
J Reliable Intell Environ (2015) 1:173–187

DOI 10.1007/s40860-015-0007-1

ORIGINAL ARTICLE

A secure, scalable and versatile multi-layer client–server

architecture for remote intelligent data processing

Gabriele Piantadosi1 · Stefano Marrone1
· Mario Sansone1

· Carlo Sansone1

Received: 29 July 2015 / Accepted: 15 October 2015 / Published online: 5 November 2015

© Springer International Publishing Switzerland 2015

Abstract In recent years, the need for data collection and

analysis is growing in many scientific disciplines. This is

consequently causing an increase of research in automated

data management and data mining to create reliable methods

for data analysis. To deal with the need for smart envi-

ronments and big computational resources, some previous

works proposed to address the problem by moving on remote

processing, with the aim of sharing supercomputer resources,

algorithms and costs. Following this trend, in this work we

propose an architecture for advanced remote data processing

in a secure, smart and versatile client–server environment

that is capable of integrating pre-existing local software. In

order to assess the feasibility of our proposal, we devel-

oped a case study in the context of an image-based medical

diagnostic environment. Our tests demonstrated that the pro-

posed architecture has several benefits: increase of the system

throughput, easy upgradability, maintainability and scala-

bility. Moreover, for the scenario we have considered, the

system showed a very low transmission overhead which set-

tles on about 2.5 % for the widespread 10/100 mbps. Security

Electronic supplementary material The online version of this

article (doi:10.1007/s40860-015-0007-1) contains supplementary

material, which is available to authorized users.

B Carlo Sansone

carlosan@unina.it; carlo.sansone@unina.it

Gabriele Piantadosi

gabriele.piantadosi@unina.it

Stefano Marrone

ste.marrone.g@gmail.com

Mario Sansone

mario.sansone@unina.it

1 Department of Electrical Engineering and Information

Technology (DIETI), University of Naples Federico II, via

Claudio 21, 80125 Naples, Italy

has been achieved using client–server certificates and up-to-

date standards.

Keywords JAAS · DCE-MRI · OsiriX · Secure · NIST ·

Biomedical · Image processing · TLS/SSL

1 Introduction

As technology advances at a rapid pace, data collection and

analysis is becoming more important. Research on automated

data management (storage and acquisition) and data mining

has increased with the aim to create more reliable methods

[1]. For example, in retail business, Wal-Mart Stores, Inc.

handles more than 1 million customer transactions every

hour. A data warehouse estimated to contain more than 3 PB

of data shows record of every single purchase by their point-

of-sale terminals in each of their 6000 stores worldwide.

By applying machine learning on this data, they can extract

patterns indicating the effectiveness of their pricing and

advertising strategies ensuring a wide knowledge for better

inventory management, supply, promotion and advertising

campaign [2]. Medical diagnostic imaging usually requires

massive processing of huge data, often with strong tempo-

ral deadline constrains. For example, a small clinical centre

equipped for Magnetic Resonance Imaging (MRI) can pro-

duce up to 20–25 MRI scans per day, resulting in about 4 GB

of raw data per day, which can easily tenfold after process-

ing. Such amount of data is likely to quickly grow because of

diagnostic imaging technologies improvements. Local work-

station cannot handle resource-consuming processing on big

dataset without involving a large amount of time and vice

versa due to the limited hardware capabilities. The constraints

for medical image processing in small and medium compa-

nies are the costs (for several advanced workstation) and the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-015-0007-1&domain=pdf
http://orcid.org/0000-0002-8176-6950
http://dx.doi.org/10.1007/s40860-015-0007-1


174 J Reliable Intell Environ (2015) 1:173–187

required computational power which is not readily available

on conventional medical workstations.

To deal with the need of a smart environment and big

computational resources, some previous works proposed to

address the problem moving on remote processing, with

the aim of sharing supercomputer resources, algorithms and

costs. In literature, various frameworks can be found that

aim to apply remote processing and modular composition to

various research fields.

In this work we propose an architecture for remote data

processing enabling pre-existing local applications to access

remote intelligent environments. The proposed infrastructure

has been applied on a medical image analysis environment.

This allowed us to address some additional problems that are

also strongly linked with medical data and their analysis. As

shown in the next section, general approaches often forgot

these important points:

– Data analysis systems must be able to interact with differ-

ent software (acquisition and examination software for

the medical case study) and instrumentation (different

vendors equipment);

– Context scalability and versatility (to meet potential

growing of requests);

– Operational time (a strict constraint such as clinical envi-

ronment time);

– Data sensitivity (privacy must be guaranteed).

Those requirements pushed the research towards the

development of systems, infrastructure and architecture able

to operate on big data analysis and, at same time, manag-

ing computational complexity, scalability, upgradability and

costs [1].

The aim of this study is to propose an architecture for

advanced remote workflow execution in a secure and ver-

satile client–server intelligent environment that is capable

of interacting with a widespread software. In particular, we

propose an architecture based on four ideas:

– It is crucial that operators can continue to make use of

their usual software and tools to encourage the spread of

the proposed architecture without impacting the learning

curve;

– The architecture should be as independent as possible

from the particular implementation, allowing server-side

to enlarge or evolve according to client needs;

– Operators should not be forced to wait until the job end-

ing. It is very important that users can continue their work,

receiving information about the status of remote process-

ing;

– Data transmission should meet up-to-date security stan-

dards.

This means that the proposed architecture should not be con-

sidered as a batch execution software by itself, but as a remote

support tool designed to extend the pre-existent local soft-

ware (i.e., client-side medical image processing software in

the considered case study) with new advanced functionalities

enabling access to intelligent environments.

The paper is organized as follows: in Sect. 2, we discuss

some related works in remote data processing as well as

trends in clinical environment. In Sect. 3, we present the

proposed system starting from the layers overview and then

focussing on a practical implementation in the specific con-

text of medical image processing and automatic breast lesion

detection by a dedicated CAD system (Sect. 4). The obtained

results are presented in Sect. 5 and discussed in Sect. 6, where

we also draw some conclusions. Finally, in Sect. 7, we shortly

explain how to access our architecture implementation.

2 Related works

Some studies proposed very general purpose architecture for

remote processing in different fields (domain-independent

frameworks). Triana [3] is a visual workflow-based problem

solving software, developed at Cardiff University. Originally,

it was developed for a gravitational wave detection project.

Subsequently, it has been extended to incorporate a range of

modules, such as peer-to-peer communication, grid services

and web services integration with the purpose of providing

a wider integration with existing grid technologies [4]. The

Kepler Project [5] is a scientific project that offers construc-

tion, composition, and orchestration engine. The focus is on

data analysis and modelling, which influenced the design in

that it is suitable for modelling processes in a wide vari-

ety of scientific domains from physics via ecosystems, to

bioinformatics web services. Instead of trying to provide a

generic semantic for all possible types of processes encoun-

tered in these domains, Kepler separates the execution engine

from the workflow model and assigns one model of compu-

tation to each workflow [4]. The LONI Pipeline Processing

Environment [6] is a java-based modules oriented visual pro-

gramming interface for the simplified design and execution

of remote pipelines. It was initially proposed to investigate

for image processing in brain mapping. The Taverna Suite

[7] is a powerful scientific workflow management system

born to satisfy the needs of bioinformaticians who need to

build scientific workflows from numerous remote web ser-

vices. It offers a graphical designing tool, an authoring client,

a workflow representation language and different additional

components such as a service directory, data and meta-data

repositories and others.

All are able to design, execute and manage complex

and heavy workflows helping developers to move remote

supercomputers, parallel architectures or cloud system. This

123



J Reliable Intell Environ (2015) 1:173–187 175

usually requires a migration from the pre-existent local

software to a tool which is more compliant with the architec-

tures. The server-side workflows need to be adapted or even

rewritten to be compatible with the architecture language.

Moreover, security and privacy issues, associated with the

cloud computing of sensitive data, such as biomedical data

[8], have been raised.

The case study addressed in this work can be considered

part of a wider field known in literature as “Computer-

Aided Detection (CADe)” or “Computer-Aided Diagnosis

(CADx)”. These systems can support physicians in the

examination of medical images both automatically detecting

suspicious regions of interest (ROIs) and suggesting diagno-

sis. To handle the large amount of data typically managed

in radiological units and to provide more efficient services,

different CAD architectures have been proposed in the lit-

erature. Scheinine et al. [9] proposed an Object-Oriented

client–server System for Interactive Segmentation of Med-

ical Images based on JAVA for the client and CORBA for the

distributed system, connected by a TCP/IP socket protocol.

Mayer et al. [10] implemented a “processing on demand”

client–server architecture for 3D image processing in which

the computation load is all on the server-side, while the client

requests the desired images one slice (2D) at a time.

Yacoub et al. [11] presented an evolution of the open

standard DICOM able to support communication between

DICOM entities over a TCP/IP network. A more modern

architecture has been proposed by Crane et al. [12] integrat-

ing the University of California at San Francisco Radiology

Department’s magnetic resonance (MR) scanners with its

high-performance computing (HPC) grid. With the diffusion

and the improvement in client-side software such as web

browsers, a low-impact proposal has been assessed by Mah-

moudi et al. [13] with a web oriented visualization software.

Some of above cited papers were mostly designed for

computing systems belonging to several generations ago.

Moreover, to the best of our knowledge, a complete remote

and scalable CAD system has never been proposed.

3 The proposed architecture

In this paper, we propose a generic architecture for remote

processing of data, with a special attention to security and

scalability issues. Moreover, a preliminary implementation

of our proposal has been realized using low-impact technolo-

gies and up-to-date standards.

We designed the system with the following three con-

straints in mind:

– easy integration into third-party client-side software;

– TCP/IP network infrastructure;

– up-to-date open standards.

To provide easy integration, we have chosen to divide

responsibilities between the pre-existent client-side software

and the client-side application of proposed architecture: the

first one has to interact with the user, making all operation

required to interact with proposed architecture totally trans-

parent to the operator, while the second one has to manage the

data transmission and results reporting. The proposed strat-

egy allows meeting the easy integration goal as long as the

third-party client implements (with the aim of a plug-in, API

or other form of customization) the steps required to interact

with the proposed system client-side application.

Next, we present the general structure and a case study

implementation.

3.1 Architecture layers

The system is organized as a multilayer client–server archi-

tecture implementing a multi-client/single-server model.

Within the same node, different layers communicate using

the file system (see Fig. 1).

Each layer has a well-defined role:

Fig. 1 Layers overview of the

proposed architecture that

provides: communication (L1),

orchestration (L2) and

application (L3)

r-SideevreSt-SideneilC

Client

Application

Server

Application

jFlowOrchestartor

(Client)

jFlowOrchestartor

(Server)

jSecureSync

(Client)

jSecureSync

(Server)

SSL/TSL Channel

TCP/IP Channel

O
S

 F
il
e

 S
y
s
te

m

O
S

 F
il
e

 S
y
s
te

m

L1 L1

L2

L3

L2

L3

123



176 J Reliable Intell Environ (2015) 1:173–187

3.1.1 L1—communication

This layer manages every detail of transmission and synchro-

nization (security, physical interconnection, etc.). It creates

communication channels between client and server for data

transfer.

3.1.2 L2—orchestrator

This layer manages communication flow between client and

server. It adapts the data generated from the application on the

client (layer 3) in a suitable format to be adequately processed

by the application layer on the server-side. This layer man-

ages the job required by the client and sends notifications in

regards to the job’s status.

3.1.3 L3—application

This layer represents the application used both on client and

server-side. On the client, it represents the pre-existing image

processing software plus our client-side tools, while on the

server-side it is composed of all software, tools and means

needed to provide required operations done, if necessary, as

parallel operation.

It is worth to underline that the Communication layer

can be completely implemented without knowledge of the

final context and application. The Orchestrator layer can be

only partially decoupled from the specific context, while the

Application layer cannot be delineated without a specific con-

text and application.

3.2 Communication layer

The component which implements connection establishment

and management, command transmission and file-state syn-

chronization is called jSecureSync. It has been coded in Java

in order to increase portability.

Running both on client-side and on server-side, it imple-

ments the multi-client/single-server model: the client starts

communication, then the server creates a new thread for

each accepted incoming connection. Once communication

is established, client and server-side operate symmetrically:

on both sides jSecureSync runs a Connection Manager mod-

ule that manages every aspect of file synchronization over the

opened channel. After the Connection Manager starts, client

and server act like peers.

Client and server modules establish two different channels

(Fig. 1) exploiting Java TCP/IP sockets:

– a non-secure channel (via plain TCP/IP): it is used to

transmit heavy data (like volume data) and does not carry

private sensible information;

Fig. 2 Client–server communication protocol timing

– a secure channel (via SSL over TCP/IP): it is used to

transmit commands and private sensible information.

Clients and server communicate through a protocol with

low overhead (coded in hexadecimal format). Figure 2

presents the protocol commands:

– HELO Client asks to open a channel (for synchronization

process) with the server;

– ALIVE Used by peers to communicate, to be active, or to

ask for information about the status of the other peer;

– OK v1.0 The server acknowledges a client request and,

at the same time, it instructs the client on the version of

the protocol used;

– SND_RQ The peer requests to synchronize a file over the

secure channel (SSL over TCP/IP);

– INSECURE_SND_RQ The peer requests to synchronize

a file over the non-secure channel (plain TCP/IP);

– SND_ACK Acknowledges to allow the other peer to send

over the secure channel (SSL over TCP/IP);

– INSECURE_SND_ACK Acknowledges to allow the other

peer to send over the non-secure channel (plain TCP/IP);

– CLOSING_CONNECTION Calling peer informs the

other one that after this command it will stop the commu-

nications by closing all channels (ack is not requested).

123



J Reliable Intell Environ (2015) 1:173–187 177

Fig. 3 SSL client-authenticated mode timing protocol

SSL/TLS channel security has been realized using a

symmetric authentication policy (client-authenticated mode

[14–16]), issued during user registration as an authorized

client (see Fig. 3). This means that every new client has

to successfully achieve a one time registration step to be

recognized as a real, authorized client and receive its cou-

ple of security certificates (one to verify server authenticity,

and the other as proof of being a trusted client to the

server). Certificates contain a Public Key and a Signature,

both used to identify the user on server-side and to grant

access to server features. The procedure for authentication

and authorization through certificates is achieved by means

of Java services using Java Authentication and Authoriza-

tion Service (JAAS) [17,18] classes. This choice guarantees

compatibility over different networks architecture supporting

the TCP/IP stack protocols and portability (all virtualization

is made by the Java Virtual Machine). Our implementation

uses elliptic curve Diffie–Hellman (ECDH) [19,20] as ses-

sion key agreement protocol, while the channel is secured by

using an AES 128bit encryption with Cipher Block Chain-

ing (CBC) as cipher block modality [16,21]. The use of

client-authenticated mode allows the server to extract client

credential directly from SSL session, making authentication

and authorization step achievable through JAAS services

without using an ad-hoc access protocol. Digital certifi-

cates are provided according to X.509 standard and key

pairs are encrypted with a 3072bit RSA algorithm. The

SSL encoded configuration string is “TLS_ECDHE_RSA

_WITH_AES_128_CBC_SHA” [22,23].

JSecureSync does not perform any kind of analysis on the

file to be transmitted. It only synchronizes all files in a spe-

cific folder (between client and server), providing a trusted

isolated server disk quota to every client.

Before sending, every file undergoes a compression. The

compression phase can affect both transmission time (heavy

compression files are smaller and require lower transmission

time) and required computational power (heavy compression

algorithms often require dedicated computational capabil-

ity).

3.3 Orchestrator layer

The middle layer (L2) has been implemented as an abstract

object (jFlowOrchestrator) that provides all abstract methods

to perform brokerage between L3 and L1, by orchestrating

the steps of each request and the server-side computational

flow progress. It also provides adaptation for the application

layer (L3) data inputs and outputs: different software can run

on the application level both on server and client-side requir-

ing different file format or data arrangement. For example, as

in the case study we will present in another section, a medical

image software could require a remote processing of a med-

ical study. However, it is not required to send all the data to

the CAD server (e.g. private information concerning patient

name, age, etc. must be dealt with separately). Exploiting the

underlying layer (L1) services, the Orchestrator layer (L2)

takes charge over the adaptation and coordination of the data

flows. The jFlowOrchestrator provides three main abstract

methods:

– bool fileFilter (File file)

This method is used to define which kind of element

(including file name, file type, folder, etc) needs to be

monitored for changes

– bool serveFileFromPeer (File file)

This method is used every time a monitored file is mod-

ified by the other peer

– bool serveFileToPeer (File file)

This method is used every time a monitored file is mod-

ified by the higher (L3) layer.

3.4 Application layer

The top layer (L3) has to be implemented according to client-

side software and server-side advanced processing software

and tools. Client and server-side software must provide a

123



178 J Reliable Intell Environ (2015) 1:173–187

way to implement a communication with L2 layer (over file

system) to:

– request a job (client);

– serve a job request (server);

– execute progress synchronization (client and server);

– provide results (server);

– retrieve results (client).

4 A case study

4.1 Clinical scenario

Dynamic Contrast Enhanced Magnetic Resonance Imaging

(DCE-MRI) is a widespread methodology for cancer detec-

tion and evaluation. In particular, in this study, we focussed

on the breast DCE-MRI which has a large potential in early

detection of cancer and therapy response assessment, espe-

cially for young women.

Due to the large amount of data acquired within a DCE-

MRI session, the physician has to deal with the complex

task of accurately detecting suspicious ROIs and evaluating

tumour aggressiveness using 4D data (3D spatial data and

1D time data) [24,25].

In this context, many scenarios could be imagined in which

the proposed architecture could be useful: let us consider

the processing of multiple data corresponding to the same

patient (patient follow-up) or the concurrent processing from

multiple radiologists within a single medical centre.

We now describe the implementation of our proposal real-

ized to support this application context.

4.2 Orchestrator layer implementation

In medical image analysis context, all abstract methods have

been implemented to work on biomedical image data and

server processing software: the resulting module is called

jM-FlowOrchestrator.

In this context it is worth mentioning that DICOM is

the de-facto standard for biomedical images [26]. It is a

strongly structured file composed of image row data and

patient meta-data used in human and veterinary medicine

diagnostic imaging. The DICOM standard supports the han-

dling, storing, printing, and transmission of medical imaging.

It includes a file format definition and a network communica-

tions protocol. The communication protocol is an application

protocol that uses TCP/IP to communicate between sys-

tems. We intentionally decided to not use DICOM standard

transmission features with the aim of decoupling proposed

architecture effectiveness from any particular application

context.

For advanced data processing on the server-side, at layer

L3, we have chosen to use MATLAB [27] (R2013b version)

because (i) it requires no special handling of larger sized vec-

tor or matrix (images), (ii) it has advanced ToolBoxes (Image

processing, Parallel and Distributed Computing, Artificial

Intelligence) and (iii) it has the ability to invoke external

classification and data mining tools (Fig. 6). In particular, in

our previous work [25] we implemented a set of methods

to interact with Weka [28] machine learning and data min-

ing suite. This choice makes it possible also to parallelise

client request executions by different MATLAB instances,

each strongly bound to a specific CPU using MATLAB Paral-

lel Toolbox. It is worth noting that the MATLAB environment

has to be installed only on the server-side, while on the client-

side the pre-existing software can still be used. According to

the DICOM standard the image data can be compressed using

a variety of compression standards, including JPEG, JPEG

Lossless, JPEG 2000, and Run-length encoding (RLE). In the

proposed architecture, signal intensity data are compressed as

4D volume to exploit spatial correlation between near slice

of the same time series and temporal correlation between

the same slice across different time series. For this reason,

the architecture always has a compression stage, indepen-

dently on the image format used in the DICOM file. Also we

observed and properly motivated that the format file required

by remote processing tools is achieved with the appropriate

organization of the data for a better compression ratio (see

Fig. 7). For this reason DICOM files, after a suitable process-

ing step, are compressed in MATLAB format. To achieve

MATLAB compression without the MATLAB software, the

open-source Java JMatIO library was used.

On the client-side, jM-FlowOrchestrator performs:

– DICOM file analysis to generate two different files:

one for volume data (“volume.mat” containing only

signal intensity) and one containing only meta-data

(“patient.mat” containing only privacy sensible infor-

mation). Both files are directly stored in MATLAB file

format and sent to client by exploiting the potential of the

lower layer (jSecureSync);

– Update L3 on the actual processing state (for example, the

remaining time) of the requested feature on server-side.

On the server-side, jM-FlowOrchestrator performs:

– Data preparation according to server L3 application

layer’s required formalism (as described in Sect. 4);

– MatLab results, data gathering and transmission to

server-side L1 layer;

– Client-side L2 layer status updating.

Remote processing specifications (both job required and sta-

tus updates) are memorized in an XML file transmitted over

the secure channel together with MATLAB formatted files

123



J Reliable Intell Environ (2015) 1:173–187 179

Fig. 4 Component level sequence diagram for a single job request execution. Rounded rectangles on temporal line represent state changing

containing sensitive data. That file is periodically exchanged

between client and server.

A single DCE-MRI study can contain as many as 800

DICOM files. Each file contains a single 2D slice and the

meta-data DICOM tag about the study and the patient. By

exploiting the potentiality of the lower layer (secure and non-

secure channel offered by L1), the DICOM files are split. The

volume information extracted for all the DICOM files of the

same patient consist of 12 bit coded signal intensity for each

voxel and is stored in a 4D matrix. Stripped of all sensitive

information, it can be send over the non-secure channel (step

6 of sequence diagram in Fig. 4). The meta-data provided

by DICOM format normalized (often with an high internal

redundancy and with information that is not strictly necessary

for the purpose of processing) and compressed (in MAT-

LAB format) are prepared to be transmitted over the secure

channel (step 9 of sequence diagram in Fig. 4). All compres-

sion tests on patient data were performed considering both

meta-data and signal intensity as 4D volume. Results show

as MATLAB achieves a better compression ratio (CR) than

the Zip4j protocol (the runner up), exploiting the spatial and

temporal correlation typical of DCE-MRI images, and the

MATLAB sparse-matrix data representation. For those rea-

sons, MATLAB compression is chosen at the middle level

(L2 jM-FlowOrchestrator) only for the DICOM content (both

on images and meta-information). Other file types (XML) are

compressed using Zip4j protocol to preserve their human-

readability.

The component level sequence diagram in Fig. 4 shows the

message passing protocol sequence in the described context

for a flow execution scenario:

– Rounded rectangles over the temporal line represent state

changing;

– Intra layer communication (a different layer on the same

machine) is performed by using file system services;

– Inner layer communication (same layer on a different

machine) is performed through communication channel

provided by L1 layer.

4.3 Application layer implementation

On the client-side, we decided to support the widespread

OsiriX medical image tool [29], due to its powerful interface

and since it has an open plug-in system.

123



180 J Reliable Intell Environ (2015) 1:173–187

Fig. 5 OsiriX GUI example showing how the user can check the status

of each job and can retrieve results within OsiriX main window

In particular, we developed an OsiriX plug-in capable of

interacting with jM-FlowOrchestrator (using the file system),

to give the end user the ability to:

– Export selected patient DICOM files to jM-Flow

Orchestrator;

– Use GUI for required operation on server-side, with the

possibility to change any parameter;

– Progress display for each required operation;

– Import obtained results from jM-FlowOrchestrator and

view them by using the powerful OsiriX interface.

The plug-in allows the user to send patient’s data (selecting

the required operation), to check in-service operation (with

an estimation of the remaining time) and to gather the results.

On the arrival of the results, the system alerts the user by

means of a pop-up. Clicking the ’Retrieve Results’ button

(Fig. 5), the OsiriX 3D viewer interface is loaded and the

results are shown (in this case, the automatically detected

lesions).

On the server-side, we developed an advanced modular

system for the waterfall execution of any job flow (made

up of subsequent steps) called MatlabFlowManager. Many

simple modules can be combined to form a more complex

system easily through a simple XML flow configuration file.

The XML configuration file contains the module internal

setting and the module interconnection setting. In our pre-

vious studies [24,25], we presented a system for automatic

lesion detection in breast DCE-MRI based on a SVM classi-

fier (Breast Lesion Automatic Detection System, BLADeS).

It has been used in this work as a case study (Fig. 6).

The DCE-MRI data segmentation flow processing defined,

in accordance with BLADeS, is achieved by means of the

followings steps:

– 4D volume extraction from patient DICOM images;

– BreastMask extraction (a binary mask representative of

voxel belonging to breast parenchyma, excluding back-

ground, bone, skin and pectoral muscles voxel);

– Pre-selection Mask (a binary mask that excludes non-

suspect voxel using an approach presented in our previous

works [25,30–34];

– Feature extraction;

– Classification (using weka [28] and libsvm [35] pack-

ages).

Each step is obtained using one or several modules devel-

oped in MATLAB. The specific XML file that is invoked for

each execution of BLADeS calls the following modules:

– BreastMask extraction reads the MATLAB formatted

files sent by the client and performs the BreastMask

extraction procedure. Saves a binary 3D matrix on the

File System;

– Image pre-processing reads the MATLAB formatted files

and performs a median filtering (with a 3 px windows)

according to our previous work [25]. Saves a new MAT-

LAB file containing the pre-processed 4D volume.

– Voxel pre-selection reads the pre-processed MATLAB

file and the BreastMask MATLAB file and performs

a voxel-by-voxel pre-selection. Saves the pre-selection

Fig. 6 The proposed

architecture in the specific

context of DCE-MRI evaluation,

by using OsiriX and a

previously proposed CAD tool

(BLADeS [24,25])

r-SideevreSt-SideneilC

OsiriX

jM-FlowOrchestartor

(Client)

jM-FlowOrchestartor

(Server)

jSecureSync

(Client)

jSecureSync

(Server)

SSL/TSL Channel

TCP/IP Channel

O
S

 F
il
e

 S
y
s
te

m

O
S

 F
il
e

 S
y
s
te

m

L1 L1

L2

L3

L2

L3

PlugIn

BLADeS

MLFlowMng.

DICOM MAT

123



J Reliable Intell Environ (2015) 1:173–187 181

mask (a binary 3D mask that marks only the suspected

voxel) [30–34];

– Feature extraction reads the pre-processed MATLAB

file, the pre-selection mask MATLAB file and the list of

feature to be extracted. Saves a MATLAB file containing

the dataset to classify;

– Classification performs the classification using weka [28]

and libsvm [35] packages. saves the results into a new

MATLAB file.

4.4 Architecture behaviour

To better understand the whole architecture, we present a

step-by-step scenario of the medical context.

The physician loads the patient DCE-MRI data (from the

local files or from the clinical PACS server) into OsiriX; then

loads the installed plug-in, selects the remote required task in

a a drop-down menu (in that case, the name of the remote task

that implements BLADeS on the server was “BCA”—“Breast

Cancer Analysis”) and starts a new remote job request. The

plug-in takes into account the DCE-MRI data as a whole and

copies the DICOM files into the specific folder of the Java

client-side of the architecture by creating a new sub-directory

named with a new unique ID. Finally, the plug-in also creates

an XML file containing the required remote job, and the status

“Reading MRI”. The folder monitor daemon, implemented

into jM-FlowOrchestrator (L2), catches the XML file (step 1

of Fig. 4) and acquires the DICOM files (step 5 of Fig. 4) by

creating two different files in the MATLAB format: one file

(“volume.mat”) containing the whole 4D volume of the DCE-

MRI image data without any patient information or any kind

of private data, and one file (“patient.mat”) containing the

sensitive data (such as patient name, age, height, weight, etc.).

jM-FlowOrchestrator (L2) saves each of these files (the XML

file—step 2 of Fig. 4—and the 2 MATLAB formatted file—

steps 6 and 9 of Fig. 4) into the folder of the lower level (L1—

jSecureSync), marking the XML and the “patient.mat” file as

secure and “volume.mat” as non-secure. The folder monitor

daemon, implemented into jSecureSync (L1), as in the upper

level, catches that files and transmits over the right channel

(either secure or non-secured) previously instantiated with

the server-side according to the remark of the upper Layer

(steps 3, 7 and 10 of Fig. 4).

On the server-side, the jSecureSync (L1) module receives

all three files and moves them to the upper level folder (steps

4, 8 and 11 of Fig. 4). Into the jM-FlowOrchestrator (L2)

server module, unlike what is performed on the client-side, no

specific operation is performed but simply the files are moved

from the lower transmission level to the upper application

level starting the required task (in the specific context the

CAD segmentation workflow—step 18 of Fig. 4).

Each status update is performed by updating the XML file

and re-syncing it between the peers. For example, once the

jM-FlowOrchestrator (L2) server module starts the workflow

execution, the status into the XML changes into “Working on

Server” and the folder monitor daemon of each level provides

to move the XML file through each level and, of course,

between peers (steps 15, 16 and 17 of Fig. 4). Each GUI

refresh shows the punctual status of each job request (Fig. 5).

Once the required task is completed, the result is saved on

the server-side (into MATLAB format) and, with the same

strategy of the client-to-server communication, is moved

to the client-side (steps 19, 20 and 21 of Fig. 4) where

jM-FlowOrchestrator (L2) performs a conversion from the

MATLAB format to the XML format. It is then ready to be

retrived into the OsiriX software upon user request.

Furthermore, once the GUI receives an XML file contain-

ing the status “Retrieving Results”, it alerts the user with a

pop-up message.

With respect to the execution time, the whole architec-

ture, therefore, only adds the time needed to transmit files and

adapt data formats from client to server and vice versa. Trans-

mission times include: time needed to adapt data from both

applications layers; compression and decompression times

and the actual sending time via TCP or SSL channels. In

the performance assessment, we also focused on how much

the architecture impacts the execution time by evaluating the

overhead percentage.

4.5 Exploit parallelism

For the specific case study, the CAD system for automatic

lesion detection in the breast DCE-MRI we deployed on the

server-side is not yet ready to be directly parallelised. On the

other hand, the architecture is able to schedule different exe-

cutions of the same CAD elaboration, one for each request.

Each MATLAB instance is bound to a single job request and

to a specific CPU with the aim to improve the local per-

formance. In this way, the architecture is able to increase

the overall system throughput, and also the one of a non-

parallelised service. The jM-FlowOrchestrator (L2) together

with MatlabFlowManager (L3) takes care of the binding with

the local CPUs or the dispatching of the job to a least busy

server, exploiting the parallelism in a cluster manner too.

4.6 Performance assessment

4.6.1 Data compression tests

We compare different compression protocols: Java Native

Zip library, Lempel–Ziv–Markov (LZMA), the Zip4j open-

source library and MATLAB file format compression. The

Zip4j library has been chosen due to its large diffusion. It

provides several levels of compression [(0) store, (1) fastest,

(3) fast, (5) normal, (7) maximum, (9) ultra] requiring differ-

ent times. Of course, the compression ratio and compression

123



182 J Reliable Intell Environ (2015) 1:173–187

times affect the transmission times. Therefore, in order to

choose the optimal compromise between compression ratio

and the overall transmission time, we have tested several

compression levels evaluating the compression ratio (CR) as

in the Eq. (1):

CR (%) =

(

1 −
compressed size

original size

)

× 100 (1)

As the DICOM files include private information that must

be sent on the secure channel (see Sect. 3.2), we did not

directly send the compressed DICOM images.

Instead, the Orchestrator layer (see Sect. 3.3) extracts

meta-information, sending it only one time for each patient,

before signal intensity 4D data. This has the advantage of not

sending the same information multiple times, i.e. the patient

meta-data.

4.6.2 Transmission and execution tests

To evaluate transmission and execution times, we compared

the total execution times made up of both transmission times

(from client to server and vice versa) and server computa-

tional time.

The transmission time includes all the operations required

by the proposed architecture (such as the compression/

decompression time or the time needed to adapt data from

both application layers) to move the execution of the required

job from a local context to a remote environment.

Moreover, the overhead (OH) has been calculated accord-

ing to the equation 2:

OH (%) =
Transmission Time

Transmission Time + Execution Time
×100 (2)

4.6.3 Scalability test

To evaluate performance and feasibility of the proposed sys-

tem, local execution vs. remote server execution has been

evaluated. We compared the total execution time (constituted

by client-to-server transmission time, server processing time,

server-to-client transmission time) in the client–server archi-

tecture with the time needed by the same operation when it

is entirely performed on physician’s workstation.

Scalability has been tested by evaluating the system

throughput (number of produced output per time unit, con-

sidered as the number of results produced by the system in

one hour under a huge load regime) in four different config-

urations:

– Local: job is entirely performed on the radiology work-

station;

– 1 CPU: job is performed through server using one CPU;

– 2 CPUs: job is performed through server using two CPUs;

– 4 CPUs: job is performed through server using four

CPUs.

Throughput is defined in Eq. (3) (for the local configura-

tion) and in Eq. (4) (for the remote configurations) and the

unit of measurement is:
jobs

h
.

TPlocal =

(

1 hour

single_job_execution_time

)

(3)

TPserver =

(

1 hour

single_job_execution_time

)

× #CPU (4)

For each remote configuration, the speedup has been cal-

culated according to Eq. (5) as proposed in [36].

speedup =
TPremote

TPlocal
(5)

5 Case study results

5.1 Patient dataset

The dataset used for the following tests included breast DCE-

MRI data from 33 patients (average age 40 years, in range

16–69) with benign or malignant lesions histopathologically

proven: 19 lesions were malignant and 14 were benign.

Although the system architecture is independent from the

data acquisition protocol, in order to evaluate its performance

in a real case, we considered its application to the analysis of

breast DCE-MRI T1-weighted FLASH 3D coronal images

(TR/TE 9.8/ 4.76 ms; flip angle 25◦; field of view 330 ×

247 mm × mm; matrix 256 × 128; thickness 2 mm; gap 0;

acquisition time 56 s; 80 slices spanning the entire breast vol-

ume). For each patient, ten series were acquired: one series

(t0) was acquired before and nine series (t1–t9) after the intra-

venous injection of 0.1 mmol/kg of a positive paramagnetic

contrast agent (Gd-DOTA, Dotarem, Guerbet, Roissy CdG

Cedex, France). Signal intensity data are stored as an uncom-

pressed DICOM file. A single patient dataset occupies about

111 MB.

5.2 Compression tests

We compare four different compression protocols: Java

Native Zip library, Lempel–Ziv–Markov (LZMA achieved

using 7z open-source java library), the Zip4j open-source

java library and MATLAB file format compression. Trans-

mission times of whole the dataset (for each of 33 patients)

have been evaluated on a 10/100 mbps Ethernet LAN. Table

1 reports the average results of the compression tests for

Zip4j. Zip4j can achieve a compression ratio of about 70 %

123



J Reliable Intell Environ (2015) 1:173–187 183

Table 1 Zip compression level impact on transmission time (evaluated over 33 patients)

Compression level Original size (MB) Compressed size (MB) Compression ratio (%) Compression time (s) Transmission time (s)

0 (store) 111 111 0.00 0.43 8.38

1 (fastest) 111 34 68.78 0.83 6.38

3 (fast) 111 34 68.78 1.12 6.42

5 (normal) 111 32 70.33 3.22 6.13

7 (maximum) 111 31 71.28 10.26 5.97

9 (ultra) 111 31 71.48 26.20 5.91

The average size of a original DICOM study is about 111 MB. The compression ratio of Zip is about 70 % for all levels. The level 1 (reported in

bold) is the best trade-off between short transmission and compression times

Fig. 7 Compression ratio comparison between different compression

methods, including MATLAB

for all levels. Higher levels of compression do not seem

to significantly improve the compression ratio. They dilate

compression times without dramatically reducing the trans-

mission times (that follows an exponential decrease with a

lower bound to about 6 s). The level 1 is the best trade-

off between short transmission and compression times. It is

worth noting some communication errors that alter the trans-

mission time (on the Level 3 test) due to the best-effort feature

of the TCP/IP protocol, over which, we have carried out these

tests.

Figure 7 shows the average compression ratio com-

puted over the overall patient dataset for each compression

protocol. For each test, data are composed of both meta-

information and signal intensity data. It is possible to

appreciate that Zip4j algorithm (the runner up) has a com-

pression ratio approximately 10 % lower than MATLAB

results. All other files (XML) are compressed with Zip4j.

5.3 Transmission and execution tests

Figure 8 shows the distribution of execution and transmission

times. Median values of execution (175 s) and transmission

(4.5 s) times have been indicated as red lines.

Fig. 8 Distribution of remote execution and transmission times using

1 CPU on server node. Median values of execution (175 s) and trans-

mission (4.5 s) have been indicated as red lines

The server-side has been implemented on an Intel Core

i7-3630QM 64 bit Quad Core 2.4 GHz equipped with 12 GB

RAM. Also in this case the transmission times have been

evaluated on a 10/100 mbps Ethernet LAN, a 100/1000 mbps

Ethernet LAN, a cheap xDSL (nominal 4 mbps) and a MPLS

(nominal 10 mbps). Each average overhead was calculated

according to Eq. (2) and is shown in Table 2 (for decreasing

values of overhead).

In Fig. 8, it can be observed that the transmission time

has spread over a small interval (3–6 s), while the execution

time has two clear outliers of about 549 and 713 s. These are

due to two patients having a very high number of voxels to

analyse.

5.4 Scalability evaluation

In Table 3, we compare the average execution times of four

different server-side architecture configurations according to

Sect. 4.6.3. Remote execution times include image process-

ing and transmission between client and server (and vice

123



184 J Reliable Intell Environ (2015) 1:173–187

Table 2 Overhead in different

network configuration (the

execution time assess on about

188 s)

Network Nominal speed (mbps) Transmission time (s) Overhead (%)

xDSL 4 17.104 9.15

LAN 100 4.541 2.62

MPLS (PPPoA) 10 2.832 1.66

Fast LAN 1000 2.817 1.65

It is worth noticing that transmission time could be afflicted by network load (best-effort treatment)

Table 3 Average execution

times, throughput and speedup

in the different cases

Execution time Throughput (jobs/h) Speedup

Mean (s) Standard deviation (s)

Local (1 job) 229.34 145.19 15.7 –

Remote (1 CPU, 1 job) 192.60 128.05 18.7 1.2

Remote (2 CPUs, 2 job) 199.40 130.41 36.1 2.3

Remote (4 CPUs, 4 job) 204.31 130.59 70.5 4.5

versa). In the client–server approach, the server has been

implemented on an Intel Core i7-3630QM 64 bit Quad Core

2.4 GHz equipped with 12 GB RAM. The local evaluation has

been tested on a typical OsiriX workstation (Apple iMac with

Intel Core 2 Duo 2.0 GHz equipped with 3 GB RAM) with

lower characteristic than the client–server approach. Also

in this case, transmission times have been evaluated on a

10/100 mbps Ethernet LAN.

It is worth noticing that the execution times remain almost

unchanged in all the considered configurations. However, as

Table 3 shows, the throughput and the speedup ratio increase

is almost proportional to the number of processors used. This

justifies the choice of a remote execution and brings benefits

in terms of upgradability and maintainability of the segmen-

tation algorithms and result sharing.

6 Discussion and conclusions

In this work we proposed an architecture for advanced remote

data processing in a secure and versatile client–server envi-

ronment.

To demonstrate the feasibility of the proposed system and

the advantages over past studies, we have implemented a

medical case study for automatic lesion detection in breast

DCE-MRI [24].

The result is a process-on-demand architecture, allowing

the radiologist to have access to a secure, versatile and pow-

erful remote CAD system.

The aim of the proposed architecture is the possibility of

easily integrating a pre-existing medical image processing

software within a complete CAD system deployed on a server

machine and shared with many workstations. This has the

benefit to allow the physician to not change the user interface

he is accustomed to, but to extend the pre-existent software

via plug-in. This is one of the main novelties with respect

to previous works that proposed interaction with the user

through proprietary interfaces [13].

The plug-in’s main role is to interact with the physi-

cian making all required tasks (XML file creation, DICOM

exporting, status monitoring and alerting, result reporting)

totally transparent to the operator. The jM-FlowOrchestrator

(client) role is to extract sensitive data from DICOM files,

prepare the MATLAB formatted files to the lower transmis-

sion layer (jSecureSync) and manage status updates working

jointly with its counterpart on the serves side.

To make the proposed system available for a new client-

side image processing application, only the small plug-in

development is needed, as the JM-FlowOrchestrator is writ-

ten in Java (making it portable and transferable to different

operative systems with ease). The proposed strategy allows

us meeting the integration goal easy, as long as the third-party

client implements a customization such as a plug-in or API

philosophy supported by some form of SDK toolboxes. As a

result, the use of a plug-in together with jSecureSync and jM-

FlowOrchestrator makes the proposed architecture versatile

and has “low-impact” on the pre-existent infrastructure.

The use of a remote server for advanced operation exe-

cution allows an increase in number and type of services

offered. It also improves withstanding services without any

modification on the client-side. Moreover, during server exe-

cution, the client user can utilize his workstation for other

kinds of work, optimizing task time. Table 3 shows that

the use of a multiprocessor server (or a cluster of multi-

processor servers) yields a system that has an execution time

comparable with local processing system, but with a higher

throughput value, which is quite proportional to the number

of processor used. The multi-client/single-server structure

optimizes the use of resources by allocating different atomic

jobs on different CPUs. Table 3 also shows that, by increas-

123



J Reliable Intell Environ (2015) 1:173–187 185

ing the number of the available CPUs and jobs, the mean

execution time only slightly increases a little. This allows an

easy handling of small and big increase of requests by adding

additional CPUs or multiprocessors servers to the cluster.

It is worth noticing that the proposed architecture, with ref-

erence to a typical radiological workstation, does not require

further expensive hardware, interconnection networking or

operating system (all tests were performed on commercial

notebook/pc/mac and on conventional network infrastruc-

tures), making it suitable for small clinical structures with of

few radiologists, up to big hospitals or structures in which

tens of radiologists are involved.

In order to limit transmission time, image files need to be

compressed before being sent over the network. For the spe-

cific implementation of the architecture reported in this paper,

compression tests showed that, due to the significant corre-

lation of medical image data and the extraction of repeated

meta-data information, the use of MATLAB format can pro-

duce results even better than those obtained by using the

fastest compression offered by Zip4j (level 1). The compres-

sion ratio was about 70 % for Zip4j, while MATLAB format

can achieve a compression ratio up to 80 %. All other files not

in DICOM format (XML) are compressed with the Zip4j pro-

tocol. Transmission and execution time measurements were

then performed on some plausible scenario, for a practical

clinical environment, corresponding both to a private net-

work among different structures from the same company and

to different companies connected through available network

infrastructures (e.g. optical fibre). The overhead added by

network infrastructure (Table 2), in the case study (heavy

remote computation) we have considered, settles on about

2.5 % (for the widespread 10/100 mbps) of the remote

processing execution time. This overhead reaches a still

acceptable value of 10 % in the worst case of a cheaper xDSL

network WAN connection. This could make it possible to

apply the proposed architecture even over a more diffused

network (such as xDSL) without a significant decrease in

performance.

Remote processing of medical images proposed in pre-

vious studies (such as in [9,10]) only offered basic image

processing or 3D reconstructions, without heeding the asso-

ciated complex and severe security issues. When analysed,

security issues are typically resolved by considering server

and client connected by a private dedicated network [12].

Our system can be safely used over every kind of inter-

connection network that supports TCP/IP stack protocol,

allowing the development of multi-centre interconnections

distributed over a wide geographical area. All the security

evaluation is thorough using SSL, AES and RSA parame-

ters meeting the 2012 NIST standard requirements [22] and

will ensure channel privacy through to the year 2030 at min-

imum. This will allow for a distribution of the system cost

over a longer period. On the other hand, the use of authoriza-

tion certificates, means a simple and safe authentication and

authorization phase.

Although the DICOM standard provides all functionality

needed in our architecture, we intentionally decided not to use

DICOM standard with the aim of decoupling our architec-

ture from any particular application context. The proposed

architecture has been demonstrated with reference to bio-

medical image processing, but it is possible to apply it even

in different contexts (i.e. not using DICOM).

Recent studies [37] claim that in the near future, “compu-

tation on demand” will be available to everyone and at a low

cost, causing an even higher interest in distributed computing

services. Thus, future works will focus on improving server

side by supporting multiple servers (cluster) architectures.

Load balancing will be achieved by the use of a distributed

decision protocol. Each node in the cluster knows the others

nodes load status: when a client asks to connect it will be

redirected to the least busy server node. This system will be

also designed to allow hot-plug (new server connection dur-

ing execution) and automatic dead server recovery, resolving

also the Single Point Of Failure (SPOF) problem typical of

a central server system. For improving dependability and

recoverability of the offered services, is mandatory to uncou-

ple the source and destination of data transfers. This can be

done by means of a new module which asynchronously feeds

workers with new units of work on an on-demand basis, and

on a special feeding strategy based on bookkeeping the status

of each work-unit as in [38] and dynamically load balancing

as in [39].

In conclusion, the proposed architecture has a secure, ver-

satile and low-impact approach, making this work suitable

to enable an easy integration into intelligent environments.

7 Mode of availability

The whole architecture is the result of a collaboration (still

active) with radiologists and physicians who are testing the

functionalities of the software. However, we have not yet

delivered a public plug-in. The communication core (jSe-

cureSync) and interfaces for implementing the processing

flow level (jFlowOrchestrator) are available by writing to

carlo.sansone@unina.it

Acknowledgments The authors are grateful to Dr. Antonella Petrillo,

Head of Division of Radiology, Department of Diagnostic Imaging,

Radiant and Metabolic Therapy, “Istituto Nazionale dei Tumori Fon-

dazione G. Pascale”-IRCCS, Naples, Italy, for providing access to

DCE-MRI data. Moreover, we would like to thank PhD Roberta Fusco,

from the same institution, for useful discussions.

123



186 J Reliable Intell Environ (2015) 1:173–187

References

1. Buyya R, Yeo CS, Venugopal S (2008) Market-oriented cloud

computing: vision, hype, and reality for delivering it services as

computing utilities, In: 10th IEEE international conference on high

performance computing and communications, 2008. HPCC2008,

IEEE, New York, pp 5–13

2. Bryant R, Katz RH, Lazowska ED (2008) Big-data computing:

creating revolutionary breakthroughs in commerce, science and

society

3. Majithia S, Taylor I, Shields M, Wang I (2003) Triana as a graph-

ical web services composition toolkit. In: Proceedings of the UK

eScience all hands meeting, pp 2–4

4. Curcin V, Ghanem M (2008) Scientific workflow systems-can one

size fit all? In: Cairo international biomedical engineering confer-

ence, 2008. CIBEC 2008. IEEE, New York, pp 1–9

5. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S

(2004) Kepler: an extensible system for design and execution of

scientific workflows. In: Proceedings of the 16th international con-

ference on scientific and statistical database management, 2004.

IEEE, New York, pp 423–424

6. Rex DE, Ma JQ, Toga AW (2003) The loni pipeline processing

environment. Neuroimage 19(3):1033–1048

7. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D,

Owen S, Soiland-Reyes S, Dunlop I, Nenadic A, Fisher P et al

(2013) The taverna workflow suite: designing and executing work-

flows of web services on the desktop, web or in the cloud. Nucleic

Acids Res gkt328

8. Svantesson D, Clarke R (2010) Privacy and consumer risks in cloud

computing. Comput Law Secur Rev 26(4):391–397

9. Scheinine AL, Donizelli M, Pescosolido M (1998) An object-

oriented client–server system for interactive segmentation of

medical images using the method of active contours. In: Bildver-

arbeitung für die Medizin 1998. Springer, New York, pp 308–312

10. Mayer A, Meinzer H-P (1999) High performance medical image

processing in client/server-environments. Comput Methods Pro-

grams Biomed 58(3):207–217

11. Yacoub SM, Ammar HH (1999) The development of a client/server

architecture for standardized medical application network services.

In: Proceedings of the 1999 IEEE symposium on application-

specific systems and software engineering and technology, 1999.

ASSET’99. IEEE, New York, pp 2–9

12. Crane JC, Crawford FW, Nelson SJ (2006) Grid enabled magnetic

resonance scanners for near real-time medical image processing. J

Parallel Distrib Comput 66(12):1524–1533

13. Mahmoudi SE, Akhondi-Asl A, Rahmani R, Faghih-Roohi S,

Taimouri V, Sabouri A, Soltanian-Zadeh H (2010) Web-based inter-

active 2D/3D medical image processing and visualization software.

Comput Methods Programs Biomed 98(2):172–182

14. Dierks T, Allen C (1999) The TLS protocol version 1.0, RFC 2246

(proposed standard), obsoleted by RFC 4346, updated by RFCs

3546, 5746, 6176. http://www.ietf.org/rfc/rfc2246.txt

15. Dierks T, Rescorla E (2006) The transport layer security (TLS)

protocol version 1.1, RFC 4346 (proposed standard), obsoleted by

RFC 5246, updated by RFCs 4366, 4680, 4681, 5746, 6176. http://

www.ietf.org/rfc/rfc4346.txt

16. Dierks T, Rescorla E (2008) The transport layer security (TLS)

protocol version 1.2, RFC 5246 (proposed standard), updated by

RFCs 5746, 5878, 6176. http://www.ietf.org/rfc/rfc5246.txt

17. Oracle Corporation (2011) Java authentication and authorization

service reference guide. http://docs.oracle.com/javase/6/docs/

technotes/guides/security/jaas/JAASRefGuide.html. Accessed

February 2014

18. Lai C, Gong L, Koved L, Nadalin A, Schemers R (1999) User

authentication and authorization in the Java TM platform. In:

Proceedings of the 15th annual computer security applications con-

ference, 1999 (ACSAC’99). IEEE, New York, pp 285–290

19. Barker E, Johnson D, Smid M (2007) Recommendation for

pair-wise key establishment schemes using discrete logarithm cryp-

tography. In: NIST special publication 800–56A

20. Certicom Research (2000) Standards for efficient cryptography

SEC 1: elliptic curve cryptography. http://www.secg.org/collateral/

sec1_final.pdf. Accessed February 2014

21. Chown P (2002) Advanced encryption standard (AES) ciphersuites

for transport layer security (TLS), RFC 3268 (proposed standard),

obsoleted by RFC 5246. http://www.ietf.org/rfc/rfc3268.txt

22. Barker E, Barker W, Burr W, Polk W, Smid M (2006) Recommen-

dation for key management—part 1: general (revision 3). In: NIST

special publication, pp 800–857

23. Blake-Wilson S, Bolyard N, Gupta V, Hawk C, Moeller B (2006)

Elliptic curve cryptography (ECC) cipher suites for transport layer

security (TLS), RFC 4492 (informational), updated by RFCs 5246,

7027. http://www.ietf.org/rfc/rfc4492.txt

24. Piantadosi G, Marrone S, Sansone M, Sansone C (2013) A secure

OsiriX plug-in for detecting suspicious lesions in breast DCE-MRI.

In: Algorithms and architectures for parallel processing. Springer,

New York, pp 217–224

25. Marrone S, Piantadosi G, Fusco R, Petrillo A, Sansone M, Sansone

C (2013) Automatic lesion detection in breast DCE-MRI. In: Image

analysis and processing—ICIAP 2013. Springer, New York, pp

359–368

26. Mustra M, Delac K, Grgic M (2008) Overview of the DICOM

standard. In: 50th international symposium ELMAR, 2008, vol 1.

IEEE, New York, pp 39–44

27. I. The MathWorks (2013) Matlab. http://www.mathworks.com/

products/matlab

28. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH

(2009) The weka data mining software: an update. ACM SIGKDD

Explor Newsl 11(1):10–18

29. Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source soft-

ware for navigating in multidimensional DICOM images. J Digit

Imaging 17(3):205–216

30. Fusco R, Sansone M, Sansone C, Petrillo A (2011) Selection

of suspicious ROIS in breast DCE-MRI. In: Image analysis and

processing—ICIAP 2011. Springer, New York, pp 48–57

31. Fusco R, Sansone M, Sansone C, Petrillo A (2012) Segmentation

and classification of breast lesions using dynamic and textural fea-

tures in dynamic contrast enhanced-magnetic resonance imaging.

In: 25th international symposium on computer-based medical sys-

tems (CBMS), 2012. IEEE, New York, pp 1–4

32. Fusco R, Sansone M, Petrillo A, Sansone C (2012) A multiple

classifier system for classification of breast lesions using dynamic

and morphological features in DCE-MRI. In: Structural, syntactic,

and statistical pattern recognition. Springer, New York, pp 684–692

33. Fusco R, Sansone M, Maffei S, Raiano N, Petrillo A (2012)

Dynamic contrast-enhanced mri in breast cancer: a comparison

between distributed and compartmental tracer kinetic models. J

Biomed Graph Comput 2(2):23

34. Fusco R, Filice S, Granata V, Mandato Y, Porto A, DAiuto M,

Rinaldo M, Di Bonito M, Sansone M, Sansone C (2013) Can semi-

quantitative evaluation of uncertain (type ii) time–intensity curves

improve diagnosis in breast DCE-MRI? J Biomed Sci Eng 6:418

35. Chang C-C, Lin C-J (2011) Libsvm: a library for support vector

machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

36. Hennessy JL, Patterson DA (2011) Computer architecture: a quan-

titative approach. Elsevier, London

37. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud

computing and emerging it platforms: vision, hype, and reality for

delivering computing as the 5th utility. Future Gener Comput Syst

25(6):599–616

123

http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://www.secg.org/collateral/sec1_final.pdf
http://www.secg.org/collateral/sec1_final.pdf
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc4492.txt
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab


J Reliable Intell Environ (2015) 1:173–187 187

38. De Florio V, Deconinck G, Lauwereins R (1997) An application-

level dependable technique for farmer–worker parallel programs.

In: High-performance computing and networking. Springer, New

York, pp 644–653

39. Leeman M (2012) A resource-aware dynamic load-balancing par-

allelization algorithm in a farmer–worker environment. Innov

Approach Resilient Adapt Syst 88:88–104

123


	A secure, scalable and versatile multi-layer client--server architecture for remote intelligent data processing
	Abstract
	1 Introduction
	2 Related works
	3 The proposed architecture
	3.1 Architecture layers
	3.1.1 L1---communication
	3.1.2 L2---orchestrator
	3.1.3 L3---application

	3.2 Communication layer
	3.3 Orchestrator layer
	3.4 Application layer

	4 A case study
	4.1 Clinical scenario
	4.2 Orchestrator layer implementation
	4.3 Application layer implementation
	4.4 Architecture behaviour
	4.5 Exploit parallelism
	4.6 Performance assessment
	4.6.1 Data compression tests
	4.6.2 Transmission and execution tests
	4.6.3 Scalability test


	5 Case study results
	5.1 Patient dataset
	5.2 Compression tests
	5.3 Transmission and execution tests
	5.4 Scalability evaluation

	6 Discussion and conclusions
	7 Mode of availability
	Acknowledgments
	References


