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With the rapid development and widespread use of wearable wireless sensors, data aggregation technique becomes one of the
most important research areas. However, the sensitive data collected by sensor nodes may be leaked at the intermediate aggregator
nodes. So, privacy preservation is becoming an increasingly important issue in security data aggregation. In this paper, we propose
a security privacy-preserving data aggregation model, which adopts a mixed data aggregation structure. Data integrity is veri	ed
both at cluster head and at base station. Some nodes adopt slicing technology to avoid the leak of data at the cluster head in inner-
cluster. Furthermore, a mechanism is given to locate the compromised nodes. �e analysis shows that the model is robust to many
attacks and has a lower communication overhead.

1. Introduction

Recently, the wearable wireless sensors become powerful and
rapidly expanding in healthcare monitoring [1–3]. �e wear-
able sensors can be used to collect and transmit the data to the
users. Sometimes, the data collected from some near places
are similar to each other. Meanwhile, the powers of sensors
are limited. �erefore, the data aggregation techniques are
used to reduce the communication overhead [4, 5]. In the
process of data aggregation, data need to be aggregated by
the aggregation nodes. Unfortunately, data aggregation is
vulnerable to some attacks because the data are sensitive or
privy. If the sensitive data are revealed, this may bring serious
threat or economic loss. So, the security data aggregation is
playing an important role in wearable sensors.

In this paper, a security privacy-preserving data aggre-
gation model is proposed. �e model adopts a mixed data
aggregation structure of tree and cluster. Data integrity is
veri	ed both at cluster head and at base station. Moreover,
a locating mechanism is provided, which can locate the com-
promised node.

�e remainder of this paper is organized as follows. In
Section 2, the related work is summarized. A new secure
privacy-preserving data aggregation model (SPPDA) is

proposed and analyzed in Section 3. In Sections 4 and 5, the
security and performance of the model are analyzed. Finally,
the conclusion of this paper is given.

2. Related Work

Recently, secure data aggregation is becoming an impor-
tant issue for wearable sensors. Cryptographic is an e�-
cient mechanism to secure data aggregation. Moreover, the
homomorphic encryption can aggregate encrypted messages
directly from sensors without decrypting so that it has a short
aggregation delay.

Castelluccia et al. [6] proposed a simple and provably
secure additively homomorphic stream cipher which is
slightly less e�cient on bandwidth than the hop-by-hop
aggregation scheme described previously. Girao et al. [7]
proposed an approach that conceals sensed and aggregated
data end-to-end, which is feasible and frequently even more
energy e�cient than hop-by-hop encryption addressing a
muchweaker attackermodel. Feng et al. [8] proposed a family
of secret perturbation-based schemes, which can protect
sensor data con	dentiality without disrupting additive data
aggregation.
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All the homomorphic encryption schemes above use the
symmetric key.�e securities of these schemes depend on the
length of the key.Meanwhile, the security of the asymmetrical
secret key schemes depends on the intractability of the
algorithms. So the asymmetrical secret key schemes are
designed.

Boneh et al. [9] proposed a homomorphic public key
encryption scheme, which improved the e�ciency of election
systems based on homomorphic encryption. Mykletun et al.
[10] revisited and investigated the applicability of addi-
tively homomorphic public-key encryption algorithms for
certain classes of wireless sensor networks and provide
recommendations for selecting the most suitable public key
schemes for di�erent topologies and wireless sensor network
scenarios. Girao et al. [11] provided an approach for a
tiny Persistent Encrypted Data Storage (tinyPEDS) of the
environmental 	ngerprint. Bahi et al. [12] proposed a secure
end-to-end encrypted data aggregation scheme, which signif-
icantly reduces computation and communication overhead
and can be practically implemented in on-the-shelf sensor
platforms. Ozdemir and Xiao [13] proposed a novel integrity
protecting hierarchical concealed data aggregation protocol,
which is more e�cient than other privacy homomorphic
data aggregation schemes. Lin et al. [14] proposed a new
concealed data aggregation scheme, which is robustness and
e�ciency. Zhou et al. [15] proposed a Secure-Enhanced
Data Aggregation, which can achieve the highest security
on the aggregated result compared with other asymmetric
schemes.

However, the models above can only detect the compro-
mised nodes in verifying the data integrity at most, without
locating the compromised nodes. In this paper, we present
a new secure privacy-preserving data aggregation model
(SPPDA), which adopts a mixed data aggregation structure.
�e network is divided into clusters, and the data aggregation
trees are used in inner-cluster and interclusters. Firstly, some
of nodes adopt slicing technology to avoid the leak of data at
the cluster head. Secondly, data in the cluster are aggregated
and sent to the cluster head, and cluster head veri	es the
data integrity to restrict the range of compromised node.
Lastly, the cluster heads continue to send the data to the base
station, and the data integrities are veri	ed at the base station
again. Furthermore, the model gives a mechanism to locate
the compromised nodes. �e analysis shows that this model
has lower communication overhead.

3. SPPDA Model

�e model uses the cluster structure network which con-
tains three kinds of nodes: base station, cluster heads,
and cluster nodes. �e network is divided into two layers:
inner-cluster and intercluster. In the inner-cluster, data are
sent to the cluster head, and the cluster head veri	es the
data integrity to restrict the range of compromised node.
In the intercluster, data are sent to the base station, and
the integrity is veri	ed at the base station. Furthermore, a
mechanism is proposed to locate the compromised node.
SPPDA model can be divided into initialization, the key

distribution, inner-data aggregation, and interdata aggrega-
tion.

3.1. Initialization. �e initialization of SPPDA model in-
cludes three parts: cluster head voting, inner-cluster data
aggregation tree, and intercluster data aggregation tree.

(1) Cluster Head Voting. Using the existing cluster protocols
[16, 17], the network can be divided into many clusters. In
the process of cluster, the trust management mechanism [18,
19] can be used to help the selection of the cluster header.
Generally, it satis	ed two conditions as follows:

(1) �e cluster head has higher trust values.

(2) �e clusters are evenly distributed in the monitoring
area.

(2) Inner-Cluster Data Aggregation Tree. In each cluster, the
data are sent to the cluster head along the data aggregation
tree [20].�e inner-cluster data aggregation tree is structured
by a certain data aggregation tree protocol. It satis	ed two
conditions as follows:

(1) �e degree of cluster head is large enough.

(2) �enumber of aggregation nodes is notmore than the
leaf nodes.

Lastly, cluster heads set the compromising threshold ℎch
which is used to judge whether a branch in the cluster is
compromised.

(3) Intercluster Data Aggregation Tree. When the cluster
heads aggregated the data of their cluster, the data in cluster
heads are sent to the base station along the intercluster data
aggregation tree. �e intercluster data aggregation tree is
similar to the structure of the inner-cluster data aggregation
tree. Lastly, base station set the compromising threshold
ℎch which is used to judge whether a branch of the BS is
compromised.

3.2. �e Key Distribution. In SPDSA model, there are three
sets of key: BS (base station) key, CH (cluster head) key, and
� (neighbor) key.�e BS key is generated by the base station
which is used to ensure the security of the communication
between the cluster heads and the base station. �e CH key
is generated by each cluster head which is used to ensure the
security of the communication between cluster nodes and the
cluster head. �e neighbors key is generated o�ine which is
used to ensure the security of the communication between a
node and its neighbors.�e structure of each key is described
as follows.

(1) BS Key Distribution. BS generates three primes (�1, �2, �3)
and � = �1�2�3 order elliptic curve (�). �en, according to
the degree of BS which is de	ned as degree BS, degree BS
groups of points {��, ��, 	�}degree BS are selected from �, and
the order of those points is �.



Journal of Electrical and Computer Engineering 3

For each group 
, we get three new points according to the
formula as follows:

�� = �1�2��,

�� = �2�3��,


� = �3�1	�.

(1)

Here, �� is used to encrypt the aggregated data, �� is used
to record the number of the cluster, and 
� is used to mix the
encrypted result and enhance the security of the data.

�en, the BS gets a group of keys. �e public key is (�,
��, ��, 
�, �) and the private key is (�1, �2, �3). �e public
key is distributed to the cluster heads in a secure way, and the
private key is reserved by the BS.

(2) CH Key Distribution. When the BS generates the
key, each cluster head begins to generate the CH key.

For example, CH(�) generates three primes (�(�)1 , �(�)2 , �(�)3 )
and an elliptic curve (�(�)) 	rstly. �e order of �(�) is
�(�) = �(�)1 �(�)2 �(�)3 . According to the degree of CH which
is de	ned as degree �(�), degree �(�) groups of points

{�(�)�1 , �
(�)
�2 , �
(�)
�3 }degree �(�) are selected from �(�), and the order

of those points is �(�).
For each group �, we get three new points according to

the formula as follows:

�(�)� = �(�)1 �(�)2 �(�)�1 ,

�(�)� = �(�)2 �(�)3 �(�)�2 ,

�(�)� = �(�)3 �(�)1 �(�)�3 .

(2)

Here, �(�)� is used to encrypt the aggregated data, �(�)� is

used to record the number of the cluster, and �(�)� is used to

mix the encrypted result and enhance the security of the data.

�en, CH(�) gets a group of keys. �e public key is

(�(�), �(�)� , �(�)� , �(�)� , �(�))
degree �(�)

and the private key is (�(�)1 ,
�(�)2 , �

(�)
3 ). Lastly, the public key is distributed to the cluster

nodes in a security way, and the private key is reserved by the
CH(�).

(3) N Key. � key distribution consists of 	ve steps [21]:

(1) Generation of a large pool of � keys and their key
identi	ers.

(2) Random drawing of � keys out of � without replace-
ment to establish the key ring of a sensor.

(3) Loading of the key ring into the memory of each
sensor.

(4) Saving of the key identi	ers of a key ring and associ-
ated sensor identi	er on a trusted controller node.

(5) For each node, loading the �th controller node with
the key shared with that node.

�erefore, a secure link exists between two neighboring
nodes only if they share a key. If two neighboring nodes
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Figure 1: �e slicing scheme.

cannot share a key but they can be connected by a link
consisting of some nodes, this link can be the secure link
between these two nodes.

3.3. Inner-Cluster Data Aggregation. In the inner-cluster data
aggregation, the cluster heads can obtain the plaintext which
is not secure enough for the data.�erefore, before the inner-
cluster data aggregation, the slicing and mixing scheme [22]
is used in each cluster.

(1) Slicing. In each cluster, we call one node “leaf node” if
some neighbors of this node belong to other clusters. And
the leaf node slice its data into two parts. One slice is sent
to the other node in another cluster and the other is kept by
itself. Figure 1 shows the slicing scheme. �e solid line is the
route in which the data is transmitted to the cluster head.�e
dotted line is the route in which the leaf nodes send the slices
to the neighbor nodes in other clusters. In Cluster 1, there are
4 leaf nodes: CN11, CN12, CN13, and CN14. According to the
rule above, these nodes divide their data into two slices. One
is kept by itself; another is sent to the neighbor nodes in other
clusters along the dotted line. CN11 and CN12 send the slices
to the neighbor nodes in other clusters not drawn in Figure 1.
CN13 sends the slices to the CN22 in Cluster 2 and receives the
slices from CN21 in Cluster 2. CN14 sends the slices to CN31
in Cluster 3.

(2) Mixing. When all the leaf nodes send the slice, all nodes
recomputed the data of it. If a node receives the slices, it adds
all the slices to get a new data.

A�er the slicing and the mixing, the data�(�)�� is encrypt-
ed into �(�)�� according to formula (3) at each cluster node in

cluster �:
�(�)�� = �(�)�� × �(�)� + �(�)� + �(�)�� × �(�)� . (3)
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Here, + is the summation in elliptic curve, × is the scalar

multiplication in elliptic curve, and �(�)�� is random.

�en, the encrypted data is transmitted to the cluster
head. And the data are aggregated by the intermediate nodes.
�e aggregation of the �th branch in cluster � is

�(�)�,agg = ∑
�

�(�)�� × �(�)� + �(�)� × �(�)� + ∑
�

�(�)�� × �(�)� . (4)

∑��(�)�� is the aggregation plaintext of branch �, �(�)� is the

number of the nodes in branch �, ∑� �(�)�� is the aggregation of

the random, and �(�)�,agg is the ciphertext of the aggregation in

branch �.
�e cluster head in cluster � receives the aggregation of

each branch. �en, the cluster head decrypts the �(�)� of each

branch using the privacy key. �e plaintext �(�)� is

�(�)� = log�(�)��
�(�)2 �(�)3 × �(�)�,agg. (5)

Here, �(�)�� = �(�)2 �(�)3 × �(�)� .
�e cluster head judges whether the result of each branch

is compromised according to the threshold ℎch. If a branch is
compromised, the locating mechanism is used to locate the
compromised node. If not, continue to aggregation.

�e cluster head gets the plaintext of the aggregation
result in the cluster. �at is,

�(�) = ∑
�

�(�)� = ∑
�
log	(�)��

�(�)1 �(�)2 × �(�)�,agg. (6)

Here, �(�)�� = �(�)1 �(�)2 × �(�)� .
At last, the data �(�) is encrypted into �(�)agg by the cluster

node according to formula (7) in cluster �:

�(�)agg = �(�) × �(�) + �(�) × �(�) + � × 
(�). (7)

Here, �(�) is the number of the cluster nodes in cluster �. �
is random.

3.4. Intercluster Data Aggregation. A�er the inner-cluster
data aggregation, the encrypted data is transmitted to the
base station. And the data are aggregated by the intermediate
nodes. �e aggregation of the �th branch of base station is

�
,agg = ∑
�

�
� × �
 + �
 × �
 + ∑
�

�
� × �
. (8)

∑��
� is the aggregation plaintext of branch �, �
 is the
number of the nodes in branch �, ∑� �
� is the aggregation of

the random, and �(�)
,agg is the ciphertext of the aggregation in

branch �.
�e base station receives the aggregation of each branch.

�en, the base station decrypts �
 of each branch using the

privacy key. �e plaintext �
 is

�
 = log��� �2�3 × �
,agg. (9)

Here, ��� = �2�3 × ��.

�e base station judges whether the result of each branch
is compromised according to the threshold ℎch. If a branch is
compromised, the locating mechanism is used to locate the
compromised node. If not, continue to aggregation.

�e cluster head gets the plaintext of the aggregation
result in the cluster. �at is,

�
 = ∑
�

� = ∑
�
log��� �1�2 × �
,agg. (10)

Here, ��� = �1�2 × ��.

3.5. Locating Mechanism. Locating mechanism is used to
locate the compromised nodes in the intermediate nodes.�e
locating mechanism works as follows.

We assume that the numbers of leaf nodes and intermedi-
ate nodes are� and �.�enwe have� ≥ �.�e branchwhich
does not pass the integrity veri	cation is reconstructed into �
branches, where there is only one intermediate node in each
branch. �e new intermediate nodes are the same as in old
branch. And the data integrity is veri	ed in the root node. If
one branch does not pass the veri	cation, the intermediate
node in this branch is a compromised node and the locating
mechanism ends.

Figure 2 shows the locating mechanism in a cluster. In
the le� part of Figure 2, CH 	nds a branch which consists
of the red compromised nodes. So, this branch needs to be
reconstructed. Obviously, CH1 and CH4 are two interme-
diate nodes. �erefore, this branch is divided into two new
branches. CH1 and CH4 are also the intermediate nodes,
and they are in the di�erent branches. �en, these two
branches transmit the data to the CH according to the rule
described in inner-cluster data aggregation. And the CH
checks their integrities. If a branch is still compromised, the
only intermediate node in this branch is the compromised
node.

3.6. A Case Study. In this section, we give a detailed example
of SPPDA model with initialization, the key distribution,
inner-cluster data aggregation, and intercluster data aggrega-
tion.

(1) Initialization. In Figure 3, there are 25 sensor nodes
distributed in themonitor area, and the base station is located
in the le� of the monitor area. �ese nodes are divided into
5 clusters. �en, the inner-cluster data aggregation tree and
the intercluster data aggregation tree are constructed. In the
intercluster data aggregation tree, there are 2 branches which
are BSB1 and BSB2 from BS. BSB1 consisted of BS, CH1,
CH2, and CH3. BSB2 consisted of BS, CH4, and CH5. In each
cluster, there are 4 CNs and 1 CH.�en, the cluster nodes are
divided into 2 branches. Using the �th cluster as an example,
the branches are CBi1 and CBi2. �e CBi1 consisted of CHi,
CNi1, and CNi2. �e CBi2 consisted of CHi, CNi3, and CNi4.
When the data aggregation trees are completed, CH records
the amount of the CNs in its cluster, and the BS records the
amount of the CHs in the network.

(2) �e Keys Distribution. According to the structure of
the network in Figure 3, the BS generates 2 pairs of keys.
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Figure 3: Initialization.

�e public keys are (�, �1, �1, 
1, �) and (�, �2, �2, 
2,
�), and the privacy keys are always (�1, �2, �3). Meanwhile,
according to the amount of the branches, the �th cluster head
CHi generates 2 pairs of keys. �e public keys are (�(�), �(�)1 ,
�(�)1 ,�

(�)
1 , �(�)) and (�(�), �

(�)
2 ,�
(�)
2 ,�
(�)
2 , �(�)).�e privacy keys

are always (�(�)1 , �
(�)
2 , �
(�)
3 ).

In order to reduce the computing overhead, the points ��,
��, and 
�, (
 = 1, 2) use some small prime numbers. And

�(�)1 = �1, �(�)2 = �2, �(�)3 = �3, and the elliptical curve� is same

as��. Table 1 shows the values of thosemajor parameters.�e

orders of �1, �2, �(�)1 , and �(�)2 are 17.�e orders of�1,�2,�(�)1 ,
and �(�)2 are 13. �e orders of 
1, 
2, �(�)1 , and �(�)2 are 19. �e
orders of two elliptical curves are 4199.

(3) Inner-Cluster Data Aggregation. Firstly, the edge nodes
are con	rmed in each cluster by its CH. In this case, the
edge nodes are CN13, CN14, CN22, CN24, CN32, CN33, CN41,

Table 1: �e values of the major parameters.

Parameters Values

� = �� � = �1�2�3 = 4199
(��, ��, 
�)2 �1 = 13, �2 = 19, �3 = 17
(�(�)� , �(�)� , �(�)� )2 �(�)1 = 13, �(�)2 = 19, �(�)3 = 17
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Figure 4: �e slices of the edge nodes.

CN42, CN52, and CN53. Secondly, each edge node generates
a slice from its data. �en, each edge node sends its slice to
its neighbor randomly which belongs to a di�erent cluster.
Figure 4 shows the process of the slicing. �e full lines
express the inner-cluster data aggregation tree, and the dash
lines express the �ow of the slices. A�er slicing, the nodes
which receive the slices add them into their data. In Table 2,
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Table 2: Data processing of edge nodes.

Cluster nodes Original data Slices Mixing data

CN13 ��(1)3 = 6 �13 = 5 �(1)3 = 5
CN14 ��(1)4 = 7 �14 = 5 �(1)4 = 4
CN22 ��(1)2 = 8 �22 = 3 �(2)4 = 5
CN24 ��(2)1 = 6 �21 = 4 �(2)1 = 7
CN32 ��(3)2 = 7 �32 = 1 �(3)2 = 10
CN34 ��(3)4 = 7 �34 = 4 �(3)4 = 6
CN41 ��(4)1 = 7 �41 = 2 �(4)1 = 10
CN42 ��(4)2 = 5 �42 = 3 �(4)2 = 4
CN52 ��(5)2 = 2 �52 = 1 �(5)2 = 5
CN53 ��(5)2 = 2 �52 = 1 �(5)2 = 1

Table 3: �e encryption in inner-cluster data aggregation.

Cluster nodes Plaintext �(1) Ciphertext �(1)
CN11 �(1)1 = 4 �(1)1 = 4�1(1) + �(1)1 + 9�(1)1
CN12 �(1)2 = 6 �(1)2 = 6�(1)1 + �(1)1 + 4�(1)1
CN13 �(1)3 = 5 �(1)3 = 5�(1)2 + �(1)2 + 5�(1)2
CN14 �(1)4 = 4 �(1)4 = 4�(1)2 + �(1)2 + 2�(1)2

the operations of slicing and mixing are shown with speci	c
numbers.

Using the 	rst cluster as an example, the inner-cluster data
aggregation is shown as follows. �ere are 4 CNs in the 	rst
cluster, and these CNs collect the data around them.�en, the
data is encrypted according to formula (3). �e plaintext and
ciphertext of data are shown in Table 3.

A�er the encryption, all of the CNs send their encrypted
data to the CH along the inner-cluster aggregation tree.
�en, the CH receives two aggregation data items from its
two branches. Table 4 shows the aggregation results in each
branch.

When the CH receives the aggregation data, it decrypts  
aggregation data according to formula (5).We get the amount
of CNs in two branches as follows:

323�(1)1,agg = 3230�(1)1 + 646�(1)1 + 4199�(1)1 ,

323�(1)2,agg = 2907�(1)2 + 646�(1)2 + 2261�(1)2 .
(11)

According to the orders of these nodes, we have 17�(1)� =
0, 13�(1)� = 0, and 19�(1)� = 0. So,

323�(1)1,agg = 646�(1)1 ,

323�(1)2,agg = 646�(1)2 .
(12)

�en, CH decrypts the aggregation again according to
formula (6). We get the aggregation data of two branches
which is 10 and 9. CH aggregates these two data items and
encrypts them with the public key from BS:

�(1) = 19�1 + 4�1 + 23
1. (13)

Table 4: �e intercluster data aggregation.

Cluster branch Aggregation results

CB11 �(1)1,agg = 10�(1)1 + 2�(1)1 + 13�(1)1
CB12 �(1)2,agg = 9�(1)2 + 2�(1)2 + 7�(1)2

Table 5: �e encryption in intercluster data aggregation.

Cluster heads Plaintext � Ciphertext �
CH1 �(1) = 19 �(1) = 19�1 + 4�1 + 23
1
CH2 �(2) = 19 �(2) = 19�1 + 4�1 + 17
1
CH3 �(3) = 23 �(3) = 23�1 + 4�1 + 21
1
CH4 �(4) = 17 �(4) = 17�2 + 4�2 + 19
2
CH5 �(5) = 20 �(5) = 20�2 + 4�2 + 12
2

Table 6: �e intercluster data aggregation.

Base station branch Aggregation results

BSB11 �1,agg = 61�1 + 12�1 + 61
1
BSB12 �2,agg = 37�2 + 8�2 + 31
2

�e inner-cluster data aggregation in other four clusters
is done in the same way. Table 5 shows the plaintext and
ciphertext of aggregation data in those 	ve clusters.

(4) Intercluster Aggregation Data. A�er the encryption, all
of the CHs send their encrypted data to the BS along
the intercluster aggregation tree. �en, the BS receives two
aggregation data items from its two branches. Table 6 shows
the aggregation results in each branch.

When the BS receives the aggregation data, it decrypts
these two aggregation data items according to formula (9).
We get the amount of CHs in two branches as follows:

323�1,agg = 19703�1 + 3876�1 + 19703
1,

323�2,agg = 11951�2 + 2584�2 + 10013
2.
(14)

According to the orders of these nodes, we have

17�� = 0,

13�� = 0,

19
� = 0.

(15)

So,

323�1,agg = 3876�1,

323�2,agg = 2584�2.
(16)

CH decrypts the aggregation again according to formula
(10). We get the aggregation data of two branches which is
61 and 37. BS aggregates these two data items and gets the
aggregation data of the whole network which is 87.
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Table 7: �e computation overhead of IPHCDA and SPPDA.

Operation IPHCDA SPPDA

Encryption � ⋅ (�Add + 2�Mul) � ⋅ (2�Add + 3�Mul)
Aggregation (� − 1) ⋅ �Add + � ⋅ �MAC + � ⋅ �⊕ (� − 1) ⋅ �Add

Decryption � ⋅ �log 2� ⋅ �log

4. The Security Analysis

4.1. Ciphertext Only Attack. Ciphertext only attack is a basic
attack in wearable sensors. When attackers use this attack,
they only can try to get the plaintext by analyzing the
ciphertext.

SPPDAmodel uses the elliptic curve cryptography, which
is an asymmetric encryption model. Its security is based on
the intractability in decomposition of large prime numbers.
So SPPDA model can resist this attack well as long as the
suitable prime numbers are used.

4.2. Chosen-Plaintext Attack. In chosen-plaintext attack,
attackers can get some plaintexts and the ciphertexts. Attack-
ers want to get the secret key by analyzing these texts so that
the other ciphertexts can be cracked rapidly by using this
secret key.

SPPDA model uses the elliptic curve encryption with
three parameters, and one of them is used to add the random
disturbance. In this way, even the same plaintexts can be
encrypted to the di�erent ciphertexts. So, no matter how
many plaintext-ciphertexts the attackers get, they cannot get
the secret key by analyzing the plaintext-ciphertexts.

4.3. Data Injection Attack. In data injection attack, the
attackers send the unauthorized data to the aggregation node.
If the aggregation aggregates this data, the result will be
di�erent from the real result. So the base station gets a fault
result.

SPPDA model uses the elliptic curve encryption. So
the ciphertext is satis	ed with the structure of the elliptic
curve encryption. If the attackers send the data which lacks
standardization, the aggregation can recognize it easily and
remove it by the aggregation node.

4.4. Aggregation Node Compromised Attack. In the node
compromised attack model, attackers can compromise some
aggregation nodes in thewearable sensors.�en, attackers get
the key of these nodes and perform unauthorized aggrega-
tion. So, the base station gets the fault result.

SPPDA model veri	es the data integrities both in cluster
heads and in base station. If the aggregation node in cluster
is compromised, cluster head can recognize the fault of the
branch at which the compromised node stays. If the cluster
head is compromised, base station can recognize the fault of
branch at which the compromised cluster head stays. �en,
the cluster head or base station uses the locating mechanism
to locate the compromised node and remove it.

5. Performance Analysis

In this section, the computation overhead and the communi-
cation overhead of SPPDAmodel are analyzed and compared
with the IPHCDA model.

5.1. �e Computation Overhead. �e computation overhead
includes encryption, aggregation, anddecryption.We assume
that the overhead of addition, scalar multiplication, MAC,
XOR, and the decryption are expressed as �Add, �Mul, �MAC,
�⊕, and �log, � is the amount of clusters, and � is the
amount of the nodes in wearable sensors. Table 7 shows the
computation overhead in IPHCDAmodel and SPDA model.

In encryption operation, IPHCDA model needs twice
�Mul and once �Mul in each node, while SPPDAmodel needs
three times �Mul and twice �Mul. In aggregation operation,
IPHCDA model needs (� − 1) times �Add, � times �MAC,
and � times �⊕, while SPPDA model only needs (� − 1)
times �Add. �e number of XOR operations is decided by the
structure of the aggregation tree.�e constant � is no less than
1 and no more than � − 1. In decryption operation, IPHCDA
model needs � times �log, while SPPDA model needs 2�
times �log.

In general, the computation overhead of IPHCDAmodel
is lower than SPPDA model in encryption and decryption.
�e computation overhead of SPPDA model is lower than
IPHCDAmodel in aggregation. But, there are two aspects not
described in Table 7.

(1) �e orders of the elliptic curve are not the same in
both models. �e order in IPHCDA is larger than
in SPPDA. So the �Add, �Mul, and �log in IPHCDA
model are larger.

(2) �e computation overhead which is extra in SPPDA
model is undertaken by the whole network, so the
average overhead to each node is lower.

So, the computation overheads in both models are
almost the same.

5.2. �e Communication Overhead. In this section, the com-
munication overhead between SPPDA model and IPHCDA
model is compared. It is assumed that these two models are
used in the same network structure. �erefore, the compari-
son of the communication is the same as the comparison of
length of ciphertext.

It is assumed " is the length of each prime in bothmodels,
and the number of the clusters in the network is �. So the
length of ciphertext in IPHCDA model is (� + 1)", and the
length of ciphertext in SPPDA model is 3". In general case,
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Table 8: �e length of ciphertext in two models (" = 256, unit is
bit).

Models � = 1 � = 2 � = 3 � = 4
SPPDA 768 768 768 768

IPHCDA 512 768 1024 1280

" = 256 is safe enough to a ciphertext, and Table 1 shows the
comparison of the length of ciphertext in two models when
" = 256.

In Table 8, the length of ciphertext increases with � in
IPHCDA model, and the length of ciphertext is constant 768
when � increases. So, when � > 2, the length of ciphertext
in IPHCDA model is larger than that in SPPDA model; that
means the communication overhead of IPHCDA model is
larger. Actually, a cluster-based network usually consists of
plenty of clusters. �erefore, the SPPDA model has lower
communication overhead.

6. Conclusion

In this paper, we present a new secure privacy-preserving data
aggregation model, which adopts a mixed data aggregation
structure of tree and cluster. �e proposed model veri	es
the data integrity both at the cluster nodes and at the base
station. Meanwhile, the model gives a mechanism to locate
the compromised nodes. Lastly, the detail analysis shows
that this model is robust to many attacks and has lower
communication overhead.
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