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Abstract

We present the first one-roundtrip protocol for performing range, range-aggregate, and order-by-limit
queries over encrypted data, that both provides semantic security and is efficient. We accomplish this task
by chaining garbled circuits over a search tree, using branch-chained garbled circuits, as well as carefully
designing garbled circuits. We then show how to build a database index that can answer order comparison
queries. We implemented and evaluated our index. We demonstrate that queries as well as inserts and
updates are efficient, and that our index outperforms previous interactive constructions. This index is part
of the Arx database system, whose source code will be released in the near future.

1 Introduction

Operations that perform order comparison are crucial for databases. In many applications, such operations run
on private or confidential fields such as grades, medical diagnosis, or timing information. TPC-C [TPC-C], an
industry standard benchmark for databases, lists the following order operations as representative for a class
of applications: range queries, order by, order by limit L (which returns the top L values), and aggregation on
top of range queries (such as the sum over a range).

To protect sensitive data, there has been a significant amount of work on computing these operations
on encrypted data. Despite many schemes proposed, none of them provide the functionality, security, and
performance needed in a database setting.

A Desired Scheme for Databases. Databases use indexes to perform such comparison queries efficiently
(e.g. in logarithmic time). Indexes are search trees in which the data is organized in sorted order. The server
traverses the tree to answer the operations above. For example, for a query over the range [a, b], the database
server traverses the tree to find ¢ and b, and then retrieves the values stored at the leaves between a and b. For
an order by limit L query, the server retrieves the leftmost L items in the index or in a range.

A secure version of the index would enable the server to do similar work without learning the values
stored in the index or the range [a, b]. Concretely, the encrypted index should provide semantic security. The
index should not reveal anything about the data, other than the number of data items. In particular, the index
should not reveal the ordering of the data in the database. When the server receives a query to perform an
operation, the server should still be able to traverse the tree; the server sees the path in the tree it takes, but
the server should not learn anything else about the data in the index or in the query. For a range query, once
the server identified the database rows that match the range, the server should not also learn their order. We
formalize the security of this index in §4.3.

To sum up the desired properties, we would like a database index that satisfies the following goals:

e Functionality goal: The index should support range and order-by-limit queries, as well as aggregates
over these queries. It should also be possible to remove elements and insert new elements.



e Performance goal: The index should retain the logarithmic asymptotics of the regular database indexes
as well as be fast in absolute terms. Concretely, the constants should be low enough that the index can
be used in real applications.

o Security goal: The encrypted index should provide semantic security, formally defined in §4.3. The
pattern of accesses observable to an attacker should be as above.

Contributions. In this paper, we construct a new database index, called the reactive index, that achieves all
the properties above. The index is based on a chaining of garbled circuits we call branch-chained garbled
circuits inspired from the Garbled RAM [GLO15] literature, as well as a careful design of garbled circuits.
Since garbled circuits can be used at most once, we devise a fast repair procedure. We call our index scheme
reactive because it reacts similarly to a chemical reaction upon receiving input: as we explain below, a part of
the index combines with the input and gets consumed in the process of creating an output. For further use,
parts of the index then need to be repaired.

Moreover, we show that this scheme implies a one-roundtrip order-preserving encoding scheme (without
large client-side storage) not known before.

Finally, we show how to use the reactive index to execute database queries relying on order comparison.
We designed and implemented the reactive index as part of the new Arx database system, which offers a rich
set of operations in addition to order queries and shares a similar philosophy with this scheme.

Related Work. There is an extensive literature on computing range queries and order operations on
encrypted data, with the goal to improve the tradeoff between functionality, security, and performance.
However, no scheme achieves all the desired security, functionality, and performance goals we are aiming for.
We survey this literature in §2.

Summary of Technique. For illustration purposes, we begin by describing a strawman construction that
almost achieves the desired security. Consider a simple database of key-value pairs. Now consider the
key-value pairs arranged in a binary search tree sorted by key where each node is IND-CPA encrypted by the
client. Every time the server needs to search the tree for a particular value a, e.g., as part of processing a
range query over [a, b, the client helps the server traverse the tree. Whenever the server needs to decide if
the encrypted value at a node v of the tree is smaller or larger than a, the server provides this node to the
client, the client decrypts it, compares it to a, and tells the server the result of the comparison. To achieve the
desired security (which we elaborate on in §4.3) also for inserts and deletes, we use a history-independent
data structure for the tree, so that the shape of the tree does not depend on the order of the operations.

However, this strawman is an interactive protocol with as many rounds of interaction as levels in the
tree. Considering a cloud servicing scenario with network latencies in the order of 5-50ms per roundtrip,
the performance overhead of the additional roundtrip is significant. This technique was actually proposed
in mOPE [PLZ13] to achieve order-preserving encryption and is also currently used in the database system
ZeroDB [EW16] for range queries. In contrast, as we discuss in §10, our index processes an entire range
query in less than a roundtrip time.

Inspired by work on Black-Box Garbled RAM [GLO15], we construct a scheme that uses garbled circuits
organized in a tree to reduce interaction. The idea is that instead of storing IND-CPA ciphertexts at each node
in the tree, the server stores a garbled circuit, each of which hardcodes the value at the node, say y, into a
comparison circuit. Given input labels for a value x, the garbled circuit compares x to y, and outputs 1 if
z < y and 0 otherwise, which tells the server to go left or right respectively. Since the client cannot supply
labels for the child garbled circuit (because the client does not know if the server will go left or right in



advance), we also provide a mechanism to the server to convert output labels into input labels for the correct
child. In this manner, the server can traverse the tree down to the leaf with no additional help from the client.

Since garbled circuits may only be used once, the client provides new garbled circuits to replace the used
ones. Fortunately, the expected number of garbled circuits consumed is logarithmic. We call this the repair
procedure.

We have put significant effort into making this technique practical. We make the garbled circuits small
through a set of techniques such as a small comparison circuit, transition tables to encode output labels, using
the half gates techniques of [ZRE15], and a compressed representation of these circuits.

Implication to Order-Preserving Encryption Schemes. We also show that our reactive index can be
used to construct a one-round ideal-security mutable order-preserving encoding scheme, achieving both an
ideal notion of security for such schemes and of asymptotic performance, the first such solution. [BCL*09]
formalizes the ideal security for order-preserving schemes (IND-OCPA); intuitively, the server should learn
nothing about the encrypted values other than their order. Regarding performance, the scheme should ideally
not require more than one roundtrip between the client and the server to return an answer. Moreover, the state
at the client should be small (e.g., logarithmic in the size of the database). A scheme that stores all the values
encrypted at the client trivially achieves this property but is not desirable in practice.

So far, there is no order-preserving scheme that achieves both of these properties. We show that our
reactive index can be used to implement such a scheme, the construction of which follows directly from the
construction of our index.

Evaluation Results. We implemented our reactive index using Java and C++. The resulting size of each
garbled circuit is small. Each node in our index needs to store n - 6 - 128 4 128 bits for the garbled circuit and
transition tables, which for a bit-length of 32 bits results in a total of 3088 bytes. In comparison, a Paillier
ciphertext whose only ability is to compute addition, requires 512 bytes. Furthermore, the time to evaluate a
32-bit garbled comparison circuit is 10839 cycles (0.0036ms) and computing a complete range query on a
data-set of size 5 million is in the order of milliseconds.

2 Related Work

There is an extensive amount of work on computing order operations on encrypted data, with the goal to
improve the tradeoff between functionality, security, and performance.

We organize related work in four categories: (1) order-preserving encryption and similar schemes, (2)
functional encryption and similar range query schemes, (3) schemes derived from searchable encryption, and
(4) other related work. The above categories are not mutually exclusive.

None of the categories above achieve all the desired security, functionality, and performance goals
outlined in the introduction, §1. Table 1 summarizes their shortcomings. In the rest of the section, we explain
each category in part.

2.1 Order-Preserving Encryption (OPE) and Similar Schemes

An encryption scheme Enc is order-preserving, if it preserves the order which can either meana < b —
Enc(a) < Enc(b) or the stricter property a < b = Enc(a) < Enc(b), making the encryption scheme
effectively deterministic.

There has been a significant amount of work on OPE both in the research community [OSC03; AKS*04;
YKK*11; AEET09; LPL*09; KAK10; XYH12; LW12; LW13; PLZ13; BCL*09; BCO11] and in indus-
try [AWW12; Per; Cip; Rasl11]. The earlier constructions were ad-hoc and insecure. The first rigorous



Category of Related Work Functionality | Desired Security | Performance
Order-preserving encryption and similar, §2.1 YES NO YES
Functional encryption schemes and similar, §2.2 NO YES NO
Searchable encryption-based schemes, §2.3 NO NO YES
Our reactive index YES YES YES

Table 1: Related work comparison. The last three columns indicate if the related work meets the goals
outlined in §1. In some categories, the tradeoff differs from work to work, so we considered the most
representative works.

treatment was provided by [BCL*09]. This work included two security definitions: (1) indistinguishability
from a random order preserving function (ROPF) and (2) indistinguishability under ordered chosen plaintext
attack (IND-OCPA). They also provided an OPE scheme secure under the first definition. Follow-up work
[BCO11] showed that the ROPF model is insufficient and that IND-OCPA is desired. [PLZ13] showed that
IND-OCPA is impossible for a encryption scheme in the normal sense. They circumvent this impossibility
result by relaxing the syntax of an encryption scheme and allow ciphertexts to be changed after encryption,
and they provide the first IND-OCPA secure construction, called mOPE. Unfortunately, their encryption
scheme requires interaction between the client who holds the private key, and the server who holds all
previously generated ciphertexts. Subsequent work tried to reduce the number of interactions and to make the
scheme randomized [KS14; Ker15].

Another way to circumvent the IND-OCPA impossibility is to consider order-revealing encryption. In
order revealing encryption, there exists a public algorithm capable of comparing any two ciphertexts. There
exists an ORE scheme based on multi-linear maps [BLR*14] that provides IND-OCPA but is due to the
multi-linear maps to inefficient in practice. An efficient ORE scheme was proposed [CLW*16] but it leaks
the first bit in which two ciphertexts differ which is significant.

Overall, these schemes deliver rich functionality including the one we target. At the same time, some
schemes also deliver reasonable performance. But even an IND-OCPA secure encryption scheme reveals
the order of ciphertexts by definition at rest. In many application domains this leakage already significantly
compromises security. Specifically for applications with a small domain size like age or date, OPE and ORE
are insecure [SW15; CGP*15]

2.2 Functional Encryption and Related Range Query Schemes

A set of schemes focus on performing range queries over encrypted data [HIL*02; SBC*07; BWO07; Lul2].
With these schemes, one encrypts data values and query values with different algorithms, and the server can
learn the order between a query value and a data value. The security goal is to not reveal anything else about
the data, namely, no order relations between two query or two data values, which satisfies our desired security
guarantee.

Unfortunately, no efficient constructions achieve this ideal goal; some schemes reveal all query values,
other schemes reveal some data values, and some schemes provide only approximate answers.

On the theoretical side, Functional Encryption can generally be achieved under multi-linear map as-
sumptions [GGH*16]. The special case of range predicate encryption was constructed in [Lul2] using
inner product predicate encryption, yielding a scheme with reasonable performance for a small number of
ciphertexts but still impractical for performing full database scans. Also, this scheme is not adaptively secure,
which makes updates insecure. Although there are generic ways to compile selectively secure functional
encryption into adaptively secure functional encryption [ABS*15], their practicality is uncertain.
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Regarding functionality, these schemes do not support order by and order by limit, which are two basic
operations required by databases.

2.3 Searchable Encryption-Based Schemes

Some recent proposals [FIK*15] build range query schemes from searchable encryption. At a high level,
these schemes map a range [a, b] to a set of prefixes, and then search for data values that match those prefixes
by equality. The result of a query often contains more data values than belong to the range, and the client
filters these values.

While these schemes support range queries, they do not support order by, order by limit, and aggregates
over range queries. They do not support the latter because the result of the aggregate contains data values
outside of the range as well and is thus not correct. Order by limit are often more common than range queries
(e.g., TPC-C [TPC-C]) because they are used for pagination.

Regarding security, such schemes are comparable with our index scheme, and neither is more secure than
the other. For example, these schemes leak more about the range being matched, e.g., the size of the range.
For data values that match a range, the scheme additionally leaks if two values match a prefix. On the other
hand, the access pattern of inserting values leaks less with these schemes than with our index. Developing a
(practical) hybrid of these schemes and our index that has the best of both worlds is a useful open question.

2.4 Other Related Work

Our tree of garbled circuits is similar in spirit to Black-Box Garbled RAM [GLO15] and TWORAM [GMP15].
Unlike this work, our scheme is practical. We designed it specifically for our setting. In §1, we explained the
various other techniques we contribute on top of this approach.

Secure Indexes [Goh03] are data structures that allow a querier with a “trapdoor” for a word x to test in
O(1) time only if the index contains x.

3 Notation

Let A denote the security parameter throughout this paper. For a distribution D, we say « <— D when « is
sampled from the distribution D. If S'is a finite set, by < S we mean x is sampled from the uniform
distribution over the set S. We use p(-) to denote that p is a function that takes one input. Similarly, p(-, -)
denotes a function p that takes two inputs.

We say that a function f is negligible in an input parameter A, if for all d > 0, there exists K such that
for all A > K, f(\) < k=% For brevity, we write: for all sufficiently large ), f(\) = negl(\). We say
that a function f is polynomial in an input parameter A, if there exists a polynomial p such that for all A,
FfA) < p(X). We write f(A) = poly(X). A similar definition holds for polylog(\).

Two ensembles, X = {X)}reny and Y = {Y) }\en, are said to be computationally indistinguishable
(and denoted { X }ren ~ {Y)}en) if for every probabilistic polynomial-time algorithm D,

| Pr[D(Xy,1%) = 1] — Pr[D(Yy, 1) = 1]| = negl()).



4 Definition of a Secure Reactive Index

4.1 Overview

A reactive index is an interactive protocol executed between a stateful client and a stateful server. In our
definition and construction, we model the server as an honest-but-curious attacker. We then discuss a
straightforward extension to protecting against a malicious server-side attacker in §11.

At setup time, our scheme allows bulk-loading an initial database; the database can also be modified
through subsequent queries. The bulk-load functionality models a read-only database and is more efficient
than creating the database by inserting one element at a time.

The database is modeled as a list of key-value pairs. Keys do not need to be unique. This model suffices
for a more complex relational model with many columns per table because each value can store multiple data
items or can be a pointer to the whole document/record associated with this key. In Arx, the value is both a
pointer to values in a table row and some precomputed values.

When the client issues a query, the query is encrypted at the client and sent to the server who runs this
query on the encrypted data to produce an encrypted answer. The server can answer with the response in full,
requiring only one roundtrip.

The execution of the query “damages” the index partially. To fix the index, the client needs to provide
repair information. As we will see, this repair information is small and can be provided with the next query,
not requiring a separate roundtrip.

We continue with the formal definition.

4.2 Formal Definition

Remark 4.1. Throughout the paper we assume algorithms to be random access machines. As a result, an
algorithm’s runtime may be lower than the size of the memory it is working on but the output can still consist
of the whole memory.

Definition 4.1 (Database). A database DB is a list of values of which each is associated with a not necessarily
unique key: DB C Z x {0,1}*

Definition 4.2 (Query Functionality). The functionality Func, of a query q is a polynomial time algorithm
(DB, R) « Funcy(DB) that on input a database DB outputs an updated database DB’ as well as a result
set comprising of key-value pairs.

Definition 4.3 (Queries).
1. For q = (RANGE, [a, b]), Funcy(DB) outputs (DB, Riq 35 = {(k,v) : (k,v) € DB,k € [a,b]}).

2. For ¢ = (ORDER LIMIT,|a,b],start,length), let L be the list of elements in R,y ordered by k.
Then Funcy(DB) outputs (DB, (L[start], ..., L[start + length]).

3. For q = (AGGREGATE, |a, b]), Funcy(DB) outputs
(DB, > f(kv)).
(k,v)ER[q4,p]

Where f can be any fixed function that returns an integer and + is a fixed associative operator. For
ease of discourse, we assume this operator to be plain addition in the remainder of the paper. The
generalization is straight-forward.



4. For ¢ = (INSERT,k,v), Funcy(DB) outputs (DB’ = DB.append(k,v)), D).

5. For q = (DELETE, [a,b]), Funcy(DB) outputs (DB’ = {(k,v) : (k,v) € DB,k ¢ [a,b]},0).

For a database DB we write short DB(qu, - . ., qn) for the database that results by applying iteratively
Func,, to DB.

Definition 4.4 (Syntax of a Reactive Index). A reactive index scheme Index = (ClientSetup, EncQuery,
RunQuery, DecResult, Repair) is a tuple of PPT algorithms executed by a client and a server with the
following properties:

(Z,S) « ClientSetup(1*, DB) is executed by the client and, on input the security parameter \ in unary
representation and an initial database, outputs private internal state S which the client will use in the
later execution of the protocol as well as the encrypted index 1.

Q + EncQuery(S, q) is executed by the client and on input the private internal state S and a query q,
outputs an encrypted query Q.

(R,T') < RunQuery(Z, Q) is executed by the server and on input the index and an encrypted query, outputs
an encrypted result as well as an updated index.

(R,H,S’) < DecResult(S,R) is executed by the client, and on input S and an encrypted result R, outputs
the result set in clear text, repair data H and an updated secret state.

(Z') + Repair(Z,H) is executed by the server, and on input the index and repair data, outputs an updated
index.

Remark 4.2 (Round Complexity). The round complexity in the definition of the reactive index is 4, i.e. two
roundtrips: One for the query and one for the repair. This notation makes specifying and analyzing the
security guarantees easier but in practice this behaves like a one-roundtrip protocol because the result is
already obtained after the first roundtrip and the repair phase can be integrated into the following query
phase.

In order to say a reactive index is correct, we require that all queries executed in a standard database
return the same result when they are executed using the reactive index.

Definition 4.5 (Correctness). A reactive index Index supports a set of queries R if for any sequence of
queries (q1, ..., qr), ¢i € R, and any initial database DBy, the results of the queries when executed on plain
text are the same as when executed with Index. Concretely, fori =1,... k let

(DB;,R;) < Funcy, (DB;_1)
(Zo, So) « ClientSetup(1*, DBy)
Q; + EncQuery(S;_1, q)
(Ri,Z;) < RunQuery(Z;_1, Q;)
(Ri, Hi, Si) < DecResult(S;_1, R;)
(Z;) < Repair(Z;, H;)

then we require that
Ri=R}.



A correct and secure index could so far easily achieved by storing the whole database on the client,
which defeats the purpose of our definition. Therefore we have efficiency requirements, which are concisely
formulated in the following definition. All other expected efficiency requirements follow from the requirement
that all algorithms are PPT.

Definition 4.6 (Efficiency). A reactive index Index is efficient, if the expected size of the client state and
repair data |H| = |S| = O(Alog |DB|) at all times where X is the security parameter. And the runtime of
RunQuery(Z, Q) = O(|R| + log |Z|) in the random access machine model.

4.3 Threat Model and Security Definition

Our model consists of two parties, clients and a server, and corresponds to a cloud outsourcing model. The
clients are trusted. We present our schemes for an honest but curious attacker at the server, but discuss an
extension to a malicious attacker. The server attackers we consider are powerful. Such attackers include
curious employees of a cloud provider, hackers breaking into the database servers, or subpoenas. The
attackers can see all the information at the server: the entire contents of the database, any data or keys stored
in memory, and any network messages received by the server. Hence, if the decryption key is in main memory,
the attacker can reach it and decrypt the database.

To better undestand our security guarantees, we categorize the attackers into two kinds: snapshot and
persistent attackers. The snapshot attacker steals a snapshot of the database (tables and indices included). The
persistent attacker manages to install a logger that records over time the accesses and cryptographic tokens
from the client and then sends it to the attacker.

The snapshot attacker is by far the most common attacker we encounter today. Hackers or insiders simply
steal versions of the database. For this attacker, the database in our scheme is encrypted with IND-CPA
security, providing indistinguishability under chosen plaintext attack.

For the persistent attacker, we formulate our security guarantees using a standard leakage function and
prove semantic security up to this leakage. We note that the persistent attacker is less common than the
snapshot attacker and is much easier to detect and stop than a snapshot attacker. The longer the attacker stays
in the system, the more likely it gets caught. Compared to a snapshot attacker, a persistent attacker gets to
see side channel information: timing attacks (e.g., the time when a query arrives indicates the user is online)
or attacks based on access patterns (which positions in the index are accessed and how frequently, but not
their contents). This attacker still does not see index contents as before. Our index scheme does not prevent
such leakage. Oblivious RAM [SSS12] is an active area of research that hides access patterns, and Garbled
RAM [GLO15] enables combining Oblivious RAM with computation like in our index. Despite significant
progress on these fronts in recent years, there still does not exist a cost-effective solution.

Because we want security of previous queries for an attacker who breaks in at a later point, we need
to leverage the secure erasure model where the honest server is assumed to be able to securely erase data
without any trace.

Next, we give a security definition based on the Real/Ideal paradigm that captures the above threat model.
The definition uses a leakage function that precisely models what an adversary should be able to learn from
observing one or more queries to the database.

Definition 4.7 (Leakage, Reproducible Leakage). For a reactive index Index we define a leakage function
Leak(DB), Leak(DB, q) that maps a databases DB and database-query pairs to strings formalizing the
information the server is allowed to learn in the protocol. We write Leak(q) short for Leak(DB, q) if the
database is known from the context. We call a string x = (xo, . .., x,) reproducible leakage, if there exists a



database DB and queries (q1, . . ., ¢y ) such that © = (Leak(DB), Leak(q1), . . . , Leak(gyn)) and this database
and queries are efficiently computable.

We provide both adaptive and non-adaptive security definitions. We will prove security only for the
non-adaptive case. This suffices for our setting because the attacker does not control the queries issued by the
client and the clients issue these queries without seeing the encrypted data. Nevertheless, we are working on
an adaptive security proof, but this requires complicated modifications to our scheme.

Definition 4.8 (Adaptive Semantic Security). Let Index = (ClientSetup, EncQuery, RunQuery, DecResult,
Repair) be a reactive index, Adv = (Advy,...,Adv,3) an adversary and Sim = (Simy,...,Sim,43) a
simulator. We consider the following two experiments ( Real, Ideal).

1qleallndex,Adv ( 1)\) Ideallndex,Adv,Sim,Leak ( 1/\)

(A DB, (q1,...,qm)) < Advi(1*). The (A DB, (q1,...,qm)) < Advi(1*). The

adversary generates an initial database, a list of
m initial queries, and outputs its internal state.
(Zo, So) < ClientSetup(1*, DB)
for:=1,....,mdo

Q; < EncQuery(S;_1,q;)

(Ri,Z;) < RunQuery(Z;_1, Q;)

(Ri, Hi, Si) + DecResult(S;_1,R;)

Z; + Repair(Z;, H,;)

A« Advy(Z,,A). The adversary learns the
initial dump of the database at the time it breaks
in.

adversary generates an initial database, a list of
m initial queries, and outputs its internal state.

fori=1,...,mdo
(DB, R) < Func,, (DB)

B < Sim;(Leak(DB))

A < Advy(Sima(B),.A). The adversary learns
the initial dump of the database at the time it
breaks in.

fori=m+1,...,m+ndo
(A, q;) < Adv;_,+2(A). The adversary
chooses a query.
if ¢; ¢ Q then

‘ break
(B, D) — Simi,erg (B, Leak(DB, Q'L))
The Simulator outputs fake data D and
internal state B.

(DB, R) + Funcy, (DB)

foric=m+1,...,m+ndo
(A, q;) < Adv;_p+2(A). The adversary
chooses a query.
if ¢; ¢ Q then
‘ break
Q; < EncQuery(S;_1,q;)

(R;,T;) + RunQuery(Z;_1, Q;)
('RZ‘,'Hi,SZ‘) — DecResuIt(Si_l,ﬁi)
Z; <+ Repair(Z;, H;)

A Advi,erQ((@i, Hz),A)

output x < Adv,,13(A)

A+ Advi_m+2 (D, A)
output x < Sim,3(A)

We call the reactive index Index adaptively semantic secure with leakage Leak, if for all algorithms
Adv = (Advy,...,Adv,13) for n = poly(\) that are poly(\) size, there exists a simulator Sim =
(Simy, ..., Sim,43) that is poly(\) size such that Ideallndex,Adv,Sim,Leak(1)\) with probability at most 1/2
outputs a special symbol 1, i.e.

Pr[Ideallndex,Adv,Sim,Leak(1>\) = J—] < 1/2



and further, let 1deal* be the random variable describing I1deal conditioned on Ideal # 1, i.e.
Vo€ {0,1}*:

Pr[Ideal*(1*) = a] = Pr[Idealindex Adv.Sim Leak(1") = @ | Idealingex Adv Sim.Leak (1) 7 L]

Then
c
Reallndex,Adv(l)\) ~ Ideal*(l)\)

Definition 4.9 (Non-Adaptive Semantic Security). We call a reactive index T non-adaptively semantic secure
with leakage Leak, if it satisfies definition 4.8 with the adjustment that the adversary Adv; choses not only
(q1s- - qm) but also (Gm+1, - - -, @m+n) non-adaptively in advance.

Definition 4.10 (Adaptive Indistinguishability). Ler Index = (ClientSetup, EncQuery, RunQuery, DecResult,
Repair) be a reactive index, Adv = (Advy, ..., Adv,3) withn € N. We consider the following experiment.

Indlndex,Adv,Leak ( 1)\)

b« {0,1}. Chose a random bit b.
(A, DB, (¢?,...,4%), DB, (q,...,q)) < Advi(1*). The adversary generates two initial
database, two lists of m initial queries, and outputs its internal state.
if Leak(DB%(¢?,...,q%)) # Leak(DB(qi,...,q},)) then
‘ output 0 and abort.
(Zo, So) < ClientSetup(1*, DBP)
fori=1,...,mdo
Q; +— Eanuery(Si_l,qf)
(RZ,IZ) < RunQuery(Ii,l, Qz)
('Ri, H;, SZ) — DecResuIt(Si_l, ﬁz)
Z; + Repair(Z;, H;)
A < Advi(Z,,A). The adversary learns the initial dump of the database at the time it breaks in.
for i=m+1,....m+ndo
(A, q?,q}) < AdV;—m+2(A). The adversary chooses two queries.
if Leak(q?) # Leak(g}) then output 0 and abort.
Q; +— Eanuery(Si,l,qﬁ?)
(Ri,Z;) < RunQuery(Z;—1, Q;)
('RZ’,’HZ',SZ') — DecResuIt(Si_l,ﬁ,»)
Z; + Repair(Z;, H;)
A — AdV¢,m+2((Qi, 7‘[1),«4)
b+ Adv,13(A)
if b =10 then
‘ output 1
else
‘ output 0

In the case that the experiment outputs 1, we say Adv wins the experiment. We call the reactive index
Index adaptively secure in the indistinguishability sense with leakage Leak, if for all algorithms Adv =
(Advy,...,Advy3) for n = poly(\) that are poly(\) size, there exists a negligible function negl such that

Pr[Indlndex,Adv,Leak(l)\) = 1] < 1/2 + negl()‘)
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Definition 4.11 (Non-Adaptive Indistinguishability). We call a reactive index I non-adaptively secure in the
indistinguishability sense with leakage Leak if it satisfies definition 4.10 with the adjustment that Adv has to
choose all queries non-adaptively in advance.

Theorem 4.3. Non-adaptive indistinguishability with reproducible leakage implies non-adaptive semantic
security with the same leakage.

Proof. Let Index be an reactive index that is non-adaptively secure in the sense of indistinguishability with
leakage Leak. Given a adversary Adv, we construct a simulator Sim that, given oracle access to Adv simulates
the ideal world (black-box simulation), i.e.

N A
1}'ea—llndex,/—\dv(l )"\-‘Ideallndex,Adv,Sim,Lr::ak(1 )

Intuitively, we let the simulator execute the real world protocol “in its head” with a database and list
of queries that produces the same leakage as the database and queries chosen by Adv. If the output of this
simulation happened to be distinguishable from the real world, this would effectively give us a distinguisher
capable of winning the Ind experiment, violating the fact that Index is non-adaptively secure in the sense of
indistinguishability.

Concretely, the simulator Sim, given the leakage of the adversary-chosen database D5 and queries
(@m+41, - - - s Gm+n), can reconstruct a database DB’ and queries (¢}, 11, - - - , G, )» Which are likely not the
same, but share the same leakage. Following this step, Sim executes the same protocol but on this data
instead of the adversary-supplied data. Hence, the adversaries view in Reahndex,Adv(l)‘) is the execution for
database DB and queries (Gm41, - - - , Gm-+n) While in Ideal|ndeX7Adv’5im7Leak(1A) his view is the execution for
database DB’ and queries (¢;,, 1 - -, Gjn1n)- If the adversary’s views are computationally indistinguishable,
their output in the experiments is as well. Assume towards the contradiction that there exists a distinguisher
D with non-negligible advantage. We use D to construct an adversary Adv* to attack the experiment
Ind|ndeX7Adv’Leak(1)‘). Adv* outputs DB and queries (¢41, - - - , gm+tn) for the O-slots and DB’ and queries
(@ps1s- - > Appyn) Tor the 1-slots in the execution of the experiment. At the end it runs D on its view and
outputs its guess b’ consistently with the output of D. The advantage of Adv* is exactly the advantage of D,
leading to the contradiction that Index is secure in the sense of indistinguishability. 0

Remark 4.4. It seems like the definition of adaptive semantic security is strictly stronger than adaptive
semantic indistinguishability. This is because in order to generate a database and a set of queries that
produce the same leakage as another database and set of queries, all of them have to be known in advance.
Otherwise the adversary will always able to, in fact very easily, adaptively trap the simulator into a situation
where the simulator will not be able to generate any more queries with the same leakage anymore.

5 Branching Garbled Circuit Chains

In this section, we construct branching garbled circuit chains which are the basis of our index construction.
Intuitively, this new cryptographic primitive allows one to build a network of garbled circuits where each
node branches into up to two other nodes and the output of the garbled circuit inside every node determines
which path to take. We first recall the notion of garbled circuits.
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5.1 Garbled Circuits

Garbled circuits are a well-studied cryptographic technique to “encrypt” logical circuits in a way that still
preserve the functionality of the circuit but hinders the person evaluation the circuit to perform certain actions
or to learn certain information. We briefly review the notation from [BHR12].

Definition 5.1 (Garbling Scheme). A garbling scheme is a tuple of algorithms G = (Garble, Encode, Eval,
Decode)

(F,e,d) < Garble(1*, f) On input the security parameter \ in unary and a boolean circuit f, Garble
outputs (F, e, d) where F'is a garbled circuit, e is encoding information and d is decoding information.

X < Encode(e,x) On input encoding information e and a input x suitable for f, Encode outputs a garbled
input X.

Y « Eval(F, X) Oninput (F, X) as above, Eval outputs a garbled output Y .

y < Decode(d,Y') Oninput decoding information d and a garbled output Y, Decode outputs a plain output
Y.

In most settings where garbled circuits are used, the circuit f is public. Circuit privacy can always
be achieved through an universal circuit but this incurs a significant performance penalty. In our case,
it is publicly known that our circuits are comparison circuits, but it should remain secret against which
constant those circuits compare against. To quantify the amount of information that can be leaked without
compromising security, we define the XOR-topology of a circuit.

Definition 5.2 (XOR-Topology). The XOR-topology ®xo:(f) of a circuit f is a function that maps the circuit
f to a circuit where every non-XOR gate is replaced with an AND gate.

We proceed by stating security guarantees a garbling scheme may satisfy.
Definition 5.3 (Garbled Circuit Security).

Circuit Privacy (c-prv.simg): Intuitively, the collection (F, d) should not reveal any more information than
®(f). More concretely, there must exist a simulator S that takes input (1*, ®(f)) and whose output is
indistinguishable from (F,d) generated the usual way.

Evaluation Privacy (prv.simg): Intuitively, the collection (F, X, d) should not reveal any more information
about x than f(x). More concretely, there must exist a simulator S that takes input (1*, ®(f), f(x))
and whose output is indistinguishable from (F, X, d) generated the usual way.

5.2 Branching Garbled Circuit Chain: Definition

Definition 5.4 (Branching Garbled Circuit Chain). A branching garbled circuit chain is a tuple of algorithms
G = (Generate, Encode, Eval)

(F,e) < Generate(1*, f,eq, e1) On input the security parameter X in unary, a boolean circuit f, encoding
information ey, e1, Generate outputs (F, e) where F is a branch-chained garbled circuit, and e is
encoding information.
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X < Encode(e, x) On input encoding information e and a input x suitable for f, Encode outputs a garbled
input X.

(b, Xp) < Eval(F, X)) On input (F, X) as above, Eval outputs a bit b = f(x) and garbled inputs X, =
Encode(e(s), 7).

We define security properties similar to garbled circuits.
Definition 5.5 (BGCC Security).

Circuit Privacy (c-prv.simg): Intuitively F' should not reveal any more information than ®(f). More con-
cretely, there must exist a simulator S that takes input (1*, ®(f)) and whose output is indistinguishable
from F generated the usual way.

Evaluation Privacy (prv.simg): Intuitively, the collection (F, X) should not reveal any more informa-
tion about x than (f(x), X f(:r:))' More concretely, there must exist a simulator S that takes input
(1A, ®(f), f(z), X f(z)) and whose output is indistinguishable from (F, X') generated the usual way.

5.3 Branching Garbled Circuit Chain: Construction

Now we present our construction of a branching garbled circuit chain. It is based on an ordinary garbled
circuit scheme where each garbled circuit gets augmented with a transition table. The garbled circuit also
outputs a key K or K7, depending on the outcome b of the circuit evaluation. Given this key K} and the
current input labels, the evaluator should be allowed to compute the corresponding input labels for the circuit
in the correct branch.

The transition table stores for each input-bit 5 four ciphertexts. Let 1°[i], I'[i] denote the i-th input labels
for the current circuit, corresponding to the 0 and 1 value. Further, let Of[i], O}[i] be the labels of the i-th
input wire of the left child and O[], O1[i] the labels of the i-th input wire of the right child. Then the i-th
transfer gate stores the following values.

Here E 4 p(X) denotes a double-key-cipher which we are going to implement by £4 p(X) : o O(A||B)®
X with O arandom oracle. Hence, without having both keys, it is impossible to learn any information about
the plaintext. We note that there are many other instantiations of such double-key-ciphers in the literature,
with different security guarantees under different assumptions but for simplicity we just resort on a random
oracle in this construction. The point-and-permute technique [BHR12] is employed, which means that if the
least significant bit of 1°[i] is 0, the table entries are stored in the order as written and otherwise switched.
This way the evaluator knows which ciphertext is the correct one without learning what bit value corresponds
to the wire.

Remark 5.1. We note, that it might be possible to reduce the size of the transfer-gate table by invoking
techniques similar to those already employed in reducing gate-tables, like row reduction [NPS99] or
[PSS*09], but employing those techniques is not straightforward as the labels of the child-circuit inputs can
not depend on their parent circuit to maintain independence which is a useful property for being able to
replenish circuits one-by-one.
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Construction 5.1. Our branching garbled circuit chain construction is based on a linear garbling scheme.
Concretely we use the half-gate garbled circuit scheme for efficiency. Let G* = (Garble*, Encode®, Eval*,
Decode®) be the half-gate scheme. Let f be a boolean circuit with n inputs and 1 output and O a random
oracle.

Generate(1*, f,eg, 1) :

(F*,e*,d*) < Garble* (1%, f)

Let Ky, respectively K1 be the 0-label respectively the I-label for the output wire in F.
I° «+ Encode*(e, 0")
I' < Encode*(e, 1)
0§ « Encode* (e, 0"
O} < Encode* (e, 1"
OY < Encode*(e1,0

Oi + Encode*(eq, 1™
fori=1,... ,ndo:
(a) V' =1Isb(I°[i])
(b) TYi) « O(Ky|| Iy[i))  OY i) vd € {0,1}

() Tjli]  O(Kqll L-ylil) © O)[i] Vd € {0,1}
10. Let F' = (F*,d*,T3[i]), e = e* and output (F,e)

)
)
")
)

O % N SR W~

Encode(e, x) is the same as Encode™ (e, )

Eval(F, X) :
1. Parse the input as F = (F*,d*, TS[i]).
2. b+ Decode*(d*, Eval*(F*, X))
3. Let Ky, be the b-label of the output wire
4. fori=1,...,ndo:

(a) V' =1sb(X[i])
(b) Xy[i] + T i) © O(K, || Xi])

5. output (b, Xy)
Theorem 5.2. Construction 5.1 satisfies the BGCC definition.
Proof. The correctness instantly follows from the correctness of the garbling scheme. O
Theorem 5.3. Construction 5.1 satisfies the BGCC security definitions c-prv.simg _and prv.simg, .

Proof. Security in the random oracle model follows because the half gate garbling scheme satisfies c-prv.simg,
and prv.simg__(see Lemma A.2, A.3) and furthermore the random oracle is with probability 1 — negl(\)
never evaluated more than once on the same input, hence the transition table is indistinguishable from
random. m
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Figure 1: Schematic diagram of a garbled comparison circuit

5.4 Half-Gates Garbling Scheme

We use the half-gate garbling scheme [ZRE15] because it is the fastest garbling scheme known, both in
garbling and evaluation time and, more importantly, size of the garbled circuit.
It has the following properties:

1. It is compatible with Free-XOR [KSO08] i.e. garbling and evaluating XOR gates does only involve
cheap XOR operations and XOR gates disappear in the garbled circuit representation.

2. It supports XOR gates and gate with an odd number of true-values (e.g. AND, NAND, ...).
3. Other gates, like f(x,y) = 1 or f(z,y) = x are not supported.

4. Security holds if the used hash function is “circular correlation robust”. The used construction of the
hash function is circular correlation robust in the random permutation model. The random permutation
is instantiated with AES.

5. The scheme satisfies the definition prv.simg and c-prv.simg (c.f. Lemma A.3, A.2).

5.5 Comparison Circuits

The circuits we are interested in in our scheme are comparison circuits. There are many proposed ways to
implement such a circuit in the literature but in our scenario we have the very different goal of minimizing
the non-XOR gates in the circuit. Physical layout, latency, heat, etc. are irrelevant for us.

5.5.1 Generic Comparison Circuit

An /-bit comparison circuit takes as input two ¢-bit integers a = (ag—1,...,a0),b = (bg—1,...,by) repre-
sented in binary with the most significant bit first and outputs (a < b), i.e. 1 if (a < b) and 0 if (a > b).
We use the comparison circuit of [KSS09] that, for comparing two £-bit integers needs only £ non-XOR
gates, which is optimal. The /-bit comparison circuit is a concatenation of ¢ one-bit comparators. A one-bit
comparator takes as input three bits: one bit of a, one bit of b and a carry bit c. The output 2z of the one-bit
comparator is defined as follows:

¢ a=5b
z= 1 a<bd
0 a>b

The correct one-bit comparator circuit is implemented as z = b® ((a®¢) A (bé¢)). The £-bit comparator
is just the concatenation of £ one-bit comparators with the initial carry ¢y = 0. The invariant that holds in each
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step is that when the i-th one-bit comparator is processed, the carry ¢;+1 = ((as,...,a0) < (b, ..., bo)).
Hence per induction the final output ¢y is correct.

5.5.2 Comparison Against a Constant

The circuits we are really interested in in our scheme are not generic comparison circuits but in fact circuits
that compare the input against a hardwired constant b. To achieve this, we could garble a generic comparison
circuit and store the correct input labels for the bits of b along with it. But we do not want to store the
additional ¢ ciphertexts for the b-labels as this would be a significant overhead. Instead we directly want to
garble a circuit that already represents the desired functionality. In terms of the comparison circuit, the values
of b are known in advance and thus the one-bit comparator reduces to a single AND gate if b; = 0 and a
single NOR gate, if b = 1. Altogether we need to store two ciphertexts for each one-bit comparator.

5.6 Performance Considerations

Some readers may have the preconception that garbled circuits incur significant performance overheads
in general. This is not true in our setting. A garbled 32-bit comparison circuit is only 1040 byte in our
implementation and evaluating it takes only 64 AES evaluations of which 32 come for free as they are
independent and hence can exploit instruction level parallelism. A single AES instruction has a latency of
7 cycles on modern CPUs, hence the complete evaluation of the circuit can theoretically be as fast as 224
cycles.

6 Our Reactive Index Construction

Before presenting our scheme, we present a strawman interactive scheme.

6.1 Interactive Reactive Index

Consider the key-value pairs arranged in a binary search tree, sorted by key, where each node is IND-CPA
encrypted with a master secret key. To search the tree for a particular value a, the server needs a mechanism to
compare an encryption of a against the encrypted data within each node and decide whether to go left or right
in the tree. Since the data is encrypted with an IND-CPA encryption scheme, the server cannot perform this
comparison on encrypted data. A solution is to fetch the encrypted value from the server, decrypt it, compare
it against the plaintext and send the comparison result to the server, as is currently done in mOPE [PLZ13]
and ZeroDB [EW16]. The downside of this solution is the large network latency introduced by multiple
network roundtrips between the client and the server’s data center, resulting in significant overhead. Our
scheme, which is non-interactive, provides an order of magnitude increased performance, as discussed in §10.

6.2 Improving Security

The above scheme is not only inefficient, but it provides weaker security than desired. The reason is that the
shape of the tree (to some degree) depends on the order of the operations performed on the tree. When an
attacker steals a database, the attacker can learn some information about the data and the operations from the
shape of the tree, despite the nodes being encrypted with IND-CPA security. To fix this problem, we use a
treap data structure instead of a regular balanced search tree.
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A treap, also sometimes known as a randomized binary search tree is a probabilistic tree data structure
with expected runtime guarantees. Its name is a portmanteau of tree and heap. It is a Cartesian tree in which
each key is given a (randomly chosen) numeric priority. As with any binary search tree, the inorder traversal
order of the nodes is the same as the sorted order of the keys. The structure of the tree is determined by the
requirement that it be heap-ordered: that is, the priority number for any non-leaf node must be greater than
or equal to the priority of its children. Thus, as with Cartesian trees more generally, the root node is the
maximum-priority node, and its left and right subtrees are formed in the same manner from the subsequences
of the sorted order to the left and right of that node.

We now go through some interesting properties of this datastructure which we make use of in our
construction.

6.2.1 Treap Properties

Remark 6.1. In the description of treaps it is usually assumed that inserted keys are unique. We extend this
by allowing duplicates and resolve conflicts by using the “<” operator for comparison during inserts (i.e.
duplicate keys go to the right).

Definition 6.1 (Shape of a Binary Search Tree). We define the shape of a binary search tree to be the
underlying directed acyclic graph with edges being either marked as left or right, corresponding to the
original tree.

Definition 6.2 (Rank of an Insert). For a sequence of insert queries Q = {qi,...,qn} with q; repre-
sented as a pair of a key and the number in the sequence, i.e. ¢; = (v;,1), define the rank of a query as
rank(q;) L H{(v',i') € Qv < wv; V (v =v Ai' < i)}| the number of queries in the sequence that either
insert a smaller key or the same key and come before.

Fact 6.2. If a sequence of insert queries QQ = {q1,...,qn} generates a treap with certain shape, then the
sequence of inserts Q' = {(rank(q1),1),. .., (rank(qy),n)} generates a treap with the same shape.

Fact 6.3. For a sequence of insert queries QQ = {q1, . .., qn } where each insert query is already assigned the
random treap-priority, the order in which the queries are executed does not influence the shape of the final
treap. The final treap will always have the same shape as the binary search tree that would be generated if
the queries were executed in the order of their priority without rebalancing.

6.3 A Secure Non-Interactive Index

We now explain our non-interactive scheme. The server maintains a treap similar to the one in the interactive
scheme but instead of storing the IND-CPA secure encryption of the key-value pair at each node, the treap
forms a branching garbled circuit chain with each node corresponding to a garbled comparison circuit, that
compares its input against the key associated with the node.

Since garbled circuits may only be used once, the client will have to provide new such garbled circuits to
replace the used ones. We call this the repair or replenishment procedure. Fortunately, the expected number
of garbled circuits consumed is logarithmic and furthermore they can be replenished without consuming the
other nodes in the tree.

6.4 GC Replenishing

To repair an index that contains consumed garbled circuits the server sends the following request to the client:
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Reactive index on patients.age:

= \?8 >80

> > patients collection:
| >4 | >32 ID | age |diagnosis
‘\( Enc(23) | Enc(26) |Enc(Lyme)
Enc('ID:91') Enc('ID:23") Enc(91) | Enc(6) |Enc(flu)

Figure 2: Overview of our reactive index.

o All unique garbled circuit ids of the immediate children of the consumed nodes, but not the ones of the
consumed nodes themselves.

e The encrypted keys (note, these are the keys as in “key-value” pairs, not cryptographic keys) of the
consumed nodes.

e Information about where these nodes are located in the tree.

In the execution of our protocol, this data always corresponds to a path in the index. We start with the leaf and
generate a new garbled circuit with a new random id. For the parent we also create a new garbled circuit with
a new random id. Additionally we have to provide a transition table for this circuit. Therefore we need the
input labels of the child circuits. We have the labels of one child still in memory and the labels of the other
child can be generated by their corresponding circuit’s unique id which was part of the replenishing request.

6.5 Inserts and Deletes: Rebalancing

The insertion or deletion of a key-value pair may require rotations to preserve the heap properties. In any
case, only nodes that were already consumed for finding the node are rotated so the rotations have no effect
on which nodes need to be replenished.

6.6 Queries With Two Bounds

To answer queries with two bounds in one round, we store two copies of the index at the server, where the
first index is used to locate the first bound and the second is used to locate the second bound. It does not
suffice to only store one copy of the index because the search for the first bound can damage nodes that are
on the path to the second bound.

6.7 Continuous Aggregation

Our index can also be used to aggregate values within a certain range and compute a function such as
SUM, AVERAGE, or PRODUCT very efficiently. Previous constructions relied on partially homomorphic
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encryption schemes which are orders of magnitude slower than AES. Our reactive index is solely based on
fast symmetric cryptography. To be able to compute the aggregate over any continuous range, each node in
the index additionally stores an encrypted aggregate of the values of all children. To determine the aggregate
over a continuous range of values, the server computes a perfect cover of the range, which can be computed
by traversing the tree in the same manner as the previously described RANGE scheme. The required covering
setis O(logn) and it is sent to the client, who decrypts the partial aggregates and aggregates the plaintexts to
get the final result.

7 One-Round Mutable Order Preserving Encryption

A side product of our range-query scheme is one-round order preserving encryption. It can be achieved by
using the mOPE construction [PLZ13] and applying the branched garbled circuit chain to remove interactions.

8 Security Guarantees and Proofs

In this section we formally define the security guarantees our reactive index construction provides for each
query. Specifically this means to define a leakage function Leak for each query and prove our security
definition with this leakage function.

Definition 8.1 (Rank of an Element). We define the Rank of an Element rank(x) in a list L = (a;);en as

rank(L, x) L {a; | ai < x}| and we write rank(zx) if L is clear from the context.

For range queries, the attacker learns the rank of the lower and upper bound of the range boundaries. The
same is the case for aggregation queries. For order-by-limit queries, the attacker only learns the rank of the
lower bound. In the case of inserts/deletes, the attacker will learn the rank of the respective element, more
precisely:

Theorem 8.1. The described reactive index is non-adaptively secure in the sense of indistinguishability for
all supported queries from definition 4.3 with the following leakage functions:

Leak(DB) =

Leak(DB, (RANGE, [a, b])

Leak(DB, (ORDER LIMIT,|a,b],start,length)
Leak(DB, (AGGREGATE, [a, b])

Leak(DB, (INSERT, k,v)

Leak(DB, (DELETE, [a, b]])

|DB
(RANGE, rank(a — 1), rank(b))

(ORDER LIMIT,rank(a — 1),rank(b), start,length)
(AGGREGATE,rank(a — 1), rank(b))
(
(

INSERT,rank(k))
DELETE, rank(a — 1), rank(b))

~— — — ~— — “—

Proof. We divide the proof into two parts. First, we show that the initial indices after the execution of the
first phase, where the leakage is only the size of the database, are indistinguishable. Then we continue with
proving that each query is indistinguishable.

Indistinguishability of the Initial Indices. Let 70, respectively Z!, be the indices generated after the first
m queries are applied. We now prove 70, ~ k.
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First, the shape of both indices is perfectly indistinguishable through the treap properties. Specifically, the
facts 6.2 and 6.3 say that the set of inserts Q' = {rank(q1),...,rank(g,)}, which is exactly {1, ..., |DB|},
generates the same shape as any other set of inserts of size |DB|. Without loss of generality we therefore
from now on assume the shapes of Z, and Z}, were the same.

We proceed by showing that a node v € Z9 and the corresponding node v’ € T}, are computationally
indistinguishable: v ~ v'. Bach node contains a BGCC, an encryption of the key and an encryption of the
payload (the value). The BGCCs are indistinguishable (Theorem 5.3) and the latter two are indistinguishable
through the properties of the encryption scheme.

Indistinguishability of the Queries. Given, that each pair of queries produces the same leakage, the outputs
of the BGCC:s in the execution are the same. If follows with theorem 5.3 that the encrypted queries are
indistinguishable.
Finally, the indistinguishability of the repair data H follows with the same arguments as in the indistin-
guishability of the initial indices.
O

We remark that non-adaptive security is all that is needed in our threat model because the attacker does
not have control over the queries and the client sends queries without seeing the encrypted data. An adaptive
security proof is also possible with tweaks to the protocol that complicate it.

Corollary 8.2. The described reactive index satisfies the definition of non-adaptive semantic security.

Proof. With the preceding observation in theorem 4.3, it only remains to show that our leakage function Leak
is reproducible. We claim that the following method, given leakage

x = (xg,...,oy) = (Leak(DB), Leak(q]), . .., Leak(q}))

produces a database DB and queries (q1, . . ., ¢, ) that produce the same leakage. We start with an initial
database DB = ((1,1),...,(xp, L)) and gradually adjust it based on the queries. For bookkeeping we
maintain a list D of deleted elements. Forz = 1,...,n, do:

if x; = (RANGE, 19, 71)
set ¢; = (RANGE, rg + rank(D, rp), 1 + rank(D,r1))

if z; = (ORDER LIMIT,rp,71,S,[)
set ¢ = (ORDER LIMIT, g + rank(D,rg),r1 + rank(D, 1), s,1)

if z; = (AGGREGATE, ¢, 71)
set ¢; = (AGGREGATE, rg + rank(D, rg), r1 + rank(D, 1))

if z; = (INSERT, k)
We make room in DB for an insert at position k + rank(D, k) and adjust our previous choice for
the queries qi, ..., q; accordingly. Concretely, we add (|DB| + 1, L) to DB and in the queries
qi,- - -, @ we increment all tokens that are greater or equal to k + rank(D, k) by one. Then we set
¢i = (INSERT, k + rank(D, k), L)

if x; = (DELETE, ro,71)

set ¢; = (DELETE, [ro + rank(D, r¢), r1 + rank(D, r1)]) and

set D: ¥ DU (DB [ro,m1])
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At the end we have
(Leak(DB), Leak(q1), ..., Leak(g,)) = (Leak(DB™), Leak(q), - . ., Leak(q)))

as desired.

8.1 Ideal Security Guarantees for k Query Observations

Under the assumption that the adversary observes at most k£ queries, where £ is a small constant that is fixed
in advance, we can get better security guarantees with a slight modification of the scheme. This for example
models the case of a database server that supports the concurrent execution of k£ queries and an attacker that
obtains a copy of the server disk and memory at one single point in time. Concretely, we can achieve to only
leak the size of the result set (which is ideal) as opposed to leaking the size of the result set plus the size of
the two sets that are below, respectively above, the range.

We achieve this by having k distinct indices, and permuting each of them by a random, secret offset. The
circuits need to be adjusted accordingly to be aware of this offset.

9 Implementation

9.1 libgarble

We implemented a library for garbling circuits in C++ which we call libgarble [libgarble]. The goals of the
library are similar to JustGarble [BHK* 13],[JustGarble]: It provides plain garbling of circuits, efficient import
and export of garbled circuits and circuit layouts and nothing else. In the future there will also functions to
convert circuits from the abundant other file formats into the libgarble file format. libgarble improves on
JustGarble in that it implements the recent half-gate optimization, fixes some security problems, has options
to keep the circuit layout separate form the garbled circuit gate tables, and is more portable across different
platforms, specifically it can also run on platforms where AES-NI is not available. Also, we provide a JNI
interface through which we can call libgarble from Java applications. In our tests, the JNI interface does not
add noticeable overhead compared to calling libgarble directly from C. libgarble will be published under a
free software license and we will maintain an open and active development with the goal to make the library
ready for production use.

9.2 Secure Reactive Index

We implement a prototype of our secure reactive index construction in Java with the goal to evaluate the
feasibility of our approach. The implementation runs stable with data sets of 1 million elements but is not
ready for production use, yet. We also plan to open-source the reactive index as soon as it has reached a
sufficiently maturity.

9.3 Limitations

As Java is a high-level programming language with garbage collection, our implementation can not achieve
the exact security guarantees as in our definition as we would need to be able to securely erase data and also
be able to precisely control where in memory our objects reside. Even if the logical structure inside our
Java code does not leak information about the history of inserts, the Java virtual machine might not have
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securely deleted data we deleted and it may also allocate and manage memory in a way that leaks the history
of execution to an attacker. A secure implementation needs to be done in a low-level language like C++ that
gives more control over memory management. But this does not affect the validity of our evaluation results.

10 Evaluation

The goal of this research was to find a solution that has comparable performance to a system that performs
the operations on plaintext data. The predominant factor is the network latency of roughly 30ms round-trip
time across North America or even 70ms Trans Atlantic. The overhead cost of our construction should not
add significantly to this number. There are two main concerns that could render our construction slow. First
is the size of the garbled circuits what we need to store for each entry in the index. Second is the time to
evaluate garbled circuits. Our evaluation shows that both factors are moderate compared to network latency.

One garbled circuit has the size of two ciphertexts per gate and additionally needs to store a 128 bit unique
random id. An n bit const-comparison circuit has exactly n gates. No additional metadata is needed, hence
the size for a n bit comparison circuit is n - 2 - 128 4 128 bit. For a 32 bit comparator this amounts to 1040
byte. One transition table has the size n - 2 - 128 bit. Hence the size of a complete node isn - 6 - 128 + 128
bit, which again for a bitlength of 32 bit results in 3088 byte.

The cost of evaluating a 32 bit comparison circuit is dominated by the 64 AES evaluations needed.
Theoretically of these 64 evaluations, 32 come for free as they are independent and hence can exploit
instruction level parallelism. A single AES instruction has a latency of 7 cycles on modern CPUs, hence the
complete evaluation of the circuit can theoretically be as fast as 224 cycles, at least for the AES part. For a
32-bit constant comparison circuit, in our current implementation the time to garble is 19786 cycles and the
time to evaluate is 7842 cycles. For a 128-gate circuit it is 70109/29099 cycles. The overhead stems from
the fact that we currently use the gerypt library to evaluate AES and we have not yet done any low-level
optimizations.

For a complete system evaluation, we bulk-loaded 1 million random 32 bit integers and ran two iterations
of 1000 random inserts, deletes and range-queries each, where the range-query ranges were increased
gradually from 1 to 1000. Bulk-loading 1M elements took 63 seconds. On average, an INSERT took 4.3ms,
a RANGE query 6.8ms, and a DELETE 4.6ms.

11 Future Work

Further performane improvements. Our reactive index is integrated in the new Arx database system. We
are currently in the process of optimizing the performance of our implementation, especially for scalability
and concurrency.

Protection Against a Malicious Attacker. To protect against a malicious adversary at the server, one
can extend our reactive index construction with Merkle trees. The client computes a Merkle tree over the
entire treap, including over the garbled circuits and stores the root hash. When the server provides tree
leaves corresponding to the order queries requested, the server attaches a proof of correctness of these leaves
by incorporating the relevant paths of hashes. Furthermore, as the client repairs the index, the client can
recalculate incrementally the root hash. The details remain to be worked out and it also remains to be seen
how this extension affects performance.

Hiding Access Patterns. In the current security definition (and construction), the server may see the access
patterns consisting of paths down the tree (effectively corresponding to the index of the bounds). To hide
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these patterns, one can use an oblivious RAM data structure. In particular, instead of using ORAM as a
black-box, an oblivious tree data structure is more efficient [WNL*14]. The details remain to be worked out
and it remains to see how efficient this construction would be, although likely the slowdown will not justify
the slightly increased security in many applications.

12 Conclusion

We constructed and evaluated the first practical, functionally rich index that allows efficient computation of
standard database queries on encrypted data and we proved our scheme secure in a novel, precisely defined,
and well motivated, security model.
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Appendices

A More Details on the Half Gate Scheme

The half gate scheme uses a hash function H that needs to satisfy correlation robustness for naturally derived
keys (definition A.1). This can be achieved in the random permutation model with the following construction.

Construction A.1. For a random permutation m : {0,1}% — {0, 1}*, we define the hash function H(x,17)
tobem(2x ®1i) ®2x D

Definition A.1. Given a hash function H, we define two oracles:

o Circr(z,4,b): < H(z @ R, i) ® bR, where R € {0,1}¢~11

e Rand(x,1,b) is a random function with k-bit output.
Say that a sequence of queries of the form (x,1i,b) to an oracle O are natural if they satisfy the following:

o for the q-th query, we have i = q.

be {0,1}

x is naturally derived, meaning that it is obtained from one of these operations:

z + {0,1}F

® X < 11 P 9, where x1 and x2 are naturally derived
o © < H(x1,1), where x1 is naturally derived and i € 7

o x < O(x1,1,b), where x1 is naturally derived
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Algorithm 4: Garbling one gate in the half-gate scheme

input :The incoming wire labels W2, W2 W0, W} for the wires a, b, the global offset R, and the gate_type
output : wire label W0

out

1 po = 1sb (WD)
2 pp = 1sb (W)
/+ fun is a function that outputs two bits based on a gate_type */

(aa, ap) = fun (gate_type)
G =H(W,) & H(W,)
ifpb 7é ap then

| G=Ga&R
if p, = 0 then

| WE = H(W)
else
w | We=HW,])
u if gate_type (pq,p») = 1 then
2 | WE=WZaR
13 E=HW)® HW})
14 if o, = 0 then
5 | E=EoW?
16 else
7 | E=EeW,;
18 if p, = 0 then
v | WP =HW)
20 else
a | WE=HW)})
22 Woyo = W2 d WY

NI - B Y I S

Then H is circular correlation robust for natural keys if;, for all polynomial-time adversaries Adv making
natural queries,

Pr[AdvCier (1%) = 1] — Pr[Adv?®d(1%) = 1]| < negl(k)

Fact A.1. In the half gate garbling scheme, all wire labels are naturally derived and H from construction
A.1 is correlation robust for naturally derived keys.

Lemma A.2. The half-gate garbling scheme satisfies prv.simg,

Proof. The proof is exactly the same as the proof of theorem 1 in [ZRE15], which states that the scheme
satisfies prv.sim with the whole circuit f as leakage. In their proof the simulator only makes its decisions
based on whether a particular gate is an XOR gate or not and does not depend on the concrete type of the
gate if it is not an XOR gate. Hence the stronger property prv.simg, is also satisfied. 0

Lemma A.3. The half-gate garbling scheme satisfies c-prv.simg_

Proof. To proof this theorem we need to have a closer look at the process for garbling one gate, as written
down in algorithm 4. We use the same notation as in [ZRE15].

The entire process does not reveal the type of the gate because W2, W,? are naturally derived and hence
indistinguishable from random. Therefore p,, p, are indistinguishable from random as well. The same holds
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true for Wg and R is chosen completely random. Hence, looking at what the algorithm does, it follows that
different gate types are indistinguishable.

O]
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