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ABSTRACT

This paper considers encrypted computation where the user speci-
fies encrypted inputs to an untrusted program, and the server com-
putes on those encrypted inputs. To this end we propose a secure
processor architecture, called Ascend, that guarantees privacy of
data when arbitrary programs use the data running in a cloud-like
environment (e.g., an untrusted server running an untrusted soft-
ware stack).

The key idea to guarantee privacy is obfuscated instruction ex-

ecution; Ascend does not disclose what instruction is being run at
any given time, be it an arithmetic instruction or a memory instruc-
tion. Periodic accesses to external instruction and data memory
are performed through an Oblivious RAM (ORAM) interface to
prevent leakage through memory access patterns. We evaluate the
processor architecture on SPEC benchmarks running on encrypted
data and quantify overheads.

Categories and Subject Descriptors

C.1.0 [Computer Systems Organization]: Processor
architectures—General; C.0 [Computer Systems Organiza-

tion]: General—Modeling of computer architecture; E.3 [Data]:
Data Encryption

Keywords

Secure processors, Encrypted computation

1. INTRODUCTION
Privacy of data is a huge problem in cloud computing, and more

generally in outsourcing computation. From financial information
to medical records, sensitive data is stored and computed upon in
the cloud. Computation requires the data to be exposed to the cloud
servers, which may be attacked by malicious applications, hypervi-
sors, operating systems or insiders.

Encrypted computation has the potential to solve the data privacy
problem. In encrypted computation, the user specifies encrypted
inputs to a program, and the server computes on encrypted inputs
to produce an encrypted result. This encrypted result is sent back
to the user who decrypts it to get the actual result. In this paper,
we consider cases where the program is supplied by the server, the
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user or a third party and can be either public or private (encrypted).
The program is not trusted by the user in all cases. In our context,
to be “trusted,” a program must not be intentionally malicious and
must be provably free of any bugs that have the potential to leak
information about the program data. Data from the user is always
considered private.

In the ideal scenario, no one other than the user sees decrypted
data or knows the secret key used to encrypt the data. This ideal can
be reached through the use of fully homomorphic encryption (FHE)
techniques [3]; unfortunately, FHE approaches currently result in
about 8-9 orders of magnitude slowdown [4], which severely limits
their applicability.

Secure processors and coprocessors [18, 10, 16, 1] assume a se-
cret key stored in hardware and can perform private execution ef-
ficiently; the user, however, has to trust the processor as well as
the application/program and the operating system (OS) or kernel
running on the processor. While there have been proposals (e.g.,
[10], [16]) to build processors with hardware support for context
management so as to avoid having to trust the OS, these proces-
sors do not appear to have been built. Further, these proposals leak
information through memory access patterns. Secure processors
are currently used in niche applications such as smart cards, where
specific trusted applications are run.

Secure coprocessors such as the Trusted Platform Module (TPM)
[17] allow the processor to be conventional, but require trust in the
OS to support private execution of large applications. Applications
that use the TPM or similar trusted hardware without trusting the
OS (e.g., [12], [9]) have been limited. Using the TPM along with
Intel TXT [8] allows a user to only trust the processor chip, the
TPM, the program being run and the connecting bus. An untrusted
server still needs to be prevented from gleaning information about
the encrypted inputs by running different programs on the input
and inspecting memory contents or memory access patterns. TPM-
based systems require the user to trust that the program run on the
data will not expose the data; a malicious program may leak data
through memory access patterns or the frequency of memory ac-
cesses.

1.1 Motivating Example
In virtually all trusted computing platforms, the user applica-

tion is trusted. If the user supplies a program (possibly encrypted)
along with the program data, it may be reasonable to assume that
the program is not intentionally malicious (e.g., if the user wrote
the program him/her self). Having the user supply the (encrypted)
program and/or verifying that the program does not leak data is
not always possible in a computation outsourcing setting, however.
For example, the user may be paying for time to use a proprietary
program whose binary instructions should not be revealed to the
user. If the encrypted data is not tied to a particular trusted or veri-
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fied program, a semi-honest server may decide to run different pro-
grams on the user’s encrypted data to satisfy its curiosity about the
data. For example, the server may decide to run the program shown
in Algorithm 1 on the user’s encrypted data M. Here, the server

Algorithm 1 A simple program that can compromise the user’s
encrypted data M. & is the bitwise AND operation.

y = M[0]

while (y & 1)
?
= 0 do

issue a random load or store request from/to memory
end while

will be able to detect if the low-order bit of some word in the user’s
encrypted data equals 0 by monitoring how long the program takes
to run (e.g., if the program finishes instantly or appears to be stuck
in the loop) and whether the program produces a stream of memory
requests.

Regardless of whether the program is encrypted or malicious by
design, program bugs can also leak privacy. Writing and compiling
programs that are provably secure in this sense (indistinguishable
given arbitrary inputs) is a hard problem.

1.2 Our Solution
We propose a secure processor architecture called Ascend1 that

supports private computation of arbitrary programs with a semi-
honest server. Security is independent of the program that uses the
data and the operating system. We focus on the case where Ascend
is a coprocessor inside a server and when we refer to the untrusted
server, we mean the software stack/OS and anything outside the
Ascend chip.

To be secure, Ascend obfuscates the instructions that it executes
to make forward progress in the program, which obfuscates As-

cend’s external input-output (I/O) and power pins. Each pin car-
ries a digital or analog signal at a given time and these signals
change over time in program-dependent ways. To obfuscate when

the value on each pin changes, Ascend must perform a program
data-independent amount of work to evaluate each instruction. All
processor circuits must fire on each instruction fetch to give off
the impression that any instruction could have been executed and
on/off-chip memories must be accessed only at public time inter-
vals. To obfuscate the bits and memory access pattern on the I/O
pins, external memory requests must be made using oblivious RAM
(ORAM) techniques [6]. The adversary learns an estimate of the
number of cycles required to complete the computation, which can
be shown to be the least amount of leakage possible [2].

Ascend is marginally more complex than a conventional proces-
sor, in the sense that Ascend must implement an ISA and also make
sure that the work it does is sufficiently obfuscated. Trusted ORAM
client-side logic is built inside of Ascend (this mechanism can be
viewed as a hardware memory controller primitive). Unlike XOM
[10] or Aegis [16] Ascend neither trusts nor implements any part of
the operating system, internally or otherwise.

2. FRAMEWORK
To start, we introduce a general framework for performing com-

putation under encryption for arbitrary programs. We assume
black box symmetric-key encrypt(. . . ) and decrypt(. . . ) func-
tions, which take a plaintext/ciphertext as input and return the cor-
responding ciphertext/plaintext using randomized encryption or de-
cryption.

1Architecture for Secure Computation on Encrypted Data.

The Ascend secure processor is modeled as a tamper-proof black
box that has I/O pins, which it uses to make requests to the out-
side world. Ascend has an internal ORAM interface to an external
RAM (where the external RAM is under the server’s control). As-
cend’s ORAM interface is functionally a read/write controller to
memory such that an observer learns nothing about the data being
accessed or the sequence of program address requests made over
time, despite the RAM being stored external to the processor. Time
is measured in clock cycles.

2.1 Two-Interactive Protocols
We model general computation with a two-interactive protocol

between a trusted user, a server and the Ascend chip. Suppose the
user wants the server to evaluate deterministic algorithm A (made
up of instructions) on inputs from the user, collectively denoted by
x, and inputs from the server, collectively denoted by y. Formally,
a two-interactive protocol Π for computing on A runs as follows
(shown graphically in Figure 1):

1. The user shares a secret (symmetric) key securely with As-
cend. We assume that Ascend is equipped with a private key
and a certified public key.

2. The user encrypts its inputs x using the chosen symmetric
key to form the ciphertext encrypt(x) and then chooses a
number of cycles S, which is the time/energy budget that
the user is willing to pay the server to compute on A. The
user then transmits to the server the pair (encrypt(x), S)
together with algorithm A if the server is not providing A.

3. (Initialization) After receiving the pair (encrypt(x), S) and
optionally A, the server engages in an interactive protocol
with Ascend to initialize ORAM memories that will be used
to store A, x and y in encrypted form. Once complete, the
ORAM memory after 0 cycles is referred to as M0. De-
crypted data x is not revealed to the server during this inter-
action. After the process is complete, Ascend will be able
to make ORAM read/write requests to the external RAM to
fetch instructions in A or data in x or y.

4. The server sends S to Ascend and Ascend spends a number
of clock cycles and energy, corresponding to S, making for-
ward progress in A. During this period of time, Ascend may
make ORAM requests to the server to request more instruc-
tions or data.

5. The result of the server-Ascend interactions is an ORAM
MS , the program state after S cycles. The server can either
send the ORAM back to the user as is, or start an interactive
protocol with Ascend to “unload” the ORAM to form cipher-
text M′

S (which is in some format that is more efficient for
the user to decrypt).

6. The user decrypts MS and checks whether S was sufficient
to complete A(x, y). Without loss of generality, we assume
that the algorithm outputs an “I am done” message as part of
its final encrypted result.

A correct execution of Π outputs to the client the evaluation
A(x, y) (if S was sufficient) or some intermediate result.

The disadvantage of only two interactions is that the user may
receive an intermediate result (rather than the final one) indicating
that the computation was not finished. The advantage is no addi-
tional unnecessary privacy leakage about the final result; i.e., the
server does not gain additional understanding about the output of
A evaluated on the unencrypted inputs besides what the server is
already able to extract from the algorithm itself, the number and
sizes of the encrypted inputs, and other a-priori knowledge. It can
be shown that this leakage is optimal [2].
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2 encrypt(x), S   (1 interaction)
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(several interactions)

Initialize ORAM memory
3 O(|M0|log|M0|) interactions

Trusted Computing Base

Perform computation
4 O(|S|) interactions

External 

RAM

5 MS    (1 interaction)

Figure 1: The two-interactive protocol between a user, server and
Ascend. Numbers in the figure match the two-interactive protocol
description from Section 2.1. The only trusted entity is the Ascend
processor—neither the server nor any arrow (which would be im-
plemented as a bus, channel, etc) is trusted.

2.2 Security Model
We assume the semi-honest model and that the server is “hon-

est but curious.” The server is honest in that it executes A under
encryption for the required number of cycles and sends back the
result exactly as specified (no deviations, malicious or otherwise).
In particular, the server does not send back to the user the result
produced by executing a different algorithm, or evaluating A on
different inputs, or evaluating A on the user’s input for less than S

cycles. The server will try to finish the user’s program as best it
can, given the number of cycles specified by the user, in order to
get additional business from that user in the future.

The server is curious in that it may try to learn as much as pos-
sible about the user’s input from its view; namely A, the encrypted
inputs as given by the user, and black box access to the Ascend pro-
cessor. The server can monitor Ascend’s pins for timing/power and
I/O behavior, or apply its own inputs when it pleases. For example,
the server can run different programs on the user’s inputs in order
to try to learn something about the inputs by monitoring Ascend ex-
ternally. When the server applies a public program to the encrypted
data, the server has other a priori knowledge such as the program’s
structure and offline profiling information that it may have obtained
by running the program on different inputs.

2.3 Ascend Security Level
The Ascend processor is a tamper-proof black box and is de-

signed to meet the conditions for oblivious computation [6]. To
make Ascend oblivious given untrusted A, the following proper-
ties must be met:

1. The specific sequence of instructions needed to make for-
ward progress in A must be obfuscated. That is, Ascend
should appear to spend the same amount of time/energy/etc
to evaluate each instruction, regardless of what instruction is
being evaluated.

2. Both (a) the address sequence of external requests and (b)
the times at which those requests are made must be indis-
tinguishable for any A and M0. Ascend uses an ORAM
interface to make external requests, thereby satisfying (a).

Observe that if both of these conditions are satisfied, the server’s
view of Ascend itself (condition 1) and Ascend’s input/output be-
havior (condition 2) is independent of A and M0, which satisfies
the properties for being oblivious.

Note that satisfying condition 1 perfectly is a circuit design and
implementation problem, which is outside the scope of this paper.
In this paper, we use a simplistic strategy: we force Ascend to “go
through the motions” of each possible instruction to make one in-
struction’s worth of forward progress in A. Let PC′ denote the
dynamic program counter that changes based on data-dependent
program conditions and assume that this value is stored inside the
Ascend processor. At any given point in the execution of any given

program, PC′ points to exactly one instruction denoted I(PC′)
(we are assuming sequential program semantics) in A, which cor-
responds to one instruction type in the chosen ISA. To evaluate
I(PC′), Ascend must speculatively evaluate each instruction in its
ISA. If the current instruction it is evaluating matches the instruc-
tion type for I(PC′), the instruction successfully updates program
state. Otherwise, no change in program state occurs but Ascend
must still activate the circuits that it would have if the instruction
were actually executed. We refer to this extra work as dummy work.
For example, if Ascend has an internal data memory and one of
the instructions in its ISA accesses the memory, Ascend must ac-
cess the memory (either with a real or dummy request) for every
instruction that it evaluates. To be secure, dummy work must be
indistinguishable from real work.

Satisfying the second part (b) in condition 2 is done by making
predictable and periodic requests to the external RAM that imple-
ments the ORAM. Conceptually, if every ORAM request takes a
fixed number of clock cycles to complete then this condition can
be satisfied if Ascend makes exactly one external request every T

clock cycles. In actuality, Ascend will make a real request every T

cycles if it has one to make, or a dummy request if it does not (for
the same reason as in the previous paragraph). To maintain secu-
rity, T is public, set by the server and cannot depend on M0. In
a realistic setting, every ORAM request will take a variable num-
ber of cycles because of external bus traffic and physical NUMA
(non-uniform memory architecture) constraints. To maintain the
same level of security, it suffices for Ascend to make either a real
or dummy request T cycles after the last request completed (e.g.,
arrived at Ascend’s input pins). As before, a dummy ORAM re-
quest must be indistinguishable from a real ORAM request.

3. PROCESSOR ARCHITECTURE
In this section, we describe the ORAM interface and a

performance-optimized Ascend processor design. As a rule, we
only a make a performance optimization if it does not decrease the
security level described in Section 2.3.

3.1 ORAM Interface
The Ascend processor has an internal ORAM interface to exter-

nal RAM. The interface accepts a read/write request for a block of
program data or instructions (using program addresses). A block
in this setting is a region of consecutive (address, data) pairs and
is analogous to a cache block in normal processors. As soon as a
request is made, the ORAM interface will start a variable-latency
interactive protocol with the outside (untrusted) world and either
return the requested block (on a read) or signal that the write com-
pleted successfully. (To orient the reader, this interactive proto-
col takes thousands of clock cycles to complete.) The amount of
time/energy that it takes for the ORAM interface to initiate the re-
quest (e.g., lookup its internal state and setup signals to Ascend’s
pins) is assumed to be independent of the request itself.

ORAM, pronounced oblivious RAM, has the property that its
interface completely hides the data access pattern (which blocks
were read/written) from the external RAM; from the perspective
of the external RAM, read/write operations are indistinguishable
from random requests. ORAM only considers hiding the data ac-
cess pattern and not the times at which read/write operations are
requested (which is discussed in Section 3.2). The ORAM inter-
face between Ascend and external RAM is secure if, for any two
data request sequences (produced by Ascend) of the same length,
their access patterns to external RAM (produced by the interface)
are computationally indistinguishable by anyone but Ascend. This
guarantees that no information is leaked about the data accessed by
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Figure 2: The Ascend processor architecture; annotated with the parameters and representative latencies that our performance model assumes
in Section 4. Independent variables are blue and dependent variables are red. Pink structures and (DCINT, ICINT, OINT) are Ascend-specific
and discussed in Section 3.2. ORAM parameters are derived in Figure 3.

Ascend, how it was accessed (read, write, sequential, random, etc.),
and whether it was accessed before.

ORAM was introduced in [5, 11]. Recently two new break-
throughs were published in [13, 15]. Their authors also constructed
a much more simple and practical ORAM construction called Path
ORAM [14] which we use here. The external RAM is treated as a
binary tree where each node is a bucket that can hold up to a small
fixed number (Z = 4) of blocks. In order to obtain a capacity of
N = 2L+1 data blocks, the tree needs L+1 levels, its root at level
0 and its 2L leafs at level L. Each leaf is labeled by L bits. Blocks
have (L+ 1)-bit addresses. To manage the Path ORAM, the client
(Ascend) maintains a position map and local cache (discussed be-
low).

Initially, when no data has been written, all blocks in the tree are
all-zero. The protocol uses randomized encryption (we use a par-
allelizable method based on 128-AES) before it writes data blocks
back to external RAM such that only with very small probability
the external RAM is able to learn whether two data encryptions
correspond to the same data.

Citing from [14]:

“We maintain the invariant that at any time, each data
block is mapped to a uniformly random leaf bucket
in the tree, and uncached blocks are always placed
in some bucket along the path [from the root] to the
mapped leaf. Whenever a block is read from the [ex-
ternal RAM], the entire path to the mapped leaf is [de-
crypted and] read into the local cache, the requested
block is remapped to another leaf, and then the path is
[re-encrypted and] written back to the [external RAM].
When the path is written back to the [external RAM],
additional blocks in the cache may be evicted into the
path as long as the invariant is preserved and there is
remaining space in the buckets. ... [Ascend] stores a

position map array position[u] that consists of N in-
tegers, mapping each block u to one of the 2L leafs [in
the external RAM’s] tree data structure. The mapping
is random and hence multiple blocks may be mapped
to the same leaf and there may exist leafs to which no
blocks are mapped. The position map changes over
time as blocks are accessed and remapped.”

The position map is an array of NL bits. For our parameter
settings this (∼ 416 MB) is too large for Ascend’s local memory.
For this reason we extend the Path ORAM by storing the position
map in a second ORAM and the position map of the second ORAM
in a third ORAM (some care is needed; each node in each tree
needs to store besides the address of the block also the label of
the corresponding leaf-bucket). The local cache for each ORAM
(typically 100 blocks plus the number of blocks along one path in
the tree) is entirely stored in Ascend’s local memory.

3.2 Ascend Processor
We architect the Ascend processor with emphasis on security

first and performance second. To maintain security, we add archi-
tectural mechanisms to obfuscate program behavior (e.g., to per-
form dummy work and to make periodic memory requests to ob-
fuscate ORAM usage; see Section 2.3). To increase performance,
we extend the idea of making periodic requests to other processor
operations (such as accessing internal data memory) to reduce the
amount of total dummy work performed over time.

The Ascend processor (Figure 2) is made up of the following
main components: (a) familiar register file (RF) and cache re-
sources2, (b) several security-specific structures that will be used to
make different types of requests at periodic intervals, an ORAM in-
terface (Section 3.1), and a fetch-execute pipeline capable of eval-

2We architect these structures somewhat differently for security
reasons.
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uating obfuscated instructions. Subsets of M and A are stored in
on-chip data (D)Cache and instruction (I)Cache memory, respec-
tively.

To increase performance, both cache and ORAM requests are
made at periodic intervals set by the server. If A has greater de-
mands on either the cache or ORAM, the Ascend processor stops
making forward progress in A until the next interval completes.
Program obfuscation happens at three levels:

Level 1: Instruction obfuscation. To fetch an instruction, PC′

is added to the ICache queue (Figure 2, 1 ). When the cache re-
quest is serviced, I(PC′) is decoded and the maximum number of
reads needed for an arbitrary instruction are made to the RF ( 2 ).
If I(PC′) requires less than the maximum number of operands,
some of the RF requests are dummy requests. Next, all arithmetic
execution units (ALU, etc) are invoked ( 3 ), and the DCache queue
enqueues a read/write request for memory instructions ( 4 ). Non-
memory instructions go through the motions of adding a request
to the DCache queue, but do not actually add the request (e.g., by
de-asserting a queue write-enable flag). Finally ( 5 ), real or fake
writes are made to the RF (depending on whether I(PC′) performs
RF writeback). If no instruction can be executed (which may hap-
pen because of a cache miss, described below), a dummy instruc-
tion that performs all of the actions described above is executed
instead.

Level 2: Cache obfuscation. A pending request in a cache
queue is only serviced once every cache interval cycles. We refer to
this interval as DCINT for the DCache and ICINT for the ICache—
both intervals are public/static parameters that are set by the server.
To block requests from accessing a cache’s data arrays, a dedicated
hardware structure called the cache FSM ticks a counter once per
cycle from 0 . . . cache interval−1 (during which time the FSM is
in the PENDING state) and sends exactly one pending request to the
cache once the counter hits its maximum value (at which time it
transitions to the ACCESS state). Requests sent to the cache per-
form the access_cache() operation in Figure 2 ( 6 ) and add
a new request to the ORAM queue in the event of a cache miss
( 8 ). As before, the system must go through the motions of adding
a new request to the ORAM queue in the event of a cache hit. If
the ICache and DCache share the ORAM queue, an arbiter must
decide (based on a public policy) which gets access when/if simul-
taneous requests occur ( 7 ). Once the request is complete, which
the cache signals with a done flag, the cache FSM transitions back
to the PENDING state and the process repeats. If there is no pend-
ing request in the cache queue when the FSM transitions to the AC-
CESS state, a dummy request (which performs the same operation
as access_cache() with a dummy address/data) is made to the
cache. While either a real or dummy request is being serviced, the
processor continues to fetch/execute (possibly dummy) obfuscated
instructions.

Level 3: ORAM access obfuscation. Pending requests in the
ORAM queue are only serviced by the ORAM interface ORAM

interval (OINT) cycles after the ORAM interface completes its last
request ( 9 ). Similar to the cache FSM/queue, an ORAM FSM and
ORAM queue store and regulate when ORAM requests are made.
Once the OINT cycle threshold is met, either a pending request or
a dummy request is sent to the ORAM interface.

The processor assumes that it has access to cache, RF and FIFO
queue resources—all of which must be architected to make a spe-
cific request look like an arbitrary request. Figure 2 illustrates our
approach for the DCache resource. All accesses to the DCache (ei-
ther reads or writes) perform both a read and a write ( 6 ). If the ac-
cess was a read, the old cache block is first read out of the cache into
a holding register and then written back to the cache unchanged. In

Core model in order, single issue,

1 instruction/per cycle

L1 ICache arch. 32 KB, 4 way (LRU)

hit, miss latency (baseline/Ascend) 1/1, 0/oram_latency

L1 DCache arch. (baseline/Ascend) 32 KB/1 MB, 4/16 way (LRU)

hit, miss latency (baseline/Ascend) 2/10, 1/oram_latency

L2 Cache arch. (baseline only) 1 MB, 16 way (LRU)

hit, miss latency 10, 100

On/Off-chip network bandwidth 16 B/cycle

ICINT/DCINT/OINT 0/5/450

AES encrypt/decrypt latency 100 total

Table 1: Default parameterization for performance model (see Fig-
ure 2). Latencies are in clock cycles.

systems with large caches, physical access latency and energy per
access changes based on where in the cache is being accessed. To
address this issue, we split the DCache into banks (which are anal-
ogous to ways in a normal cache) and access each bank on each
access. Banks are monolithic in that an observer should not be able
to distinguish between one address in the bank being accessed ver-
sus another. Note that since the ICache has the capacity of one bank
and is read-only, we do not apply these ideas to that memory.

4. EVALUATION
We evaluate Ascend over the SPEC06int benchmarks. We chose

SPEC for its memory intensive nature—the benchmarks have nom-
inal working set sizes of ∼ 900 MB [7]. Since accessing the
ORAM (e.g., missing in the last level cache) is Ascend’s largest
overhead, SPEC stresses our system to the extent possible.

In all experiments, we run for 3 billion instructions with a
warmup period of between 1 and 20 billion instructions, depending
on the benchmark, to get out of initialization code. All results are
collected in a two-step process. First, a functional instruction trace
(with memory addresses for memory instructions) is generated us-
ing the SESC simulator’s rabbit mode3. The instruction trace is
then fed into the performance model shown in Figure 2, imple-
mented as an event-driven simulator. The performance model ac-
counts for all of the parameters shown in the Figure (consolidated
in Table 1). In particular, the simulation models (a) instruction
latencies by type (all non-memory instructions are single cycle),
(b) cache architecture (capacity, associativity), (c) when cache hit-
s/misses occur and their associated latencies, (d) ORAM interface
interactions, and (e) various data transportation latencies (such as
chip pin bandwidth).

SESC runs the MIPS ISA which is composed of mostly 2
operand/1 destination instructions. (In Figure 2 2 , two operands
will be read from the RF for every instruction.) Some MIPS
instructions (e.g., floating point divide) require multiple cycles
to complete. We break these instructions into multiple mini-

instructions, each of which is single-cycle. Thus, Ascend must
evaluate every mini-instruction after each instruction fetch to ob-
fuscate its pipeline.

We compare against a baseline (base) processor that uses the
same performance model as Ascend but (a) does not encrypt data,
(b) services cache and off-chip requests as soon as those requests
are made and (c) does not obfuscate instructions. Since a single-
level cache hierarchy does not do modern processors justice, base

has a unified L2 cache that backs 32 KB L1 I/D caches (see Ta-
ble 1).

3Rabbit mode is similar to fast-forward and does not model timing.

7



access_oram(ORAM 1) = aes_latency + 2 ∗

(

ram_latency +

⌈

log2

(

working_set

block_size

)⌉

∗ Z ∗

block_size+ 32

pin_bandwidth

)

= 100 + 2 ∗

(

50 +

⌈

log2

(

234

27

)⌉

∗ 4 ∗

27 + 32

16

)

= 2360 cycles

capacity(ORAM 2) =
working_set

block_size
∗

⌈

log2

(

working_set
block_size

)⌉

− 1

8
=

234

27
∗

log2

(

234

27

)

− 1

8
= 416 MBytes

access_oram(ORAM 2) = 100 + 2 ∗

(

50 +

⌈

log2

(

capacity(ORAM 2)

27

)⌉

∗ 4 ∗

27 + 32

16

)

= 1960 cycles

capacity(ORAM 3) =
capacity(ORAM 2)

block_size
∗

⌈

log2

(

capacity(ORAM 2)
block_size

)⌉

− 1

8
≈ 8.5 MBytes

access_oram(ORAM 3) = 100 + 2 ∗

(

50 +

⌈

log2

(

capacity(ORAM 3)

27

)⌉

∗ 4 ∗

27 + 32

16

)

≈ 1560 cycles

position_map(ORAM 3) =
capacity(ORAM 3)

block_size
∗

⌈

log2

(

capacity(ORAM 3)
block_size

)⌉

− 1

8
≈ 136.5 KBytes

local_cache(ORAM 1,ORAM 2,ORAM 3) = 27.1 + 24.3 + 21.5 = 72.9 KBytes

total_latency_per_oram_access ≈ 2360+ 1960+ 1560 = 5880 cyles

Figure 3: Cycle latency derivation for a 16 GB ORAM, split into 3 ORAMs (pseudo-code is given as access_oram() in Figure 2).
ORAM 3 contains program data while ORAMs 1 and 2 store the position maps for ORAMs 2 and 3, respectively. Different local caches
have different capacities to store different length paths (Section 3.1).
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Figure 4: Ascend slowdown compared to the baseline system.

Shown in Figure 4, Ascend attains between ∼ 12−13.5× slow-
down relative to base. The two design points that we evaluate vary
the benchmark working set. The 2 GB point is aggressive (the
SPEC workloads have < 1 GB working sets) while the 16 GB point
shows scalability. When the memory per app increases by a factor
of eight, performance drops by a factor of 1.12×.

We explored various ORAM parameters (e.g., the block size for
each ORAM and number of ORAMs) to maximize performance
given a 250 KB on-chip budget. The data ORAM’s capacity is
set based on the working set size (2 or 16 GB). The capacities for
the position map ORAMs are set based on the data ORAM and
each ORAM’s block size. We found that small block sizes (128 B
per block for every ORAM) are generally the right strategy: de-
spite larger blocks amortizing ORAM accesses because more data
is fetched per access, locality in the SPEC benchmarks seems to
be erratic. Thus, most of the data in larger block sizes (we experi-
mented with sizes up to 4 KB) is not used.

The on-chip storage includes the local cache for each ORAM and
the position map for the smallest ORAM. For the 2 GB working set,
the overall ORAM cycle latency is 5080 and the on-chip storage
requirement is 91.5 KB—the 16 GB working set’s cycle latency
is 5880 while its on-chip storage requirement is 72.9 + 136.5 =
209.4 KB (derivation shown in Figure 3).

5. CONCLUSIONS
We have shown the viability of a secure processor architecture

that does not require trust in anything other than a single proces-
sor chip to guarantee the privacy of data provided by the client.
Surprisingly, the slowdown associated with the architectural mech-
anisms is only 13.5× on average—roughly comparable to the slow-
down of interpreted languages.
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