edge Platform

The virtualization of physical devices is designed to solve

the problem that one physical device cannot be shared by

multiple applications. For virtualization, it is better to prepare

a corresponding virtual device in advance for every physical

device; these virtual devices are stored in the edge platform as

finer-grained resources. As an example of data sharing, when

service parsing templates need to call the physical device, the

edge platform allocates corresponding virtual device interfaces

to these service parsing templates, as shown in (1). The vir-

tual device sends data to service templates and changes the

parameter settings of physical devices according to relevant

requirements. The key to virtualization is standardization of

the data output format because the data format of physical

devices may be heterogeneous, as shown in (2). A virtual



WANG et al.: SECURE IoT SERVICE ARCHITECTURE WITH EFFICIENT BALANCE DYNAMICS BASED ON CLOUD AND EDGE COMPUTING 4835

TABLE I
LIST OF ABBREVIATIONS

device receives heterogeneous data and transforms it into a

standard data format. This data is then sent to service tem-

plates. Standardization of the data output format is beneficial

for further data processing, such as aggregation, integration,

and extraction

Devicephysical
virtualization

⇒ Devicevirtual
interface

⇒

⎧

⎪

⎨

⎪

⎩

Service1

...

Servicen

(1)
⎧

⎪

⎨

⎪

⎩

Formatdevice−1

...

Formatdevice−n

access
⇒

⎧

⎪

⎨

⎪

⎩

Device1
virtual

...

Devicen
virtual

transformation
⇒ Formatstandard. (2)

C. Trust Evaluation Mechanism

Table I shows the correspondence relationship between

words and abbreviations.

1) Trust Evaluation Mechanism in the IoT: In the IoT,

the main body of trust evaluation mechanism is the direct

trust Tdirect, which is calculated based on evidences from

direct communications among adjacent devices. These evi-

dences may include the device residual energy, the device

routing failure rate, the device communication success rate,

the device data correctness rate, the device signal strength, and

the device forwarding delay. These evidences can be further

organized into three categories: 1) the general trust evidence;

2) the network state detection evidence; and 3) the confirma-

tion trust evidence. In every device, the general trust evidence

is stored in an array Arrayevidences, which is then used to

calculate Tdirect, as

Tdirect =

n
∑

i=1

Weighti × f (xi)

f (xi)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Evnormal
Evtotal

, if

∣

∣

∣
TEv

old −
Evnormal
Evtotal

∣

∣

∣
< Td1

w1 ×
Evnormal

Evtotal
+ w2 × TEv

old, if Td1 <

∣

∣

∣
TEv

old −
Evnormal

Evtotal

∣

∣

∣
< Td2

0, else

(3)

where, Weighti is the weight value of the ith piece of evidence,

which is set according to the importance of the ith piece of

evidence. f (xi) is the trust value of the ith piece of evidence,

whose value is between 0 and 1. n is the number of needed

pieces of evidence, which may vary in different IoT environ-

ment. Evnormal is the normal behavior number of times for the

ith device, whereas Evtotal is the total monitoring number of

times for the ith device. Td1 and Td2 are two thresholds for

the difference value between the old trust value and new trust

state, and w1 and w2 are two weight values for the old trust

value and new trust state, whose values are set according to the

monitoring sensitivity. The smaller the values of Td1 and Td2

are, the higher the sensitivity is. If the value of w1 is larger,

the value of f (xi) would converge quickly to (Evnormal/Evtotal)

in (3).

The network state detection evidence mainly focuses on how

to reduce device communication pressure and ensure network

load balancing dynamically, such as monitoring the routing

failure rate and the communication collision rate to dynami-

cally adjust the data transfer route of Templateparsing. When

this type of evidence reveals outliers, they are sent to the edge

network as exceptions.

The confirmation trust evidence refers to seriously abnormal

behaviors that directly trigger the trust state confirmation pro-

cedure in the edge network, such as larger forwarding delays

and frequent communication requests. There are two types of

exceptions that trigger the trust state confirmation procedure:

one is that the difference value shown in (4) is greater than Td3

(a threshold set by the manager) during the direct trust calcu-

lation, while the other is that the confirmation trust evidence

triggers this procedure

Difference =

∣

∣

∣
Tnew

direct − Told
direct

∣

∣

∣
. (4)

2) Trust Evaluation Mechanism in the Edge Network:

The edge network is parallel to the IoT and does not par-

ticipate in normal IoT data transfer. In the edge network,

there is a table in every edge node that stores some infor-

mation about the devices and trust states, which is used

to ensure that the entire IoT is credible, as shown in

Table II. Time in Table II is the time since the last trust

update.

There are a set of rules for the execution of the trust

evaluation mechanism in the edge network.

1) The edge network periodically updates and stores the

trust values of every device. The trust values of every

device in the edge network are affected by three aspects:

the first aspect is the trust values in the IoT (when the

updating period arrives, the edge network selects trust

values from trusted devices and calculates the mean trust

value for every device); the second aspect is the excep-

tions from the IoT (when the cumulative amount of

these exceptions reaches threshold, trust updating and

the trust confirmation procedure are triggered); and the

third aspect is the exceptions from the edge platform

(when such exceptions happen, the trust value of the

corresponding device is temporarily set to 0, and the

trust confirmation procedure is triggered).

2) In the trust confirmation procedure, the edge network

proactively detects the target device’s behavior and

monitors environment information to confirm whether

the target device’s data is unrealistic.

3) For trust values in the IoT, when the updating period

arrives, the edge node obtains trust tables from every

device in its managing scope. Every trust value in these

trust tables is compared with the corresponding final

trust value, and trust values beyond the tolerance range

of the corresponding final trust value are flagged as out-

liers. If there is a high fraction of outliers in one trust

table, the device is considered to be malicious.



4836 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

TABLE II
INFORMATION ABOUT DEVICES AND TRUST STATES

4) The physical device does not proactively obtain recom-

mendation trust from the edge network unless there is no

trusted device to transmit data or there is a new device

in the IoT. If the trust value in the physical device is

not very different from the final trust value in the edge

network, the edge network will not change the trust

value in physical devices.

5) For isolating malicious devices, the edge node informs

normal devices to remove the route that has malicious

devices. The method of isolating malicious devices using

the edge network is efficient, accurate, and fast.

3) Trust Evaluation Mechanism in the Edge Platform: The

edge platform ensures data credibility at the data level. If pos-

sible, it is more beneficial to collect every physical devices

historical trust values to be used in analyses, such as analyzing

the relationship between the device performance change curve

and the trust value curve, the effect of environment changes

on device trust value and the connection between the load

and trust state for every part of the IoT. Moreover, the edge

platform has the potential to expand further to address the

increasing variety of internal attack types.

Some hidden data attackers may behave normally but pro-

duce incorrect data causing users to make wrong decisions.

Detecting this type of attack is difficult in the IoT because

the establishment of this detection mechanism in the IoT

consumes more resources, such as communication, compu-

tation, and storage. However, the edge platform can use data

correlations in the IoT to address hidden data attacks.

1) Device data redundancy. For obtaining more precisely

integrated and stable data, many IoTs allocate more

devices to monitor the same parameter in a certain area.

Thus, data from different devices fluctuate within a fixed

range. In the edge platform, this data can be picked out

and judgments can be performed when the period of

detection arrives, as

Tdevice =

{

1, if Tdlower < Datadevice < Tdupper

0, else.
(5)

The upper limit, Tdupper, and the lower limit, Tdlower, can

be obtained from the underlying edge node in this area.

If data are out of range, the exception would trigger the

detection mechanism.

2) Device data gradualness. The monitored target has direc-

tionality, which can be orderly sensed by devices in this

direction. The topology of the monitoring area is per-

ceived by underlying edge nodes and this topology is

then sent to the edge platform. According to the data

gradualness and topology, the edge platform can deter-

mine the ideal data model, obtain real data from devices,

and contrast this data with the ideal data model. If there

are many outliers, the corresponding physical devices

are considered malicious.

TABLE III
JUDGMENT CRITERIA

3) Some impossibilities. In monitoring areas, there are

some barriers that prevent devices from detecting the tar-

get although they are close to the target. Thus, if a device

breaks this impossibility, it is considered malicious.

Of course, there may be many factors that cause the trust

evaluation mechanism to misjudge legitimate devices as mali-

cious devices, such as sudden changes in the environment,

temporary failure of devices, and attacks against the trust eval-

uation mechanism. In most cases, these devices will need to be

analyzed based on their previous and future data to determine

whether they are malicious. If not, it is necessary to per-

form trust recovery of these devices via the trust confirmation

procedure.

D. Service

Since the cloud connects different areas together, services in

the cloud can be divided into two categories: 1) local services

and 2) remote services. In local services, users’ requirements

can be completed locally by the edge platform, whereas in

remote services, users’ requirements are completed by the

cloud or both the cloud and the edge platform. The selection

of local or remote services is determined by the resource con-

sumption Conresource and the total time consumption Contotal
time,

as shown in (6). There are several judgment criteria and these

are shown in Table III

Conresource = Con
storage
resource ∩ Con

processing
resource ∩ Conbandwidth

resource

Contotal
time = Contransmission

time + Contransfer
time + Con

processing

time . (6)

In the above, Con
storage
resource is the required storage space.

Con
processing
resource is the required hardware resource that is used

to process data. Conbandwidth
resource is the bandwidth required for the

user service. The values of the above three factors are 1 or 0.

If the value of any factor is 0, the value of Conresource

is 0. Contransmission
time is the time required for data transmission,

Contransfer
time is the required transfer time spent on routes among

the user, cloud and IoT, and Con
processing

time is the time required

for data processing.



WANG et al.: SECURE IoT SERVICE ARCHITECTURE WITH EFFICIENT BALANCE DYNAMICS BASED ON CLOUD AND EDGE COMPUTING 4837

Algorithm 1 Service Process

Input: User’s Requirement

Output: Array
Edge−1
result , Arraycloud

result, Resultintegration // Two result sets that are in the cloud and Edge-1, respectively

1: Req → Edge − 1; // User’s requirement is sent to Edge-1 in these service scenes

2: Req
extraction

→ Set(area, rangeparameter, typeparameter, · · · , typeservice); // Edge-1 extracts important information from the

user’s requirement and puts it into Set

3: Set
digitization

→ Arrayparameter + Resultintegration; //Edge-1 digitizes Set into a series of numbers that correspond to

Templateparameter, and the integration manner of these results is stored in Resultintegration

4: Arrayparameter
length
→ Lengtharray;

5: for i from 1 to LengthArray do //Finding Templateparameter for every Parameter

6: if Array[i] ∈ Templateparameter and Conresource == 1 in Edge-1 then //Templateparameter is in Edge-1 and Edge-1 can

complete this part

7: Edge-1 sends IDcloud in Templateparameter to corresponding Edges;

8: Edges find Templateparsing according to IDcloud and execute it;

9: Edges return results to Edge-1, and Edge-1 stores these results into Array
Edge−1
result ;

10: else

11: Send Array[i] to the cloud;

12: if Array[i] ∈ Templateparameter in cloud then // Templateparameter is in the cloud

13: if Cloud.Contotal
time > Edge1.Contotal

time and Conresource == 1 of Edge-1 then //Edge-1 can independently

accomplish this part with less time

14: The cloud sends IDcloud in Templateparameter to corresponding target Edges;

15: Edges find Templateparsing according to IDcloud and execute it;

16: Edges return results to Edge-1, and Edge-1 stores these results into Array
Edge−1
result ;

17: Edge-1 updates its Templateparameter from the cloud;

18: else

19: The cloud sends IDcloud in Templateparameter to corresponding target Edges;

20: Edges find Templateparsing according to IDcloud and execute it;

21: Edges return results to the cloud, and the cloud stores these results into Arraycloud
result;

22: end if

23: else //Creating new Templateparameter

24: The cloud checks specifications of Edges and generate a new Templateparameter;

25: The cloud sends parsing commands and Templateparameter to target Edges and instructs Edges to construct a

new Templateparsing;

26: Edges complete services through the edge network;

27: if Cloud.Contotal
time > Edge.Contotal

time and Conresource == 1 of Edge-1 then

28: Edges return results to Edge-1, and Edge-1 stores these results into Array
Edge−1
result ;

29: else

30: Edges return results to the cloud, and the cloud stores these results into Arraycloud
result;

31: end if

32: end if

33: end if

34: end for

To free the edge platform and cloud from addressing the

same or similar service requirements, it is better to create ser-

vice templates (Templateparameter and Templateparsing) in the

cloud and the edge platform. Templateparameter is created in the

cloud and focuses on areas, service types, service parameters,

etc. Additionally, the edge platform stores Templateparameter to

complete local service requirements. Another type of template

in the edge platform is Templateparsing, which corresponds

to Templateparameter. Templateparsing pays more attention to

the IoT, device, parameter setting, basic service parsing tem-

plate Templatebasic
parsing, etc. Templateparameter consists of three

parts: 1) the serial number of Templateparameter (correspond-

ing to the digitization of the requirement); 2) the IDcloud

(the special serial number that corresponds to that IDedge

in Templateparsing); and 3) the execution command (how the

cloud sends IDcloud and where the cloud sends IDcloud).

Templateparsing is composed of three parts: 1) the IDedge;

2) the number of strategies (one Templateparsing may have

several strategies); and 3) a series of commands (the imple-

mentation of one strategy). The service process is presented

in Algorithm 1, and the result processing is rendered in

Algorithm 2.

Theorem 1: All time complexities in digitization, Seeking

Templateparameter and Seeking Templateparsing are O(1).

Proof: The digitization of requirement is correlated with

the method of establishing the table. As an example, assume

that the number of broad categories is M, and the number

of subgroupings for every broad category is a variable N.



4838 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

Algorithm 2 Result Processing

Input: Array
Edge−1
result , Arraycloud

result, Resultintegration

Output: Service Result

1: if Edge-1 satisfies Resultintegration then //Edge-1 can perfect final result processing

2: Calculating the transmission time of Array
Edge−1
result from Edge-1 to the cloud, Edge1.Contransmission

time ; //Method: removing

the common parts of two assumptions, and compare their different parts

3: Calculating the transmission time of Arraycloud
result from the cloud to Edge-1, Cloud.Contransmission

time ;

4: Getting the transfer time consumption from Edge-1 to cloud, Con
transfer
time ;

5: if Edge1.Contransmission
time + Con

transfer
time < Cloud.Contransmission

time then //The expected time consumption in Edge-1 is

larger than in the cloud

6: Selecting the cloud as the platform for final result processing;

7: Returning the final result to Edge-1 and user;

8: else

9: Selecting Edge-1 as the platform for final result processing;

10: Returning the final result to user;

11: end if

12: else

13: Selecting the cloud as the platform for final result processing;

14: Returning the final result to Edge-1 and user;

15: end if

The maximum number of lookups is (M + Nmax), whose

time complexity is O(1). Of course, there may be many lev-

els, such as level(M, J, I). In this case, the total number of

lookups is (M + J + I + Nmax), whose time complexity is

also O(1).

The seeking of Templateparameter and Templateparsing can

be realized by converting from the number to the address of

table, whose time complexity is O(1). To reduce the size of

the data table, tables are also built in a hierarchical manner,

such as level(A, B, C). In this case, the number of lookups is

(A + B + C), whose time complexity is O(1).

Next, the services of IoT-Cloud are introduced in detail from

three aspects as follows.

1) Service in the Cloud and the Edge Platform:

Requniversal
extraction

⇒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

area

typeservice
...

typeparameter

digitization
⇒ Parameter

match
⇒ Templateparameter

distribution
⇒

⎧

⎪

⎨

⎪

⎩

Edge − 1
...

Edge − n.

(7)

User requirements can be divided into two categories:

1) universal requirements Requniversal and 2) special require-

ments Reqspecial. For Requniversal, there is a corresponding

Templateparameter in the cloud or the edge platform. The

execution process of Requniversal is shown in (7). First,

some important information is extracted from Requniversal

and placed into a set Set(area, typeservice, typeparameter, . . . ,

rangeparameter). Second, Set is digitized as a Parameter (sin-

gle service) or a set of Parameter that are Set(parameter)

(combined services). Third, the cloud or the edge platform

locates the corresponding Templateparameter from its database.

Finally, IDcloud is sent to the corresponding edge platforms.

Every Templateparameter may have several IDcloud that cor-

respond to several edge platforms. This method not only

reduces the data transfer volume but also shortens the service

parsing time.

There are many notes.

1) The user requirements are from websites or Apps that

have fixed formats.

2) The cloud digitizes important information as a serial

number and seeks an appropriate Templateparameter using

this serial number. Of course, the digitization mostly

occurs on the edge platform.

3) For the distribution, it is better to select high-

trust edges. However, if there are many requirements

that are in the waiting queue, the cloud should

select other trusted edges unless the user has special

demands.

4) If there are some new edges, the cloud should create

or update new Templateparameter according to the edges’

specifications.

For Reqspecial, there is no Templateparameter in the cloud or

the edge platform. After digitizing important information about

the users requirement as Parameter, the cloud finds appropriate

edges according to Parameter and the edges’ specifications.

The cloud then generates Templateparameter. Subsequently,

parsing commands and this new Templateparameter are sent to

the corresponding edges. Finally, the cloud guides the edge

platforms to establish Templateparsing. Meanwhile, the service

is finished by the edge network. If there are many edge plat-

forms that can meet the demands, the cloud will select trusted

edge platforms to complete this requirement. If edge plat-

forms can finish it, Templateparameter is stored in the cloud

and the edge platform, and Templateparsing is stored in the

edge platform.

2) More Services in the Edge Platform: In different

Templateparsing, commands tend to contain a lot of overlap-

ping parts, so combinations of overlapping parts can fulfill

these commands. These overlapping parts are designed as



WANG et al.: SECURE IoT SERVICE ARCHITECTURE WITH EFFICIENT BALANCE DYNAMICS BASED ON CLOUD AND EDGE COMPUTING 4839

Templatebasic
parsing; these Templatebasic

parsing constitute more com-

plex Templateparsing, as shown in (8). Moreover, these

Templatebasic
parsing should be variable to address changing service

requirements
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Templatebasic−1
parsing

...

Templatebasic−n
parsing

combination
→ Templateparsing. (8)

There are several notes.

1) Since many applications can share data from one phys-

ical device, the standard state setting of this phys-

ical device should be based on the frequency of

requirements.

2) For low-frequency requirements whose state setting

norms are lower than the standard state setting, the data

volume can be reduced to satisfy these requirements. In

this manner, the performance of the edge is guaranteed,

and the service waiting time is decreased.

3) For low-frequency requirements whose state setting

norms are high than the standard state settings, the edge

network can be utilized to perform these services.

These Templatebasic
parsing and Templateparsing are stored in the

edge platform. When parsing commands from the cloud are

sent to the edge platform, the edge platform directly fin-

ishes them using the edge network and creates Templateparsing.

When IDcloud is sent from the cloud to the edge platform, the

edge platform directly seeks the corresponding Templateparsing

to finish it.

3) Service in the Edge Network: Edge computing takes on

two important roles in IoT-Cloud services. The first is that edge

computing can maintain the performance and QoS of the IoT.

The second is that edge computing can execute special tasks

without increasing the communication load of the IoT.

The edge network records the trust states of all devices

in the IoT and these records are used to create data trans-

fer routes. Moreover, in the process of creating or updating

Templateparsing, the edge network provides the trust state of

every device to the edge platform. The edge platform cre-

ates one or more transfer routes for every Templatebasic
parsing or

Templateparsing. When one transfer route has some problems,

Templateparsing adopts other transfer routes to perform ser-

vices. Through this method, the credibility and real-time nature

of data can be well guaranteed.

Since edge computing has advantages for performing IoT

functions, the edge network is employed to realize special ser-

vices, such as more-real-time services, higher priority services,

and more precise location services.

V. EVALUATION

In this section, the performance of the trust evaluation mech-

anism and the service time consumption are described and

discussed.

A. Parameter Settings

The simulation platform is MATLAB R2016b. The exper-

imental setting consists of four IoTs and one cloud, where

every IoT has an edge platform, and the cloud is located in

the middle of the four IoTs. Edge-2 and Edge-4 are closer to

TABLE IV
EXPERIMENTAL PARAMETERS

TABLE V
SYMBOLS AND THEIR CORRESPONDING NAMES

Edge-1, and Edge-3 is far from Edge-1. In every IoT, there are

56 devices. These devices are randomly distributed in the IoT,

and different types of devices are placed in each IoT for some

specific experiments. Six underlying edge nodes are placed on

two isoheights of every IoT. We set the following: for general

IoT services, the transfer time from the user to the cloud is

26 ms. However, for novel IoT-Cloud services based on edge

(BOE) computing, the transfer time from the user to the cloud

is divided into two parts: 1) the transfer time from the user to

the edge (8 ms) and 2) the transfer time from the edge to the

cloud (18 ms). The transfer time between two adjacent edges

is 12 ms. In the experiment, there are four types of abnor-

mal devices: 1) temporary fault devices; 2) malicious behavior

devices; 3) general abnormal devices; and 4) malicious data

devices. These parameters are shown in Table IV.

B. Service Time

In this part, the service time consists of three parts: 1) the

data transfer time; 2) the data transmission time; and 3) the

data processing time. For a clear comparison, the service time

is divided into three phases: 1) the service time from the user

to the target edge; 2) the service execution time in the IoT;

and 3) the service time from the target edge to the user.

Symbols and their corresponding names are listed in

Table V, and these symbols are used in the following formulas.

1) Service Time From the User to the Target Edge: There

are some differences between service processes of the general

IoT service and the novel IoT service BOE computing. These

differences in the service time are demonstrated by using three

basic experimental scenes and four mixed experimental scenes,

as shown in Fig. 4.

Fig. 4(a) shows that the service time of “service with

parameter template” is shorter than that of “general IoT-Cloud



4840 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

(a) (b)

Fig. 4. Service time from the user to the target edge. (a) Three basic scenes.
(b) Four mixed scenes.

service” in the basic scenes. The reason is that service with

parameter template avoids repeatedly executing the service

parsing procedure.

For general IoT-Cloud service, the service time is calcu-

lated using (12). In the basic Scene 1, the service time of

service with parameter template is calculated using (9), which

removes Timecommand, T.Time
Edge−1

cloud and T.Timecloud
IoT . In the

basic Scene 2, the service time of service with parameter tem-

plate is calculated via (10), which does not require relay via the

cloud. In Scene 3, the service time of service with parameter

template is calculated via (11), which has advantages in the

process of parsing user requirements. Timematch spends less

time than Timecommand, and Timedigi in service with param-

eter template is similar to Timeextraction of general IoT-Cloud

service.

The total service time in mixed scenes is calculated through

the combination of three basic equations. Service with param-

eter template has advantages in shortening total service time

relative to general IoT-Cloud service, as shown in Fig. 4(b)

Time
Req

Scene1 = T.Timeuser
Edge−1 + Timedigi + Timematch (9)

Time
Req

Scene2 = T.Timeuser
Edge−1 + Timedigi + Timematch

+ T.Time
Edge−1

Edge−2 (10)

Time
Req

Scene3 = T.Timeuser
Edge−1 + Timedigi + Timematch

+ T.Time
Edge−1

cloud + T.Timecloud
Edge−3 (11)

Time
Req

general = T.Timeuser
cloud + Timeextraction + Timecommand

+ T.Timecloud
IoT . (12)

2) Service Execution Time in the IoT: The service execu-

tion time in the IoT mainly consists of two parts: 1) the service

time from edge to the target device Time
edge

targetdevice and 2) the

service time from the target device to edge Time
targetdevice

edge , as

shown in (13). The service execution time based on the edge

network is minimal because it can more accurately locate the

target device and has shorter routes. The service execution time

of “template with trust evaluation mechanism” is shorter than

that of “template without trust evaluation mechanism” because

the trust evaluation mechanism is more likely to select high-

trust devices to transfer data and can balance the IoT load

dynamically. Moreover, the trust evaluation mechanism can

help Templateparsing create several better data transfer routes to

enhance the service stability. The fraction of low-performance

devices and the degree of network congestion have certain

influences on the service execution time, as shown in Fig. 5.

Since the edge network is located outside the IoT, the fraction

(a) (b)

Fig. 5. Service execution time in IoT. (a) Influence from the number of
low-performance device. (b) Influence from the degree of network congestion.

of low-performance devices and the degree of network con-

gestion have weaker influences on its service execution time.

Template with trust evaluation mechanism selects appropri-

ate data transfer routes in advance; thus, it can effectively

avoid low-performance devices, as shown in Fig. 5(a). As the

fraction of low-performance devices exceeds 50%, the time

consumption obviously increases because template with trust

evaluation mechanism is more likely to select trusted devices

that are in the same level. When considering the influence of

network congestion on the service execution time, the num-

ber of low-performance device is set to 5. The influence of

network congestion on template with trust evaluation mecha-

nism is slightly weaker than that on “template without trust

evaluation mechanism” originally, as shown in Fig. 5(b), but

the phenomenon begins to reverse after the fraction of busy

devices reaches 50%. The reason for this result is that tem-

plate with trust evaluation mechanism tends to select trusted

devices in the peer level to balance the network load

TimeExecution
IoT = Time

edge

targetdevice + Time
targetdevice

edge . (13)

3) Service Time From the Target Edge to the User: To

calculate the service time from the target edge to the user,

the service data volume and location of the service data pro-

cessing center must be considered (edge or cloud). “1 + x”

indicates that there is a very large amount of service data, and

“0 + x” indicates that there is a small amount of service data.

Additionally, “x+1” indicates that the service data processing

center lies at edge, whereas “x + 0” indicates that the service

data processing center is situated in the cloud.

For 1 + x, the service time consists of the data transmission

time, the data transfer time, and the data processing time, as

shown in (14). For 0 + x, the service time is composed of the

data transfer and the data processing time, as shown in (15).

Because the data processing time is changeable, the data trans-

mission time and the data transfer time are the major factors

considered

Timeresult
1+x = Timetransmission + Timetransfer + Timeprocessing

(14)

Timeresult
0+x = Timetransfer + Timeprocessing. (15)

0 + 1: If users’ requirements can be completed in edge, the

total service time of service with parameter template would

be shorter, as shown in Fig. 6. For the three basic scenes, ser-

vice with parameter template can obviously shorten the service

time in Scene 1 and Scene 2, as shown in Fig. 6(a), because

service with parameter template avoids relay via the cloud.

The service time of service with parameter template in Scene



WANG et al.: SECURE IoT SERVICE ARCHITECTURE WITH EFFICIENT BALANCE DYNAMICS BASED ON CLOUD AND EDGE COMPUTING 4841

(a) (b)

Fig. 6. Service time from the target edge to the user (0+1). (a) Basic scene.
(b) Mixed scenes.

3 is almost equal to that of general IoT-Cloud service. For

the four mixed scenes, the total service time of service with

parameter template is shorter than that of general IoT-Cloud

service because Scene 1 or Scene 2 is in the mixed scenes, as

shown in Fig. 6(b).

0 + 0: In this situation, the service time of service with

parameter template is almost the same as that of general

IoT-Cloud service. It should not be ignored that edge has

certain pretreatment capabilities and can independently per-

form part of mixed services. Moreover, with improving edge

performance, this situation is becoming rarer.

1 + 1: When the volume of service data influences the total

service time, we perform several experiments to measure the

degree of this influence. This part is related to Algorithm 2.

For the basic Scenes 1 and 2, it is a better choice to select

Edge-1 as the data processing center, as shown in Fig. 7. If

the cloud is the data processing center, there would be addi-

tional costs in the transfer time since the cloud is a relay

point. For the basic Scene 3, if the data volume difference

between Edge-3 and Edge-1 (Edge-3 has more data) has less

time consumption Timetransmission than T.Time
Edge−1

cloud , it would

be a better choice that selecting Edge-1 as the data processing

center. This method derives from “Remove the common parts

of two assumptions, and compare their different parts.” For

mixed scenes, we select two mixed scenes in the experiment,

as shown in Fig. 7(c) and (d). The data volume of the result in

the cloud is set as Volumecloud (more data) and the data vol-

ume of result in the edge as Volumeedge; otherwise, Edge-1

is the better selection. Only when the data volume difference

between Volumecloud and Volumeedge exceeds the threshold

value [the intersection points in Fig. 7(c) and (d)], the data pro-

cessing center is the cloud. The threshold value represents that

the time consumption of different parts whose two assump-

tions are the same. Mixed Scene 2 + 3 has fewer advantages

than mixed Scene 1 + 3 in selecting edge as the data process-

ing center, since the threshold in mixed Scene 2+3 is smaller

than that in mixed Scene 1+3. Other mixed scenes change the

threshold value through adjusting the slope of “Additional cost

in the transmission time (Edge).” The higher the transmission

rate is, the more likely it is that edge is selected.

1 + 0: When the service data processing center must be

in the cloud, the service times of both service with parame-

ter template and general IoT-Cloud services are almost equal.

However, with enhanced edge performance, edge can address

more service requirements in the future.

Note: For some mixed scenes in this novel architecture,

their basic scenes can quickly perform the next service when

completing part of the service.

(a) (b)

(c) (d)

Fig. 7. Service time from the target edge to the user (1 + 1). (a) Basic
Scene 1. (b) Basic Scene 2. (c) Mixed Scene 1 + 3. (d) Mixed Scene 2 + 3.

C. Trust Evaluation Mechanism Performance

In the IoT, there are four types of abnormal devices: 1) tem-

porary fault devices; 2) malicious behavior devices; 3) general

abnormal devices; and 4) malicious data devices. The change

in the trust value of an abnormal device is measured after it

is detected, as shown in Fig. 8. There are three types of trust

evaluation mechanisms that are used for comparison: 1) BOE;

2) based on cluster head (BOCH); and 3) general combined

trust (GCT, consisting of direct trust, recommendation trust or

indirect trust). The difference between the BOE and BOCH

trust mechanisms is that the latter belongs to the IoT and may

have multihop distances to the outermost devices. In the trust

evaluation mechanism, there should be periodic trust updating

to ensure the latest network trust state, and this trust updating

period was set to 50.

In this experiment, the “mean trust value” is calculated

based on the trust values from all other devices that have

interactions with the abnormal device except for the abnor-

mal discovery device. The first discovery device performs a

trust evaluation of the abnormal device and generates the “trust

value of the device.” The trust updating in the edge network

is triggered by three types of events: 1) periodic trust updat-

ing; 2) accumulation value exception; and 3) command from

the edge platform. In GCT and BOCH, the discovery device

first requests recommendation values from adjacent devices or

cluster heads when an abnormality is detected. The discovery

device then calculates the final trust value of the abnormal

device using rules, such as basing the calculation on weight.

The temporary fault device returns to normal after a short

time (ten time slots); the trust value change of this device is

shown in Fig. 8(a). “Trust value in the edge network” has

no changes due to fewer exceptions from the IoT. However,

the “mean trust value (BOE)” decreases because the discovery

devices update the trust value of the abnormal device through

the direct trust. In GCT, the discovery device finds and updates

the trust value of the abnormal device, but the mean trust value

is greater because other adjacent devices have not yet detected

this abnormal device. BOCH is similar to GCT except for

featuring a longer delay.



4842 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 3, JUNE 2019

(a) (b)

(c) (d)

Fig. 8. Trust value changes of abnormal devices. Trust value changes of the
(a) temporary fault device, (b) malicious behavior device, (c) general abnormal
device, and (d) malicious data device.

When the accumulation of exceptions exceeds a threshold,

the edge network updates and confirms the trust value of the

abnormal device, as shown in Fig. 8(b). For GCT and BOCH,

the trust value of the abnormal device is approximately 0.4 (no

trust); thus, discovery devices no longer communicate with this

abnormal device. When the trust updating period arrives, the

abnormal device is regarded as a malicious device, and its trust

value is set to 0 throughout the entire IoT.

For the general abnormal device, the execution process of

BOE is similar to that in the malicious behavior detection, as

shown in Fig. 8(c). The general abnormal device still has a

higher trust value, so it can be selected to transfer data. When

the trust updating period arrives, the final trust is calculated.

The malicious data device behaves normally but generates

incorrect data to cause the user to make incorrect decisions;

the trust value change of this device is shown in Fig. 8(d).

This abnormality is difficult to detect unless there are some

data analyses at a higher level. Because it is preferable to not

perform a large amount of data analyses in the IoT, GCT, and

BOCH have few advantages for the detection of malicious data

devices. The edge network is located out of the IoT and can

thus perform these analyses at a higher level without affecting

IoT performance.

The network resource consumption is an important factor

in estimating the performance of trust evaluation mechanism.

Because BOE is out of the IoT, it consumes less commu-

nication resources than other schemes, as shown in Fig. 9.

Moreover, BOE can perform malicious device detection at the

data level, so the trust updating period can be extended to

reduce the IoT resource consumption. For BOCH, its com-

munication resource consumption is determined by the cluster

depth and cluster member number (a larger depth and more

cluster members require more communication resource con-

sumption). For GCT, its communication resource consumption

is associated with executing recommendations or indirect trust

calculations, which is influenced by the number of adjacent

devices.

Fig. 9. IoT communication resource consumption.

VI. CONCLUSION

The IoT-Cloud system combines IoT and cloud comput-

ing and has gradually become a research hotspot. However,

there are some security and efficiency problems that must be

solved in IoT-Cloud application services. Aiming at overcom-

ing internal attacks and repeated/similar service requirements,

a novel IoT-Cloud architecture is designed based on edge

computing, in which the trust evaluation mechanism ensures

the IoT’s security and assists the service template in solv-

ing service efficiency problems. The edge computing layer is

composed of two parts: 1) the edge network and 2) the edge

platform. The edge network builds on underlying edge nodes

that spread over the IoT, which are responsible for ensuring

the IoT’s security and performing special tasks. The edge plat-

form consists of a set of powerful edge nodes (edge servers),

which perform well at parsing users’ requirements through

service templates with a balance dynamics. Extensive exper-

imental results show that this novel architecture can greatly

improve IoT-Cloud systems service efficiency and ensure data

trustworthiness.

However, for the entire IoT-Cloud system, there is still much

work to be done. Future work will seek to perfect the archi-

tecture and solve other issues through this architecture and

edge computing, such as the IoT service pricing, the service

scheduling, and the service access points setting.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A survey on enabling technologies, pro-
tocols, and applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2347–2376, 4th Quart., 2015.

[2] A. Botta, W. D. Donato, and V. Persico, “Integration of cloud computing
and Internet of Things: A survey,” Future Gener. Comput. Syst., vol. 56,
pp. 684–700, Mar. 2016.

[3] J. Yang et al., “Marine surveying and mapping system based on cloud
computing and Internet of Things,” Future Gener. Comput. Syst., vol. 85,
pp. 39–50, Aug. 2018.

[4] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos, “Security and privacy
for cloud-based IoT: Challenges,” IEEE Commun. Mag., vol. 55, no. 1,
pp. 26–33, Jan. 2017.

[5] H.-W. Kim and Y.-S. Jeong, “Secure authentication-management
human-centric scheme for trusting personal resource information
on mobile cloud computing with blockchain,” Human Centric

Comput. Inf. Sci., vol. 8, no. 11, May 2018. [Online]. Available:
https://doi.org/10.1186/s13673-018-0136-7

[6] A. Ahmed, K. A. Bakar, M. I. Channa, K. Haseeb, and A. W. Khan,
“A trust aware routing protocol for energy constrained wireless sensor
network,” Telecommun. Syst., vol. 61, no. 1, pp. 123–140, 2016.

[7] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the Internet of
Things: A survey of existing protocols and open research issues,” IEEE

Commun. Surveys Tuts., vol. 17, no. 3, pp. 1294–1312, 3rd Quart., 2015.



WANG et al.: SECURE IoT SERVICE ARCHITECTURE WITH EFFICIENT BALANCE DYNAMICS BASED ON CLOUD AND EDGE COMPUTING 4843

[8] W. Jiang, G. Wang, M. Z. A. Bhuiyan, and J. Wu, “Understanding
graph-based trust evaluation in online social networks: Methodologies
and challenges,” ACM Comput. Surveys, vol. 49, no. 1, pp. 1–35, 2016.

[9] T. Wang et al., “Data collection from WSNs to the cloud based on
mobile fog elements,” Future Gener. Comput. Syst., Jul. 2017. [Online].
Available: https://doi.org/10.1016/j.future.2017.07.031

[10] T. Wang et al., “Fog-based storage technology to fight with cyber threat,”
Future Gener. Comput. Syst., vol. 83, pp. 208–218, Jun. 2018.

[11] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, Jan. 2017.

[12] T. Wang et al., “A novel trust mechanism based on fog computing in
sensor–cloud system,” Future Gener. Comput. Syst., Jun. 2018. [Online].
Available: https://doi.org/10.1016/j.future.2018.05.049

[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[14] V. Suryani, S. Sulistyo, and W. Widyawan, “Internet of Things (IoT)
framework for granting trust among objects,” J. Inf. Process. Syst.,
vol. 13, no. 6, pp. 1613–1627, 2017.

[15] X. Liu, Y. Liu, A. Liu, and L. T. Yang, “Defending ON–OFF attacks
using light probing messages in smart sensors for industrial communica-
tion systems,” IEEE Trans. Ind. Informat., vol. 14, no. 9, pp. 3801–3811,
Sep. 2018, doi: 10.1109/TII.2018.2836150.

[16] I.-R. Chen, J. Guo, and F. Bao, “Trust management for SOA-based
IoT and its application to service composition,” IEEE Trans. Services

Comput., vol. 9, no. 3, pp. 482–495, May/Jun. 2017.
[17] M. D. Alshehri, F. K. Hussain, and O. K. Hussain, “Clustering-driven

intelligent trust management methodology for the Internet of Things
(CITM-IoT),” Mobile Netw. Appl., vol. 23, no. 3, pp. 419–431, 2018.

[18] J. Duan, D. Gao, D. Yang, C. H. Foh, and H.-H. Chen, “An energy-
aware trust derivation scheme with game theoretic approach in wireless
sensor networks for IoT applications,” IEEE Internet Things J., vol. 1,
no. 1, pp. 58–69, Feb. 2014.

[19] W. Meng, W. Li, C. Su, J. Zhou, and R. Lu, “Enhancing trust manage-
ment for wireless intrusion detection via traffic sampling in the era of
big data,” IEEE Access, vol. 6, pp. 7234–7243, 2018.

[20] J. Liu, J. Yu, and S. Shen, “Energy-efficient two-layer cooperative
defense scheme to secure sensor-clouds,” IEEE Trans. Inf. Forensics

Security, vol. 13, no. 2, pp. 408–420, Feb. 2018.
[21] C. Yang, C. Liu, X. Zhang, S. Nepal, and J. Chen, “A time efficient

approach for detecting errors in big sensor data on cloud,” IEEE Trans.

Parallel Distrib. Syst., vol. 26, no. 2, pp. 329–339, Feb. 2015.
[22] C. Zhu et al., “Trust assistance in sensor-cloud,” in Proc. Comput.

Commun. Workshops, 2015, pp. 342–347.
[23] M. Barcelo et al., “IoT-cloud service optimization in next generation

smart environments,” IEEE J. Sel. Areas Commun., vol. 34, no. 12,
pp. 4077–4090, Dec. 2016.

[24] T. Baker, M. Asim, H. Tawfik, B. Aldawsari, and R. Buyya, “An
energy-aware service composition algorithm for multiple cloud-based
IoT applications,” J. Netw. Comput. Appl., vol. 89, pp. 96–108, Jul. 2017.

[25] X. Xu et al., “S-ABC: A paradigm of service domain-oriented artificial
bee colony algorithms for service selection and composition,” Future

Gener. Comput. Syst., vol. 68, pp. 304–319, Mar. 2017.
[26] C. Zhu, V. C. M. Leung, K. Wang, L. T. Yang, and Y. Zhang, “Multi-

method data delivery for green sensor-cloud,” IEEE Commun. Mag.,
vol. 55, no. 5, pp. 176–182, May 2017.

[27] S. Chatterjee, S. Misra, and S. Khan, “Optimal data center scheduling
for quality of service management in sensor-cloud,” IEEE Trans. Cloud

Comput., to be published, doi: 10.1109/TCC.2015.2487973.
[28] T. Wang et al., “Big data reduction for a smart city’s critical infras-

tructural health monitoring,” IEEE Commun. Mag., vol. 56, no. 3,
pp. 128–133, Mar. 2018.

[29] M. Z. A. Bhuiyan et al., “Dependable structural health monitoring
using wireless sensor networks,” IEEE Trans. Depend. Secure Comput.,
vol. 14, no. 4, pp. 363–376, Jul./Aug. 2017.

[30] B. Cheng et al., “Fogflow: Easy programming of IoT services over
cloud and edges for smart cities,” IEEE Internet Things J., vol. 5, no. 2,
pp. 696–707, Apr. 2018.

[31] T. Wang et al., “A three-layer privacy preserving cloud storage scheme
based on computational intelligence in fog computing,” IEEE Trans.

Emerg. Topics Comput. Intell., vol. 2, no. 1, pp. 3–12, Feb. 2018.
[32] Q. Jin, B. Wu, S. Nishimura, and A. Ogihara, “Ubi-liven: A human-

centric safe and secure framework of ubiquitous living environments for
the elderly,” in Proc. Int. Conf. Adv. Cloud Big Data, 2017, pp. 304–309.

[33] Z. Li, Y. Liu, A. Liu, S. Wang, and H. Liu, “Minimizing
convergecast time and energy consumption in green Internet of
Things,” IEEE Trans. Emerg. Topics Comput., to be published,
doi: 10.1109/TETC.2018.2844282.

Tian Wang received the B.S. and M.S. degrees
in computer science from Central South University,
Changsha, China, in 2004 and 2007, respectively,
and the Ph.D. degree from the City University of
Hong Kong, Hong Kong, in 2011.

He is currently a Professor with Huaqiao
University, Quanzhou, China. His current research
interests include wireless sensor networks, fog com-
puting, and mobile computing.

Guangxue Zhang received the B.S. degree from the
Liaoning University of Technology, Jinzhou, China,
in 2016. He is currently pursuing the master’s degree
at Huaqiao University, Quanzhou, China.

His current research interests include wire-
less sensor networks, mobile computing, and fog
computing.

Anfeng Liu received the M.S. and Ph.D. degrees
in computer science from Central South University,
Changsha, China, in 2002 and 2005, respectively.

He is a Professor with the School of Information
Science and Engineering, Central South University.
His current research interests include cyber-physical
systems, service networks, and wireless sensor
network.

Dr. Liu is a member of the China Computer
Federation.

Md Zakirul Alam Bhuiyan (M’09–SM’17)
received the B.S. degree in computer science and
technology from the International Islamic University
at Chittagong, Chittagong, Bangladesh, in 2005,
and the M.E. and Ph.D. degrees in computer sci-
ence and technology from Central South University,
Changsha, China, in 2009 and 2013, respectively.

He is currently an Assistant Professor (research)
with the Department of Computer and Information
Sciences, Fordham University, New York, NY, USA.
He was a Post-Doctoral Fellow with Central South

University, a Research Assistant with Hong Kong Polytechnic University,
Hong Kong, and a Software Engineer in industry. His current research interests
include dependable cyber-physical systems, wireless sensor network applica-
tions, network security, and sensor-cloud computing.

Dr. Bhuiyan has served as a Managing Guest Editor, the Program Chair,
the Workshop Chair, the Publicity Chair, a TPC member, and a Reviewer of
international journals/conferences. He is a member of the ACM and Center
for Networked Computing.

Qun Jin (M’95–SM’17) is a Professor with
the Networked Information Systems Laboratory,
Department of Human Informatics and Cognitive
Sciences, Faculty of Human Sciences, Waseda
University, Tokorozawa, Japan. He has been exten-
sively engaged in research works in the fields of
computer science, information systems, and social
and human informatics. He seeks to exploit the
rich interdependence between theory and practice
in his research with interdisciplinary and integrated
approaches. His current research interests include

human-centric ubiquitous computing, behavior and cognitive informatics,
big data, data quality assurance and sustainable use, personal analytics
and individual modeling, intelligence computing, blockchain, cyber security,
cyber-enabled applications in healthcare, and computing for well-being.

Dr. Jin is a Senior Member of the Association of Computing Machinery
and Information Processing Society of Japan.

http://dx.doi.org/10.1109/TII.2018.2836150
http://dx.doi.org/10.1109/TCC.2015.2487973
http://dx.doi.org/10.1109/TETC.2018.2844282

