
 Open access Proceedings Article DOI:10.1109/SECURWARE.2008.21

A Secure Task Delegation Model for Workflows — Source link

Khaled Gaaloul, Andreas Schaad, Ulrich Flegel, François Charoy

Published on: 25 Aug 2008 - International Conference on Emerging Security Information, Systems and Technologies

Topics: Delegation, Workflow management system, Task (project management), Workflow and Context (computing)

Related papers:

 Supporting Delegation in Secure Workflow Management Systems

 A rule-based framework for role-based delegation and revocation

 Framework for role-based delegation models

 Workflows in Dynamic and Restricted Delegation

 Dynamic authorisation policies for event-based task delegation

Share this paper:

View more about this paper here: https://typeset.io/papers/a-secure-task-delegation-model-for-workflows-
t5n3triwtw

https://typeset.io/
https://www.doi.org/10.1109/SECURWARE.2008.21
https://typeset.io/papers/a-secure-task-delegation-model-for-workflows-t5n3triwtw
https://typeset.io/authors/khaled-gaaloul-5g8f9jgtdz
https://typeset.io/authors/andreas-schaad-2p2v219r5p
https://typeset.io/authors/ulrich-flegel-2prxxgp9vm
https://typeset.io/authors/francois-charoy-1nbrb2olmz
https://typeset.io/conferences/international-conference-on-emerging-security-information-1pbovcwo
https://typeset.io/topics/delegation-13g003j8
https://typeset.io/topics/workflow-management-system-yweyofe9
https://typeset.io/topics/task-project-management-1d50xq84
https://typeset.io/topics/workflow-1at2jgig
https://typeset.io/topics/context-computing-oaqnj9mg
https://typeset.io/papers/supporting-delegation-in-secure-workflow-management-systems-2ihoks005u
https://typeset.io/papers/a-rule-based-framework-for-role-based-delegation-and-3dwmmr7mn6
https://typeset.io/papers/framework-for-role-based-delegation-models-1wtht3e1ql
https://typeset.io/papers/workflows-in-dynamic-and-restricted-delegation-nwia31wjx4
https://typeset.io/papers/dynamic-authorisation-policies-for-event-based-task-2cm0hle4c8
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-secure-task-delegation-model-for-workflows-t5n3triwtw
https://twitter.com/intent/tweet?text=A%20Secure%20Task%20Delegation%20Model%20for%20Workflows&url=https://typeset.io/papers/a-secure-task-delegation-model-for-workflows-t5n3triwtw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-secure-task-delegation-model-for-workflows-t5n3triwtw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-secure-task-delegation-model-for-workflows-t5n3triwtw
https://typeset.io/papers/a-secure-task-delegation-model-for-workflows-t5n3triwtw

HAL Id: inria-00334755
https://hal.inria.fr/inria-00334755

Submitted on 28 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Secure Task Delegation Model for Workflows
Khaled Gaaloul, Andreas Schaad, Ulrich Flegel, François Charoy

To cite this version:
Khaled Gaaloul, Andreas Schaad, Ulrich Flegel, François Charoy. A Secure Task Delegation Model
for Workflows. The Second International Conference on Emerging Security Information, Systems and
Technologies - SECURWARE 2008, IARIA, Aug 2008, St Raphael, France. pp.10-15, 10.1109/SE-
CURWARE.2008.21. inria-00334755

https://hal.inria.fr/inria-00334755
https://hal.archives-ouvertes.fr

A Secure Task Delegation Model for Workflows

Khaled Gaaloul∗ †, Andreas Schaad∗, Ulrich Flegel∗, François Charoy†

∗SAP CEC Karlsruhe, Security & Trust Group

Vincenz-Priessnitz-Strasse 1, 76131 Karlsruhe, Germany

Email: khaled.gaaloul@sap.com, andreas.schaad@sap.com, ulrich.flegel@sap.com
†LORIA - INRIA - CNRS - UMR 7503

BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

Email: charoy@loria.fr

Abstract—Workflow management systems provide some of the
required technical means to preserve integrity, confidentiality and
availability at the control-, data- and task assignment layers of
a workflow. We currently observe a move away from predefined
strict workflow enforcement approaches towards supporting ex-
ceptions which are difficult to foresee when modelling a workflow.
One specific approach for exception handling is that of task
delegation. The delegation of a task from one principal to another,
however, has to be managed and executed in a secure way, in
this context implying the presence of a fixed set of delegation
events. In this paper, we propose first and foremost, a secure task
delegation model within a workflow. The novel part of this model
is separating the various aspects of delegation with regards to
users, tasks, events and data, portraying them in terms of a multi-
layered state machine. We then define delegation scenarios and
analyse additional requirements to support secure task delegation
over these layers. Moreover, we detail a delegation protocol with a
specific focus on the initial negotiation steps between the involved
principals.

I. INTRODUCTION

Many of the complex day to day workflows in large

organisations are facilitated and conducted using Workflow

Management Systems (WfMS). Security is an essential and

integral part of workflows, addressing the properties of in-

tegrity, confidentiality and availability. In a workflow, integrity

prevents the unauthorised modification of information, whilst

confidentiality implies that no data or resource is accessed by

unauthorised users at anytime. Availability moreover, implies

that a resource should be available when it is needed.

Within WfMS research we observe a tendency moving

away from strict enforcement approaches towards mechanisms

supporting exceptions that make it difficult to foresee when

modelling a workflow. Along those lines one specific set

of mechanisms is task delegation that allow at workflow

execution time for the exception-based delegation of a task [1].

Consequently, the delegation of a task can be very useful for

real-world situations where a user who is authorised to perform

a task is either unavailable or too overloaded with work to

successfully complete it. This can occur, for example, when

certain subjects are sick or on leave. It is frequently the case

that delaying these task executions will violate time constraints

on the workflow impairing the entire workflow execution.

Delegation is a suitable approach to handle such exceptions

and to ensure alternative scenarios by making WfMS flexible

and efficient.

Most of the work done in the area of security constraints

and requirement modelling is focused on the infrastructure

of WfMS and secure transaction management in workflow

execution [2], [3]. There exists little related work in the

domain of specifying task-based delegation. This observation

is supported by research done by Aalst et al. [4] and Hung

et al. [2]. They outlined that existing solutions, such as the

Workflow Authorisation Model (WAM) [3], are static and do

not support sufficient security constraints from build-time to

run-time of a workflow. Moreover, model-based access control

mechanisms cannot satisfy most criteria required for a secure

task delegation model with regards to the aspects of users,

tasks, events and data [5].

In order to tackle these problems we need to address

two important issues, namely allowing the delegation task to

complete, and having a secure delegation within a workflow.

Allowing task delegation to complete requires a model that

forms the basis of what can be analysed during the delegation

protocol. Secure delegation implies the controlled propagation

of authority, ensuring confidentiality at the control and data

flow layers as well as availability at the task assignment layer

and integrity at the data layer.

The contributions of this paper are threefold. First, we define

a secure task delegation model separating the various aspects

of delegation in terms of a multi-layered state machine, where

the interactions between the different layers are triggered by

delegation events. These delegation events imply appropriate

authorisation on the delegatee side for further actions as well

as contain required context for those actions. Second, we

expand on earlier work we have done [6] to identify real world

scenarios supporting delegation and illustrate the working

of our secure task delegation model. We finally introduce

a delegation protocol, in particular focusing on the initial

negotiation steps. We believe that negotiation had not yet been

treated in sufficient detail and accordingly, a more detailed

discussion around negotiation in the delegation protocol and

its main states and operations is a part of this paper.

The remainder of this paper is organised as follows. Section

2 proceeds with an overview of a task life cycle and extends it

to support delegation. In Section 3 we present our secure task

delegation model within a workflow analysing relationships

between users, tasks, events and data. An e-government case

study is presented in Section 4 and several delegation scenarios

are defined on basis of this case study. In Section 5 we

introduce a delegation protocol to support our model. Section 6

describes the related work and compares it to our approach. In

Section 7 we discuss and conclude our approach, and outline

several topics of potential future work.

II. TASK DELEGATION MODEL

In this section, we provide the basic definitions and ter-

minologies based on the workflow management coalition

specifications [7]. In the context of a workflow, a process is

composed of a number of activities which are connected in

the form of a directed graph. An activity describes a piece

of work that forms one logical step within a process. During

execution, an activity instance includes tasks or services which

are human implementations or computerised implementations

of an activity.

A. Task life cycle

In this paper, our main concern is the task level. A task

corresponds to a single unit of work. Each executing task is

termed a work item [4]. In an elementary form, a task is an

atomic unit of work. In a compound form, it modularises an

execution order of a set of subtasks. It can define a sub-process

or a block of tasks. In this paper, we consider the elementary

form for simplicity’s sake. The basic states for a task life cycle

are Initial, Assigned, Executed, Failed, and Completed [7].

B. Basic task delegation model

Delegation can be introduced to a task model through

an extension that supports additional states and transitions.

Delegate is closely related to the Assign transition, where the

assigned user has the authority to Execute or Delegate the

task. The Revoke transition is derived from Delegate transition,

such that it can be considered as the cancellation of the

task delegation. The internal delegation states are Executed,

Revoked and re-Assigned. The delegation behaviour remains

internal according to the task model, where Completed and

Failed are the final states (see Task Layer in Fig. 1).

III. SECURE TASK DELEGATION MODEL

Olivier et al. state that a workflow system should be

considered at three levels in terms of its components (task

assignment, control, data) [9]. Securing a workflow involves

enforcing security principles at all three levels. Hung et al.

developed a secure workflow model using a multi-layered state

machine to manage the flow of authorisations at different lay-

ers for a secure workflow execution [2]. A multi-layered state

machine can enable the analysis, simulation and validation of

the WfMS under study before proceeding to implementation.

In addition, it can serve as a powerful tool for modelling

a secure framework at a conceptual and logical level with

regards to the aspects of task, control and data [2].

We present a secure task delegation model using a multi-

layered state machine within a workflow. A workflow is rep-

resented as a partially ordered set of tasks that is coordinated

by a set of events. An event can be either a data event or

control event. For instance, control events may refer to the

task delegation transitions defined in Sect. II-B. We define

three layers: Task, Control and Data (see Fig. 1).

Fig. 1. Multi-layered state machine for secure task delegation

The novelty of this model lies in the separation of the

various aspects of delegation, and in its portrayal as a multi-

layered architecture. The major motivations for using a multi-

layered state machine are the modelling of different aspects of

authorisations in a single framework, and the ability to address

different security services to handle the security properties

in different layers. For instance, discretionary access control

services can be applied to Task Layer and Data Layer to

handle the security property of authorisation for delegating or

revoking tasks and resources to and from users, respectively.

We impose security requirements on events to ensure the

security properties of integrity, confidentiality and availability.

During a delegation request the interactions between the differ-

ent layers are triggered by delegation events. These delegation

events imply appropriate authorisation on the delegatee side

for further actions (starting the delegated task) as well as

contain required context for those actions (accessing delegated

task resources).

In the Task Layer, we require that Assign defines availabil-

ity: ”For every task there must be at least one user (delegator)

who is able to execute (delegate) the task”. In addition, the

assignment of the task means that the user has the authority

to execute it, thereby controlling confidentiality and integrity

of the assigned task. The list of potential delegators could be

computed using the optimal user-activity assignment approach

defined in [10].

In the Control Layer, Delegate defines the authority of dele-

gating a task. We define a privilege (pr) as a role assignment

or action on a resource. We require that ”A delegatee can only

perform the delegated task if and only if the task is delegated

and delegated privilege is granted by the delegator”. The

control layer monitors the behaviour of the task delegation. It

involves the events generated from the task assignment layer

and will generate events to trigger the data layer to be executed

(see acquire (r,pr) in Fig. 1).

In the Data Layer, data are stored as resources. We define

(r,pr) as a delegated resource to the delegatee. We require that

”A delegatee can only access delegated resources if and only

if the delegated privilege is granted to access the delegated

resources”. Granting and revoking resources will ensure the

integrity and confidentiality of resources.

Note that we define additional events supporting concurrent

states. This is a practical property for a workflow model

because there may be more than one delegated task running

concurrently and also a given resources can be accessed by a

set of concurrently running tasks. In order to avoid an over-

privileged delegatee at anytime during the execution of a task,

a delegatee is asked to release the resource based on the

agreement with the delegator (see release(r,pr) in Fig. 1).

IV. DELEGATION SCENARIOS

In previous work [6] we presented delegation scenarios

inspired from case studies delivered in the European research

project R4eGov [11]. Mutual Legal Assistance (MLA) is an e-

government workflow scenario involving two national authori-

ties of different European countries regarding the execution of

measures for protecting a witness in a criminal proceeding (see

Fig. 2). The scenario consists of the definition of a request for

assistance, that leads to the preparation of the legal documents

that handle the request.

The following describes a set of delegation scenarios that

outline the working of our secure delegation model from task

delegation to resource access and introduce the definition of a

delegation protocol (see Sect. V).

• Scenario 1: We consider the delegation of ”Issuing the

request of assistance” task. The delegation is local and

the delegatee is a subordinate who is able and authorised

to perform the task. The delegator would also define

the resources required by the delegatee. In this case, we

assume that the delegator knows the resources bounded

to the task thereby providing the delegated credentials

(privileges) to access resources.

• Scenario 2: We consider the delegation of ”Opening the

content of a WorkFile” task. When this task is delegated,

the delegator would find the list of his subordinates and

so potential delegatees (delegatees pool). Delegating this

task acquire the access to CMS database where resources

are needed to translate, store, and forward documents.

In this case, resources access is negotiated between the

delegation principals and a delegated privilege is issued

to grant the access. Note that the task delegation process

Fig. 2. Mutual legal assistance scenario

include additional negotiation specification. For instance,

the expected result defined as evidence where evidence

could be quantified as a numeric value or simply qualified

as a description of the delegated task [1].

• Scenario 3: We consider the delegation of ”Providing

the request of assistance” task. It is composed of several

subtasks. To ensure the integrity and availability of the

task, we define on the delegator side the list of delegatees

authorised to execute the task as well as the required

resources while keeping the privacy of the process. Note

that the task delegation process include additional nego-

tiation specification. For instance, both principals have

to agree on the accepted delegated subtasks (workload).

When this workload is defined and delegated, the dele-

gator would find the list of accepted subtasks as possible

evidence which the delegatee can perform.

In summary, scenario 1 describes the delegation of tasks

within a local organisation based on an organisational role

hierarchy. In scenario 2, evidence on completed delegated

tasks is subject to negotiation between the delegator and the

delegatee. Scenario 3 describes the delegation of subtasks

where workload specifications may depend on evidence issued

by the delegator. In the three scenarios, we define delegated

privileges to grant access to the task and its resources. The

computing of delegated privileges and the definition of mini-

mal rights as well as privacy related aspects are not discussed

in this paper. In the next section, we analyse the negotiation

as a first step within the delegation protocol and present the

different factors that may be discussed during the negotiation

such as privileges or evidence.

V. DELEGATION PROTOCOL

In this section, we introduce a delegation protocol to support

the dialogue between a delegator and a delegatee during a

secure task delegation. The delegation protocol will support

the defined Control Layer with regards to the aspects of users,

tasks, events and resources.

A. Protocol overview

A delegation protocol describes request and response mes-

sage pairs from a delegator to a delegatee. The delegator

issues a delegation request and sends it to the delegatee (see

InitDelegReq() in Fig. 3). The first step consists of negotiating

the request based on the request specifications such as dead-

line, evidence and workload (see NegotiationReqIssue() and

NegotiationReqResponse() in Fig. 3). The delegatee will then

decide whether to perform the requested operation and will

send the response to the delegator (see InitDelegResponse() in

Fig. 3). If the request is declined, the delegator will check

whether another delegatee exists and then will renew his

request (see RedefineDelegReq() in Fig. 3).

Fig. 3. Delegation protocol model (sequence diagram)

If the request is accepted, the delegatee will acquire del-

egated privileges issued by the delegator (see DPReqIssue()

and DPReqResponse() in Fig. 3). Once delegated privileges

are acquired, the delegatee starts performing the delegated

task and then sends as a response the execution outcome to

the delegator to review it based on evidence specifications

defined in the negotiation step (see DelegationResponse()

in Fig. 3). The reviewing step will lead to the acceptance

or the declination of the delegation response, and so the

re-assignment or the acceptance of the delegated execution

task (see DeclineResponse() and AcceptResponse() in Fig. 3).

Finally, the acceptance step will complete the task and revoke

the delegated privileges.

As described in the sequence diagram, we can identify three

main steps: Negotiation, Request Declination, and Request

Acceptance. The two last steps depend on the negotiation.

We consider Negotiation as the trigger point for the main

operations in the delegation protocol.

B. Negotiation

We consider the negotiation step as a fundamental step for

the delegation protocol. It involves all the principals (delegator

and delegatee) and negotiation specifications (e.g. evidence,

time). Our intention is to envisage a wide-ranging request

that gives flexibility for the delegation request. Negotiation

specifications will ensure this flexibility. In the following,

we present a taxonomy of factors that are relevant in the

delegation scenarios described in Sect. IV.

• F1. Scope: This factor describes the scope of delegation

(e.g. multistep) [12]. Basically, the delegator proposes the

degree of delegation regarding the context of delegation

(e.g. local, global).

• F2. Time: This factor defines one of the delegation

constraints: the deadline. Delegation may be actually

temporary for some security reasons. This involves a time

constraint specifying a time window for the delegatee.

This constraint utility can avoid also a long period of

inactivity of the delegatee.

• F3. Workload: The negotiation here deals with the

delegated amount of work. In fact, the delegatee may be

overwhelmed by the number of tasks assigned to him, a

situation which can be sorted by reducing the workload

(see scenario 3 in Sect. IV).

• F4. Evidence: This factor is a specific type of business

object that can be manipulated by a task. Task execution

may generate evidence for review by the delegator [1].

The negotiation here deals with the reviewing specifica-

tions issued by the delegator to validate the completion

of delegation.

• F5. Privileges: This factor can be a role assignment or

an action on a resource. Privileges will be granted to the

delegatee later on to execute tasks or access specified

resources (see Sect. V-E). Privileges can be permanent or

temporal depending on time constraints.

In the following, we identify the relationship between

delegation principals and negotiation factors (see Table I). We

assume that the five factors can be defined by the issuer of the

request, the delegator. In fact, he is the user initially assigned

to execute tasks and authorised to delegate, and so expresses

their delegation specifications. As part of the negotiation some

of the factors can be modified by the delegatee. In fact,

both principals can negotiate time, workload and evidence.

This consists of giving the delegatee the ability to extend the

deadline, reduce the workload, and propose suitable evidence,

respectively. The other factors are exclusive to the delegator

for security reasons.

TABLE I
NEGOTIATION FACTORS SPECIFIED BY DELEGATION PRINCIPALS

Factors Delegator Delegatee

F1 X

F2 X X

F3 X X

F4 X X

F5 X

C. Request Declination

The declination step occurs when the negotiation failed and

the proposed specifications are rejected. We consider this step

as a precondition to renew the delegation request.

D. Request Acceptance

Our delegation protocol supports several operations that can

be requested during acceptance request. The acceptance step

consists of granting delegated privileges, performing the task,

and reviewing it in order to complete the request. The core

operations are defined in the following:

DPReqIssue(): Creates a new privilege according to the

needs of the delegatee. The result is a delegated privilege that

delegates the negotiated access rights from the delegator to the

delegatee.

PerformTask(): Delegated privileges are associated to the

delegatee to execute the task and access resources. The dele-

gatee is authorised to perform a task and send feedback to the

delegator based on negotiated evidence.

ReviewResponse(): The reviewing operation is much more

complicated. The reviewer (the delegator) has to decide

whether to accept or decline the DelegationResponse() based

on negotiated evidence. This split decision will either lead

to the re-execution of the task, or to the acceptance of the

response and so the revocation of privileges afterwards.

E. Delegated Privileges

Delegated privileges are granted by the delegator to the

delegatee. In order to control access to the delegated task’s

resources, both authentication and authorisation are needed.

Authentication and authorisation requirements are both defined

in the delegated privileges.

A Privilege Management Infrastructure (PMI) is to authori-

sation what a Public Key Infrastructure (PKI) is to authenti-

cation. Consequently there are many similar concepts shared

between PKIs and PMIs. A public key certificate (PKC) is used

for authentication and maintains a strong binding between a

user’s name and his public key, whilst an attribute certificate

(AC) is used for authorisation and maintains a strong binding

between a user’s name and one or more privilege attributes.

Therefore we consider PKC as a passport and AC as a visa.

We assume that both PKC and AC will be issued by the del-

egator to the delegatee. Certification can not be negotiated by

the delegatee since the delegator has to align his certification

request with the authorisation policy of the process in general.

Specially, certification is based on the authorisation policy of

the domain application. Domain application can be defined

as an RBAC model for specifying authorisations. RBAC has

the advantage of scalability over DAC, and can easily handle

large numbers of users [13]. For instance, we developed a

Role Based Privilege Management Infrastructure. It supports

authentication and authorisation requirements where a dele-

gator access resources via an application gateway including

authentication and authorisation functions. Our technology

mapping is inspired from the PERMIS project infrastructure

[13].

VI. RELATED WORK

The Workflow Management Coalition (WfMC) summarises

a number of security services for a conceptual workflow model

including authentication, authorisation, access control, data

integrity, security management and administration [14]. Unlike

our approach, WfMC does not consider different layers of

authorisations among tasks, control and data flow layer during

the the modelling and execution of task delegation for WfMS.

Role-based access control (RBAC) is recognised as an

efficient access control model for large organisations. Most

organisations have some business rules related to access con-

trol policy. Delegation of authority is among these rules [15].

Sandhu et al. extended the RBAC96 model by defining some

delegations rules [5]. They proposed a role-based delegation

model (RBDM). Users however may want to delegate a piece

of permission from a role [16]. Zhang et al. proposed a

flexible delegation model named Permission-based Delegation

Model (PBDM). Neither RBAC nor PBDM models however,

proposed a secure task delegation model supporting integrity,

confidentiality and availability.

The Workflow Authorisation Model (WAM) presents a

conceptual, logical and execution model that concentrates on

the enforcement of authorisation flow in task dependency

and transaction processing [3]. Though WAM discusses the

synchronisation of authorisation flow with the workflow and

specification of temporal constraints in a static approach,

it is not sufficient to support workflow security in general

and task delegation in particular. This is due to workflows

needing a more dynamic approach to synchronise the flow of

authorisations during the workflow execution. WAM does not

discuss the order of operation flow such as task delegation

within a workflow. In a workflow, we need to investigate the

delegation control in different aspects such as tasks, events

and data by leveraging the required authorisations to secure

our delegation.

Russel et al. proposed an approach supporting delegation

[4]. They described the life cycle of a work item in the form

of a state transition diagram with a particular focus on the

resource allocation perspective. One of the main drawbacks

of this approach is that it defines a static binding of all work

items associated with a task to a single resource. This is a static

approach that ignores additional events (transitions) during

delegation execution and does not support secure and dynamic

interactions within a workflow with regards to aspects of users,

tasks, events, and data. This is the major contribution of this

paper.

In this paper, we do not distinguish the delegation of

privileges based on grant or transfer [17]. Crampton et al.

developed a comprehensive delegation model for role-based

access control that provides support for both grant and trans-

fer delegation policies [17]. In addition, authors focused on

role-based models supporting role hierarchies when studying

delegation in the context of both RBAC0 model (flat roles) and

RBAC1 model (hierarchical roles) of the RBAC96 family of

models. This will be an immediate priority in our future work

to enrich the task delegation model by supporting hierarchical

delegations and enforcing authorisation mechanisms based on

delegation policies.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper we presented a secure task delegation model

to manage and in parts enforce integrity, confidentiality and

availability within a workflow. The novelty of this model lies

in the separation of the various aspects of delegation, and in

its portrayal as a multi-layered state machine. The interaction

between different layers is triggered by delegation events. In

fact, delegation events ensure the appropriate authorisation of

principals to delegate or revoke a task and access resources,

thereby supporting security properties. We proposed a dele-

gation protocol based on our delegation model and discussed

negotiation factors and their impact on the protocol and later

concrete technical realisation of privileges. Our analysis is

based on real world processes from an e-government case

study.

Note that in this context, we abstracted from the eventual

technical realisation of the privileges on purpose. Privileges

could be anything, ranging from a cryptographic token in a

distributed context, to a simple additional entry in an ACL or

Capability. We believe that there is a strong dependency to the

properties of the negotiation step detailing, for example, that

the duration of a delegated task will also serve as a certificate

expiry variable. A list of such factors has been identified (Sect.

V-B). Future work will now concentrate on a classification of

our identified factors against basic authorisation technologies.

The next stage of our work also needs to address the further

formalisation of our model by supporting it through an abstract

state machine specification and verification, thus addressing

properties such as completeness, satisfiability and safety.

VIII. ACKNOWLEDGMENT

This work has been partially funded by the EU Commission

under the contract number IST-2004-026650 through the EU

integrated project R4eGov as well as by the German Federal

Ministry of Economy and Technology under the promotional

reference 01MQ07012. The authors take the responsibility for

the contents.

REFERENCES

[1] Andreas Schaad. A framework for evidence lifecycle management. In
Web Information Systems Engineering, Proceedings of the WISE 2007

International Workshops, Nancy, France, Lecture Notes in Computer
Science, pages 191–200. Springer, 2007.

[2] Patrick C. K. Hung and Kamalakar Karlapalem. A secure workflow
model. In ACSW Frontiers ’03: Proceedings of the Australasian

information security workshop conference on ACSW frontiers, pages 33–
41. Australian Computer Society, Inc., 2003.

[3] Vijayalakshmi Atluri, Wei-Kuang Huang, and Elisa Bertino. An execu-
tion model for multilevel seccure workflows. In Proceedings of the IFIP

TC11 WG11.3 Eleventh International Conference on Database Securty

XI, pages 151–165, London, UK, 1998. Chapman & Hall, Ltd.
[4] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and

David Edmond. Workflow resource patterns: Identification, represen-
tation and tool support. In Proceedings of the Advanced Information

Systems Engineering, 17th International Conference, CAiSE 2005, Porto,

Portugal, pages 216–232, 2005.
[5] E. Barka and R. Sandhu. Framework for role-based delegation models.

In Proceedings of the 16th Annual Computer Security Applications Con-

ference, pages 168–176, Washington, DC, USA, 2000. IEEE Computer
Society.

[6] Khaled Gaaloul, François Charoy, Andreas Schaad, and Hannah Lee.
Collaboration for human-centric egovernment workflows. In Web Infor-

mation Systems Engineering, Proceedings of the WISE 2007 Interna-

tional Workshops, Nancy, France, Lecture Notes in Computer Science,
pages 201–212. Springer, 2007.

[7] Workflow Management Coalition. Workflow Management Coalition Ter-
minology and Glossary. Document Number WFMC-TC-1011, February
1999.

[8] Web Services Human Task. (WS-HumanTask), Version 1.0,
June 2007. http://www.active-endpoints.com/documents/documents/1/
WS-HumanTask-v1.pdf.

[9] Martin S. Olivier, Reind P. van de Riet, and Ehud Gudes. Specifying
application-level security in workflow systems. In DEXA ’98: Pro-

ceedings of the 9th International Workshop on Database and Expert

Systems Applications, pages 346–351, Washington, DC, USA, 1998.
IEEE Computer Society.

[10] Mathias Kohler and Andreas Schaad. Avoiding Policy-based Deadlocks
in Business Processes. In Proceedings of the The Third International

Conference on Availability, Reliability and Security, ARES 2008, pages

709-716, Technical University of Catalonia, Barcelona, Spain, IEEE
Computer Society.

[11] R4eGov Technical Annex 1. Towards e-Administration in the large,
March 2006. http://www.r4egov.eu.

[12] Longhua Zhang, Gail-Joon Ahn, and Bei-Tseng Chu. A rule-based
framework for role-based delegation and revocation. ACM Transactions

on Information and System Security, 6(3):404–441, 2003.
[13] David W. Chadwick and Alexander Otenko. The PERMIS X.509 role

based privilege management infrastructure. SACMAT ’02: Proceedings
of the seventh ACM symposium on Access control models and tech-
nologies, June 3-4, 2002, pages 135-140, Monterey, California, USA,
ACM.

[14] Workflow Management Coalition. Workflow Security Considerations.
White Paper, Document Number WFMC-TC-1019, 2001.

[15] Andreas Belokosztolszki, David M. Eyers, and Ken Moody. Policy
Contexts: Controlling Information Flow in Parameterised RBAC. In
POLICY ’03: Proceedings of the 4th IEEE International Workshop on

Policies for Distributed Systems and Networks, page 99, Washington,
DC, USA, 2003. IEEE Computer Society.

[16] Xinwen Zhang, Sejong Oh, and Ravi Sandhu. PBDM: a flexible
delegation model in RBAC. In SACMAT ’03: Proceedings of the eighth

ACM symposium on Access control models and technologies, pages 149–
157, New York, NY, USA, 2003. ACM Press.

[17] Jason Crampton and Hemanth Khambhammettu. Delegation in role-
based access control. In Proceedings of the Computer Security -

ESORICS 2006, 11th European Symposium on Research in Computer

Security, Hamburg, Germany, September 18-20, 2006, Lecture Notes in
Computer Science, pages 174–191. Springer, 2006.

http://www.active-endpoints.com/documents/documents/1/WS-HumanTask-v1.pdf
http://www.active-endpoints.com/documents/documents/1/WS-HumanTask-v1.pdf
http://www.r4egov.eu

