
A Secure Threshold Anonymous Password-Authenticated Key

Exchange Protocol ⋆

SeongHan Shin1, Kazukuni Kobara1, and Hideki Imai2,1

1 Research Center for Information Security (RCIS),
National Institute of Advanced Industrial Science and Technology (AIST),

1-18-13, Sotokanda, Chiyoda-ku, Tokyo, 101-0021 Japan
E-mail: seonghan.shin@aist.go.jp

2 Chuo University,
1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan

(submitted on December 22nd, 2008)

Abstract. At Indocrypt 2005, Viet et al., [22] have proposed an anonymous password-authenticated
key exchange (PAKE) protocol and its threshold construction both of which are designed for client’s
password-based authentication and anonymity against a passive server, who does not deviate the
protocol. In this paper, we first point out that their threshold construction is completely inse-
cure against off-line dictionary attacks. For the threshold t > 1, we propose a secure threshold
anonymous PAKE (for short, TAP) protocol with the number of clients n upper-bounded, such
that n ≤ 2

√
N − 1 − 1, where N is a dictionary size of passwords. We rigorously prove that the

TAP protocol has semantic security of session keys in the random oracle model by showing the
reduction to the computational Diffie-Hellman problem. In addition, the TAP protocol provides
unconditional anonymity against a passive server. For the threshold t = 1, we propose an efficient
anonymous PAKE protocol that significantly improves efficiency in terms of computation costs and
communication bandwidth compared to the original (not threshold) anonymous PAKE protocol
[22].

Key words: password authentication, key exchange, PAKE, anonymity, provable security

Preface

At Indocrypt 2008, Yang and Zhang [25] have shown two attacks on the TAP (threshold t ≥ 2) protocol,
and then proposed the NAPAKE (i.e., t = 1) and D-NAPAKE (i.e., t ≥ 2) protocols. Here, we add some
comments on their paper [25].

About two attacks on the TAP (t ≥ 2) protocol. In [25], they showed two insider attacks on
legitimate clients in the TAP (t ≥ 2) protocol. However, we proved AKE security and unilateral authen-
tication of the TAP (t ≥ 2) protocol against an adversary A /∈ {C1, · · · , Cn, S} where C = {C1, · · · , Cn}
is a set of all clients and S is the server (see the security model in Section 4). Of course, we agree that
considering insider attacks and finding a solution are one of the research directions in cryptography. In
Appendix B, we give a simple countermeasure for the TAP (t ≥ 2) protocol against the two attacks (i.e.,
impersonation attack and off-line dictionary attack). In fact, we considered keyword search as an appli-
cation of the TAP (t ≥ 2) protocol and, in such applications, the off-line dictionary attack of legitimate
clients is not possible because each share doesn’t need to be transmitted to other parties.

The D-NAPAKE protocol is not threshold anonymous PAKE! In Appendix C, we show an
attack on the D-NAPAKE (i.e., t ≥ 2) protocol of [25] where only one legitimate client can impersonate
any subgroup of clients to the server. That actually means that the D-NAPAKE (t ≥ 2) protocol is
NOT a threshold anonymous PAKE protocol unlike the author’s claim.

⋆ This is the full version of [20].

2 SeongHan Shin et al.

1 Introduction

In 1976, Diffie and Hellman published their seminal paper that introduced how to share a secret over
public networks [9]. Since then, many researchers have tried to design secure cryptographic protocols
for realizing secure channels. These protocols are necessary because application-oriented protocols are
frequently developed assuming the existence of such secure channels. In the 2-party setting (e.g., a
client and a server), this can be achieved by an authenticated key exchange (AKE) protocol at the
end of which the two parties authenticate each other and share a common and temporal session key
to be used for subsequent cryptographic algorithms (e.g., AES-CBC or MAC). For authentication, the
parties typically share some information in advance. The shared information may be the form of high-
entropy cryptographic keys: either a secret key that can be used for symmetric-key encryption or message
authentication code (e.g., [7, 17]), or public keys (while the corresponding private keys are kept secret)
which can be used for public-key encryption or digital signatures (e.g., [10, 24, 2, 17, 12]).

In practice, low-entropy human-memorable passwords such as 4-digit pin-code or alphanumerical
passwords are commonly used rather than high-entropy keys because of its convenience in use. Many
password-based AKE protocols have been extensively investigated for a long time where a client remem-
bers a short password and the corresponding server holds the password or its verification data that is
used to verify the client’s knowledge of the password. However, one should be careful about two major
attacks on passwords: on-line and off-line dictionary attacks. The on-line dictionary attack is a series
of exhaustive searches for a secret performed on-line, so that an adversary can sieve out possible secret
candidates one by one communicating with the target party. In contrast, the off-line dictionary attack is
performed off-line in parallel where an adversary exhaustively enumerates all possible secret candidates,
in an attempt to determine the correct one, by simply guessing a secret and verifying the guessed secret
with recorded transcripts of a protocol. While on-line attacks are applicable to all of the password-based
protocols equally, they can be prevented by letting a server take appropriate intervals between invalid
trials. But, we cannot avoid off-line attacks by such policies, mainly because the attacks can be performed
off-line and independently of the party.

1.1 Password-Authenticated Key Exchange (PAKE) and Anonymity

In 1992, Bellovin and Merritt [4] discussed an interesting problem about how to design a secure password-
only protocol where a client remembers his/her password only and the counterpart server has password
verification data. Their proposed protocols are good examples (though some are turned out insecure)
that a combination of symmetric and asymmetric cryptographic techniques can prevent an adversary
from verifying a guessed password (i.e., doing off-line dictionary attacks). Later, their AKE protocols
have formed the basis for what we call Password-Authenticated Key Exchange (PAKE) protocols. Such
protocols have been in standardization of IEEE P1363.2 [11].

In PAKE protocols, a client should send his/her identity clearly in order to authenticate each other
and share a master-secret that may be the Diffie-Hellman key or a shared secret to be used for generating
authenticators and session keys. Let us suppose an adversary who fully controls the networks. Though
the adversary cannot impersonate any party in PAKE protocols with non-negligible probability, it is easy
to collect a client’s personal information about the communication history itself (e.g., history of access
to ftp servers, web-mail servers, Internet banking servers or shopping mall servers). These information
may reflect the client’s life pattern and sometimes can be used for spam mails. For this problem, Viet
et al., [22] have proposed an anonymous PAKE protocol and its threshold construction3 that simply
combine a PAKE protocol [1] for generating secure channels with an Oblivious Transfer (OT) protocol
[21, 8] for client’s anonymity. The anonymity is guaranteed against an outside adversary as well as a
passive server, who follows the protocol honestly but it is curious about identity of client involved with
the protocol. They also gave an application for a company’s public bulletin board to which any employee

3 In their construction, the ”threshold” number of clients collaborate one another to make a subgroup of the
whole clients’ group. In a different context, MacKenzie et al., [14] proposed a threshold PAKE protocol where
the ”threshold” number of servers collaborate one another to resist against compromise of the password
verification data. However, such collaborations in the former (resp., latter) protocol require secure channels
among the involved clients (resp., servers).

A Secure Threshold Anonymous PAKE Protocol 3

can upload opinions in a password-authenticated and anonymous way. As discussed in [22], their (not
threshold) anonymous PAKE protocol can not provide anonymity against an active server, who deviates
the protocol by changing messages at its own (see Section 5 of [22]). Though they did not mention
anything about their threshold construction, it may prevent an active server from obtaining information
on the client’s identity since any client can blend him/herself to the subgroup.

1.2 Our Contributions

Partly motivated from Nguyen’s insights [15] on the relationship between PAKE protocols and other
cryptographic primitives, we carefully revisit Viet et al’s anonymous PAKE protocols [22]. In this paper,
we first point out that Viet et al’s threshold anonymous PAKE protocol is insecure against off-line
dictionary attacks. For the threshold t > 1, we propose a secure threshold anonymous PAKE (for short,
TAP) protocol that provides not only semantic security of session keys in the random oracle model
with the reduction to the computational Diffie-Hellman problem but also anonymity against a passive
server, who does not deviate the protocol but is curious about the clients’ identities. We also deduce the
condition on the number of clients n, such that n ≤ 2

√
N − 1− 1, for the optimal security result against

on-line dictionary attacks where N is a dictionary size of passwords. For the threshold t = 1, we propose
an efficient anonymous PAKE protocol that can be easily obtained from the TAP protocol. The resultant
protocol significantly improves efficiency in terms of computation costs and communication bandwidth
compared to the original (not threshold) anonymous PAKE protocol [22].

1.3 Organization

This paper is organized as follows. In the next section, we show that the previous threshold anonymous
PAKE protocol is insecure against off-line attacks. In Section 3, we propose a secure threshold anonymous
PAKE (TAP) protocol. Section 4 and 5 are devoted to its security model and proofs, followed by discussion
about the condition on n in Section 6. For the threshold t = 1, we also propose an efficient anonymous
PAKE protocol in Section 7. Finally, we conclude in Section 8.

2 The Previous Threshold Anonymous PAKE Protocol

In this section, we first give some notation to be used throughout this paper. Then, we explain how
the previous threshold anonymous PAKE protocol [22, 23] works and show its insecurity against off-line
dictionary attacks.

2.1 Notation

Let Gp be a finite, cyclic group of prime order p and g be a generator of Gp, whose elements are quadratic
residues modulo p. Let h be another generator of Gp so that its discrete logarithm problem with g (i.e.,
computing b = logg h) should be hard. The parameter (Gp, p, g, h) is given as public information. In the
aftermath, all the subsequent arithmetic operations are performed in modulo p unless otherwise stated.

Let l denote the security parameter for hash functions. Let N be a dictionary size of passwords. Let
{0, 1}∗ denote the set of finite binary strings and {0, 1}l the set of binary strings of length l. If D is a

set, then d
R← D indicates the process of selecting d at random and uniformly over D. Let ”||” denote

the concatenation of bit strings in {0, 1}⋆. Let ”
⊕

” denote the exclusive-OR (XOR) operation of bit
strings. The hash functions F and F ′ are full-domain hash (FDH) functions, mapping {0, 1}⋆ to Z

⋆
p.

While G : {0, 1}⋆ → Gp is another FDH function, the others are denoted Hk : {0, 1}⋆ → {0, 1}l, for
k = 1, 2 and 3, where G and Hk are distinct secure one-way hash functions. Let C and S be the identities
of a set of all clients and server, respectively, with each ID ∈ {0, 1}⋆.

4 SeongHan Shin et al.

Public information: (Gp, p, g, h),F ,F ′,G,H1,H2, C = {C1, · · · , Cn}

Subgroup SG = {C1, · · · , Ct} Server S
(
pwCj , 1 ≤ j ≤ n

)

x
R← Z

⋆
p, X ≡ gx

For each Ci (1 ≤ i ≤ t),

(ri, si)
R←

(
Z

⋆
p

)2
,

wi ≡ hri·F(i,pwCi
),

and Ai ≡ wi × gsi .

For l = t + 1 to n, wl
R← Gp. C, X, {Ai}1≤i≤t, {wj}1≤j≤n

✲

(y, z)
R←

(
Z

⋆
p

)2
, Y ≡ gy, Z ≡ gz

f(x) ≡
∑t−1

k=0 uk · xk where

u0 = y and uk
R← Z

⋆
p (1 ≤ k ≤ t− 1)

For j = 1 to n,

yj ← f(j),

Yj ≡ gyj ,

and αj ← G
(
wz

j

) ⊕
(

Yj × g
F′(pwCj

)
)

.

For i = 1 to t, Di ≡ Az
i .

KS ≡ Xy

VS ← H1(T ||{Di}1≤i≤t||{αj}1≤j≤n||Y ||KS)S, Z, {Di}1≤i≤t, {αj}1≤j≤n, VS
✛

For each Ci (1 ≤ i ≤ t),

Yi ≡ (αi

⊕
G(Di/Z

si))×
(

gF′(pwCi
)
)−1

.

Y ≡
∏t

i=1 Y λi
i where λi ≡

∏

1≤k≤t,k 6=i
k

k−i
,

and KC ≡ Y x

If VS 6= H1(T ||{Di}1≤i≤t||{αj}1≤j≤n||Y ||KC), reject.

Otherwise, SK ← H2(T ||{Di}1≤i≤t||{αj}1≤j≤n||Y ||KC)

and accept.

SK ← H2(T ||{Di}1≤i≤t||{αj}1≤j≤n||Y ||KS)

Fig. 1. The threshold anonymous PAKE (TA-PAKE) protocol [22, 23] where T = C||S||X||Z

2.2 Protocol Description

Here, we describe the threshold anonymous PAKE (TA-PAKE) protocol [22, 23] where any subgroup
SG, consisting of at least t (t ≤ n) clients among n clients, generates a session key with server S in a
password-authenticated and anonymous way.4 We assume that each client in the subgroup are connected
via secure channels. See Fig. 1 for a graphical description of the TA-PAKE protocol.

Step 1

1.1 By collaborating with one another, the subgroup SG chooses a random number x from Z
⋆
p and

computes X ≡ gx.
1.2 Each client Ci (1 ≤ i ≤ t) chooses two random numbers (ri, si)

R←
(

Z
⋆
p

)2
, and then computes

wi ≡ hri·F(i,pwCi
) and Ai ≡ wi × gsi where i and pwCi

are the index and the password, respec-
tively, for client Ci. The ri and si are kept secret by Ci.

1.3 The subgroup SG chooses n− t random numbers wl from Gp, and then sends C,X, {Ai}1≤i≤t
and {wj}1≤j≤n to server S.

Step 2

2.1 The server chooses two random numbers (y, z)
R←
(

Z
⋆
p

)2
and computes (Y ≡ gy, Z ≡ gz) where

the exponent y is distributed as shares by using Shamir’s secret sharing scheme [16]. Specifically,
server S generates the respective share f(j), for n clients, from a random polynomial f(x) of

4 The only difference of [23] from [22] is that the subgroup SG chooses wl
R← Gp, for t + 1 ≤ l ≤ n, and

sends {wj}1≤j≤n along with other values in the first flow. In fact, the TA-PAKE protocol of [22] doesn’t work
correctly since server S has no idea on wj and cannot compute αj that needs wj in the computation.

A Secure Threshold Anonymous PAKE Protocol 5

degree t− 1 with coefficients uk (1 ≤ k ≤ t− 1) in Z
⋆
p

f(x) ≡
t−1
∑

k=0

uk · xk (1)

and sets u0 = y.

2.2 For j (1 ≤ j ≤ n), server S computes Yj ≡ gf(j) and αj ← G
(

wzj
)
⊕

(

Yj × gF
′(pwCj

)
)

.

2.3 For i (1 ≤ i ≤ t), server S computes Di ≡ Azi .
2.4 The server computes KS ≡ Xy, from which its authenticator VS and session key SK are derived

as follows: VS ← H1(C||S||X||Z|| {Di}1≤i≤t||{αj}1≤j≤n||Y ||KS) and SK ← H2(C||S||X||Z||
{Di}1≤i≤t||{αj}1≤j≤n||Y ||KS). Then, server S sends S,Z, {Di}1≤i≤t, {αj}1≤j≤n and VS to sub-
group SG.

Step 3

3.1 Each client Ci (1 ≤ i ≤ t) extracts Yi ≡ (αi
⊕G(Di/Z

si))×
(

gF
′(pwCi

)
)−1

.

3.2 By collaborating with one another, subgroup SG recovers Y from Yi and computes KC ≡ Y x.
Note that the Y can be reconstructed from the shares of any qualified subgroup of clients by
Lagrange interpolation.

3.3 If VS is valid, subgroup SG computes a session key SK as follows: SK ← H2(C||S||X||Z||{Di}
1≤i≤t||{αj}1≤j≤n||Y ||KC). Otherwise, it terminates.

2.3 Insecurity of TA-PAKE Protocol

We show that the TA-PAKE protocol [22, 23] is insecure against off-line dictionary attacks. First, we
suppose that an adversary A impersonates the subgroup SG without knowing any password.

Step 1’
1.1 An adversary A chooses a random number x from Z

⋆
p and computes X ≡ gx, and also chooses

n random numbers wj
R← Gp, for 1 ≤ j ≤ n.

1.2 For each client Ci (1 ≤ i ≤ t), adversary A chooses a random number si
R← Z

⋆
p and then

computes Ai ≡ wi × gsi . The adversary sends C,X, {Ai}1≤i≤t and {wj}1≤j≤n to server S.
Step 3’

3.1 After receiving the message from server S, adversary A performs the following: compute Y ′
i , as

the honest client Ci of subgroup SG would do, with all of the possible password candidates pw′
Ci

and store N different Y ′
i , for each client Ci (1 ≤ i ≤ t).

Y ′
i ≡

(

αi
⊕

G(Di/Z
si)
)

×
(

gF
′(pw′

Ci
)
)−1

(2)

.
3.2 With tN different Y ′

i , the adversary recovers Y ′ ≡∏t
i=1 Y

′λi

i and the latter is used to compute
K ′
C ≡ Y ′x. Finally, adversary A can find out the correct {pw′

C1
, · · · , pw′

Ct
} by checking whether a

subgroup of password candidates satisfies VS = H1(C||S||X||Z||{Di}1≤i≤t||{αj}1≤j≤n||Y ′||K ′
C)

or not. Note that each subgroup guarantees a unique polynomial f ′(x) of degree t− 1.

In the worst case, adversary A can find out {pw′
C1
, · · · , pw′

Ct
} after N t trials. Though the number of

trials goes exponentially with the threshold t, one can see that if t is small it is easy for an adversary to
get the correct passwords. Also, keep in mind that the threshold t is controlled by the adversary.

More importantly, the above attack implies that a legitimate client in C can also obtain all passwords
of the other clients with the linear trials. Suppose that there are two legitimate clients C1 and C3 who
make up a subgroup SG = {C1, C2, C3}. After running the TA-PAKE protocol, as an adversary would do
in the above, with server S, C1 and C3 can know the password of C2 by checking possible N password
candidates in the same way as above. By repeating this off-line dictionary attack n − 2 times, C1 and
C3 find out all passwords of the remaining clients in C.

6 SeongHan Shin et al.

Public information: (Gp, p, g, h),F ,G,H1,H2, C = {C1, · · · , Cn}

Subgroup SG = {C1, C4, · · · , Cn−3
︸ ︷︷ ︸

t

} Server S
(

Wj ≡ h
F(j,pwCj

)
, 1 ≤ j ≤ n

)

For each Ci ∈ SG,

xi
R← Z

⋆
p, Xi ≡ gxi ,

Wi ≡ hF(i,pwCi
),

and X∗
i ≡ Xi ×Wi.

For each Cj ∈ C\SG (1 ≤ j 6= i ≤ n),

X∗
j

R← Gp. C, t, {X∗
i }1≤i≤n

✲

y
R← Z

⋆
p, Y ≡ gy, S

R← Gp

f(x) ≡
∑t−1

k=0 uk · xk where

u0 = S and uk
R← Gp (1 ≤ k ≤ t− 1)

For j = 1 to n,

Sj ← f(j),

Xj ≡ X∗
j /Wj ,

Kj ≡ Xy
j ,

and Zj ← G(j, Kj)
⊕

Sj .

VS ← H1(C||S||t||{X∗
i }1≤i≤n||Y ||{Zj}1≤j≤n||S)S, Y, {Zj}1≤j≤n, VS

✛

For each Ci ∈ SG,

look for Zj=i,

Ki ≡ Y xi and Si = Zi

⊕
G(i, Ki).

S′ =
∑t

k=1 λk · Sk where λk ≡
∏

1≤m≤t,m6=k
m

m−k

If VS 6= H1(C||S||t||{X∗
i }1≤i≤n||Y ||{Zj}1≤j≤n||S′), reject.

Otherwise, SK ← H2(C||S||t||{X∗
i }1≤i≤n||Y ||{Zj}1≤j≤n||S′)

and accept.

SK ← H2(C||S||t||{X∗
i }1≤i≤n||Y ||{Zj}1≤j≤n||S)

Fig. 2. A secure threshold anonymous PAKE (TAP) protocol where the threshold t > 1

3 A Secure Threshold Anonymous PAKE Protocol

In this section, we propose a secure threshold anonymous PAKE (for short, TAP) protocol that has the
following properties: 1) semantic security of session keys against an outside adversary; and 2) anonymity
against a passive server, who follows the protocol honestly but is curious about clients’ identities in-
volved with the protocol. Here we assume that all clients Ci (1 ≤ i ≤ n) of the set C has registered
their passwords pwCi

to a server S and the server holds the password verification data in an asym-
metric form (i.e., hF(i,pwCi

)). For simplicity, we assign the clients consecutive integer i (1 ≤ i ≤ n)
where Ci can be regarded as the i-th client of C. In the TAP protocol, any subgroup SG consisting of
at least t (t > 1) clients wants to share a session key securely and anonymously with server S (see Fig. 2).

Rationale. A naive approach for secure threshold anonymous PAKE protocol is performing the exist-
ing (not threshold) anonymous PAKE protocol up to t times. This apparently entails a lot of messages
to be exchanged between subgroup SG and server S. In order to construct efficiently, the TAP protocol
has the following rationale. The first is that, instead of client’s password itself, the output of F(i, pwCi

)
is used as an exponent in order to compute the verification data Wi as in [22]. In fact, this plays a very
important role when t = 1 (see Section 7) in that an adversary is enforced to make an on-line dictionary
attack on a specific client, not the others. The second is that server generates only one Diffie-Hellman
public value and its exponent is used to compute all of the possible Diffie-Hellman key Kj . As we will
show in the proof, this is the reason why an adversary can get a factor n in the second term of the
security result of Theorem 51. The third is that server sends {Zj}1≤j≤n by encrypting a share of the
secret S with the hash of each Diffie-Hellman key. This is enough to guarantee clients’ anonymity against
an honest-but-curious server (see Theorem 52 in Section 5).

Step 1
1.1 Each client Ci, who belongs to the subgroup SG, chooses a random number xi from Z

⋆
p and

computes the Diffie-Hellman public value Xi ≡ gxi . The client Ci also computes the password

A Secure Threshold Anonymous PAKE Protocol 7

verification data Wi ≡ hF(i,pwCi
) where i and pwCi

are the index and the password, respectively,
for Ci. The Wi is used to mask Xi, so that its resultant value X∗

i can be obtained in a way of
X∗
i ≡ Xi ×Wi. The chosen xi is kept secret by Ci.

1.2 By collaborating with one another, subgroup SG chooses X∗
j
R← Gp for each Cj (1 ≤ j 6= i ≤ n),

who belongs to C but not to SG. Then the subgroup sends the threshold t and {X∗
i }1≤i≤n, to

the server, together with the set C of clients’ identities.
Step 2

2.1 The server S chooses a random number y from Z
⋆
p and a random secret S from Gp, and computes

its Diffie-Hellman public value Y ≡ gy. The secret S is distributed as shares by using Shamir’s
(t, n) secret sharing scheme [16]. Specifically, server S generates the respective share f(j), for all

clients, from a polynomial f(x) ≡∑t−1
k=0 uk · xk with u0 = S and coefficients uk (1 ≤ k ≤ t− 1)

randomly chosen from Gp.
2.2 For the received X∗

j (1 ≤ j ≤ n), server S computes Xj ≡ X∗
j /Wj and the Diffie-Hellman

key Kj ≡ Xy
j . The Zj is derived from XORing Sj and the hashed output of index j and Kj :

Zj ← G(j,Kj)
⊕

Sj where Sj ← f(j).
2.3 Also server S generates an authenticator VS ← H1(C||S||t||{X∗

i }1≤i≤n||Y ||{Zj}1≤j≤n||S) and a
session key SK ← H2(C||S||t||{X∗

i }1≤i≤n ||Y ||{Zj}1≤j≤n||S). Then the server sends its identity
S, the Diffie-Hellman public value Y , {Zj}1≤j≤n and the authenticator VS to subgroup SG.

Step 3
3.1 Each client Ci, who belongs to SG, first looks for Zj=i and computes the Diffie-Hellman key Ki

with xi: Ki ≡ Y xi . Now, client Ci extracts Si from Zi in an obvious way: Si = Zi
⊕G(i,Ki).

3.2 By collaborating with one another, subgroup SG reconstructs S′ from the t shares Si by Lagrange
interpolation: S′ =

∑t
k=1 λk ·Sk where λk ≡

∏

1≤m≤t,m6=k
m

m−k . If the received VS is not valid (i.e.,
VS 6= H1(C||S||t||{X∗

i }1≤i≤n||Y ||{Zj}1≤j≤n||S′)), the subgroup terminates the protocol. Other-
wise, subgroup SG generates its session key SK ← H2(C||S||t||{X∗

i }1≤i≤n||Y ||{Zj}1≤j≤n||S′).
Obviously, any subgroup of less than t clients cannot generate a common session key SK.

Instead of collaborating with one another, one client in the subgroup SG can choose n − t X∗
j at Step

1.2 and reconstruct S′ by collecting t shares from the other t− 1 clients at Step 3.2.

Remark. In order to provide mutual authentication in the above protocol, we can simply add the
subgroup’s authenticator VSG ← H3(C||S||t||{X∗

i }1≤i≤n||Y ||{Zj}1≤j≤n||S′), as the third flow from sub-
group SG to server S, before completing the TAP protocol. This is due to the well-known fact that
the basic approach in the literature for adding authentication to an AKE protocol is to use the shared
Diffie-Hellman key to construct a simple ”authenticator” for the other party [5, 3].

4 The Model, Security Notions and Mathematical Assumption

In this section, we introduce the model based on [5, 3], security notions and the underlying mathematical
assumption.

4.1 The Model

We consider SG (i.e., a subgroup of C) and S as two parties that participate in the key exchange protocol
P . Each of SG and S may have several instances called oracles involved in distinct, possibly concurrent,
executions of P . We denote SG (resp., S) instances by SGµ (resp., Sν) where µ, ν ∈ N, or by U in case
of any instance. Here we assume that an adversary A is not any client and server (i.e., A /∈ {C,S}).
However, the adversary has the entire control of the network during the protocol execution which can
be represented by allowing A to ask several queries to oracles. Let us show the capability of adversary
A each query captures:

– Execute(SGµ, Sν): This query models passive attacks, where the adversary gets access to honest
executions of P between the instances SGµ and Sν by eavesdropping.

8 SeongHan Shin et al.

– Send(U,m): This query models active attacks by having A send a message to instance U . The
adversary A gets back the response U generates in processing the message m according to the
protocol P . A query Send(SGµ, Start) initializes the key exchange protocol, and thus the adversary
receives the first flow.

– Reveal(U): This query handles the misuse of the session key (e.g., use in a weak symmetric-key
encryption) by any instance U . The query is only available to A, if the instance actually holds a
session key, and at that case the key is released to A.

– Test(U): This query is used to see whether the adversary can obtain some information on the session
key or not. The Test-query can be asked at most once by the adversary A and is only available to A if
the instance U is ”fresh” in that the session key is not obviously known to the adversary. This query
is answered as follows: one flips a private coin b ∈ {0, 1} and forwards the corresponding session key
SK (Reveal(U) would output) if b = 1, or a random value with the same size except the session key
if b = 0.

4.2 Security Notions

The adversary A is provided with random coin tosses, some oracles and then is allowed to invoke any
number of queries as described above, in any order. The aim of the adversary is to break the privacy of
the session key (a.k.a., semantic security) or the authentication of the parties in the context of executing
P .

The AKE security is defined by the game Gameake(A, P), in which the ultimate goal of the adversary
is to guess the bit b involved in the Test-query by outputting this guess b′. We denote the AKE advantage,
by Adv

ake

P (A) = 2 Pr[b = b′]−1, as the probability that A can correctly guess the value of b. The protocol
P is said to be (t, ε)-AKE-secure if A’s advantage is smaller than ε for any adversary A running time t.

Another goal is to consider unilateral authentication of either SG (SG-auth) or S (S-auth) wherein
the adversary impersonates a party. We denote by Succ

SG−auth

P (A) (resp., Succ
S−auth

P (A)) the probability
that A successfully impersonates an SG instance (resp., an S instance) in an execution of P , which
means that S (resp., SG) agrees on a key while the latter is shared with no instance of SG (resp., S).
A protocol P is said to be (t, ε)-Auth-secure if A’s success probability for breaking either SG-auth or
S-auth is smaller than ε for any adversary A running time t.

By following the definition of anonymity from [22], we can say that a protocol P is anonymous if a
passive server cannot get any information about clients’ identities (in SG) involved with the protocol,
whereas the subgroup SG establishes a session key with the server. In other words, any subgroup can
prove that it consists of legitimate members of the set C by sending its authenticator at the end of the
protocol. Nevertheless, the server does not know who they are.

4.3 Computational Diffie-Hellman Assumption

A (t1, ε1)-CDHg,Gp
attacker, in a finite cyclic group Gp of prime order p with g as a generator, is a proba-

bilistic machine B running in time t1 such that its success probability Succ
cdh

g,Gp
(B), given random elements

gx and gy to output gxy, is greater than ε1. We denote by Succ
cdh

g,Gp
(t1) the maximal success probability

over every adversaries running within time t1. The CDH-Assumption states that Succ
cdh

g,Gp
(t1) ≤ ε1 for

any t1/ε1 not too large.

5 Security

At first, we show that the TAP protocol of Fig. 2 distributes session keys that are semantically-secure and
provides unilateral authentication of server S in the random oracle model [6]. Note that secure unilateral
authentication can be easily extended to mutual authentication by adding another authenticator as
suggested in [5, 3].

A Secure Threshold Anonymous PAKE Protocol 9

Theorem 51 (AKE/UA Security) Let P be the TAP protocol of Fig. 2 where passwords are indepen-
dently chosen from a dictionary of size N and n is the number of clients such that n ≤ 2

√
N − 1− 1.5

For any adversary A within a polynomial time t1, with less than qs active interactions with the parties
(Send-queries), qe passive eavesdroppings (Execute-queries) and asking qf (resp., qg) hash queries to F
(resp., G), Adv

ake

P (A) ≤ 4ε and Adv
S−auth

P (A) ≤ ε, with ε upper-bounded by

3qs
N

+
3nq2g

2
× Succ

cdh

g,Gp
(t1 + 3τe) +

qs
2l1

+
(qe + qs)

2

|Gp|2
+
q2f
2p

+
q2g + 2(qs + qe)

2|Gp|
,

where l1 is the output length of H1 and τe denotes the computational time for an exponentiation in Gp.

This theorem shows that the TAP protocol is secure against off-line dictionary attacks since the advantage
of the adversary essentially grows with the ratio of interactions (number of Send-queries) to the number
of passwords when n ≤ 2

√
N − 1− 1. We can easily see that the adversary gets a factor n in the second

term since the server generates only one Diffie-Hellman public value and its exponent is used to compute
all of the Diffie-Hellman keys Kj . The proof can be found in Appendix A.

Next we prove that the TAP protocol provides client’s anonymity against a passive server.

Theorem 52 The TAP protocol provides client’s anonymity against a passive server in an information-
theoretic sense.

Proof. Consider server S who follows the protocol honestly, but it is curious about clients’ identities (in
SG) involved with the TAP protocol. It is obvious that server S cannot get any information about SG’s
identities since, for each i (1 ≤ i ≤ n), theX∗

i has a unique discrete logarithm of g and, with the randomly
chosen xi, it is the uniform distribution over Gp. This also implies that the server cannot distinguish X∗

i

(of Ci ∈ SG) from X∗
j (of Cj ∈ C\SG) since they are completely independent one another. In addition,

even if server S receives the subgroup’s authenticator VSG ← H3(C||S||t||{X∗
i }1≤i≤n||Y ||{Zj}1≤j≤n||S′)

at the end of the TAP protocol (in the case of mutual authentication), the {X∗
i }1≤i≤n does not reveal

any information about SG’s identities from the fact that the probability for any subgroup, consisting of
t or more than t clients, to compute S is equal. �

6 The Condition on n

Here we deduce the condition on n, appeared in Theorem 51, which is crucial in order to make the security
result more meaningful. First, we give an informal definition of security against on-line dictionary attacks:
a protocol is said to be secure against on-line dictionary attacks if an adversary can do no better than
guess a password during each Send-query (i.e., an impersonation attack). However, the success probability
of on-line attacks in the TAP protocol is greater than that in the 2-party PAKE protocols (see below).

Theorem 61 Consider an adversary who impersonates one party (i.e., subgroup SG or server S) for
on-line dictionary attacks in the TAP protocol. Then the probability of the adversary is upper-bounded by

⌈n

2

⌉2 1

N(N − 1)
.

Proof. When an adversary invokes Send-queries at Game G5 in the proof, we explain why the probability
of on-line dictionary attacks is upper-bounded by the above. In order to maximize Pr[AskH1-WithSG5],
the strategy the adversary can take is to first determine the threshold t and guess t passwords, each of
which should be a password of one of n/t clients. Then the adversary sends the t and {X∗

i }1≤i≤n, as an
honest party SG would do, to server S. After receiving the message from the server, the adversary can
check whether the guessed passwords are correct or not by seeing the authenticator VS . The maximal
probability can be obtained when t = 2. That one password is correct with respect to n/2 clients happens
with probability of n/2N . On the other hand, the probability for the other password is n/2(N − 1). For
any n, one can get the upper-bound as above since the probability becomes smaller as t grows. As for
Pr[AskH1-WithS5], the same discussion can be applied. �

5 In practice, N = 237 for MS-Windows passwords. It is sufficiently large for n.

10 SeongHan Shin et al.

Public information: (Gp, p, g, h),F ,G,H1,H2, C = {C1, · · · , Cn}

Client Ci (pwCi) Server S
(

Wj ≡ h
F(j,pwCj

)
, 1 ≤ j ≤ n

)

x
R← Z

⋆
p, X ≡ gx

Wi ≡ hF(i,pwCi
), X∗ ≡ X ×Wi C, X∗

✲

y
R← Z

⋆
p, Y ≡ gy, S

R← {0, 1}l

For j = 1 to n,

Xj ≡ X∗/Wj ,

Kj ≡ Xy
j ,

and Zj ← G(j, Kj)
⊕

S.

VS ← H1(C||S||X∗||Y ||{Zj}1≤j≤n||S)S, Y, {Zj}1≤j≤n, VS
✛

For i = j, S′ = Zi

⊕
G(i, Y x).

If VS 6= H1(C||S||X∗||Y ||{Zj}1≤j≤n||S′), reject.

Otherwise, SK ← H2(C||S||X∗||Y ||{Zj}1≤j≤n||S′)

and accept.

SK ← H2(C||S||X∗||Y ||{Zj}1≤j≤n||S)

Fig. 3. An efficient anonymous PAKE protocol when t = 1

Table 1. Comparison of anonymous PAKE protocols as for efficiency where n is the number of clients

The number of modular exponentiations Communication bandwidth
Protocols Client Ci Server S

APAKE [22] 6 (4) 4n + 2 (3n + 1) |C|+ |S|+ (n + 1)|hash|+ (n + 2)|p|
Our protocol of Fig. 3 3 (2) n + 1 (n) |C|+ |S|+ (n + 1)|hash|+ 2|p|

Now the condition on n can be easily obtained by restricting the probability of Theorem 61 to 1/N :

⌈n

2

⌉2 1

N(N − 1)
≤ (n+ 1)

2

4N(N − 1)
≤ 1

N
.

7 When the Threshold t = 1

If we only consider a passive server in an anonymous PAKE protocol, an efficient construction for the
threshold t = 1 can be easily derived from the TAP protocol (see Fig. 3). The main modification from
the TAP protocol is that client Ci only computes his masked Diffie-Hellman public value X∗ and the
hash function G has the range of {0, 1}l. By following the security proof of Appendix A, we can remove
the condition on n because the on-line attacks at Game G5 is limited to one specific client.

Here, we show how much our protocol of Fig. 3 is efficient compared to the original (not threshold)
anonymous PAKE protocol (in Section 3.2 of [22]) in terms of computation costs and communication
bandwidth to be required (see Table 1). In general, the number of modular exponentiations is a major
factor to evaluate efficiency of a cryptographic protocol because that is the most power-consuming
operation. So we count the number of modular exponentiations as computation costs of client Ci and
server S. The figures in the parentheses are the remaining number of modular exponentiations after
excluding those that are pre-computable. In terms of communication bandwidth, | · | indicates its bit-
length and hash denotes hash functions.

With respect to computation costs in our protocol, client Ci (resp., server S) is required to compute
3 (resp., n + 1) modular exponentiations. When pre-computation is allowed, the remaining costs of
client Ci (resp., server S) are 2 (resp., n) modular exponentiations. One can easily see that our protocol
has more than 50% reduction from the APAKE protocol in the number of modular exponentiations for
both client and server. With respect to communication bandwidth, our protocol requires a bandwidth of

A Secure Threshold Anonymous PAKE Protocol 11

((n+ 1)|hash|+ 2|p|)-bits except the length of identities C and S where the bandwidth for the modulus
size |p| is independent from the number of clients while the APAKE protocol is not. Let us consider
the minimum security parameters recommended in practice (|p| = 1024 and |hash| = 160). The gap of
communication bandwidths between our and APAKE protocols becomes bigger as the number of clients
increases.

8 Conclusions

After showing insecurity of the previous threshold anonymous PAKE protocol, we have proposed a
secure construction (the TAP protocol) which provides not only semantic security of session keys but
also anonymity against a passive server. We also proved its security of the TAP protocol in the random
oracle model with the reduction to the computational Diffie-Hellman problem. Moreover, we showed
the condition on n in order to get the optimal security result against on-line dictionary attacks. For
the threshold t = 1, we have proposed an efficient anonymous PAKE protocol that can be obtained by
slightly modifying the TAP protocol. The resultant protocol significantly improves efficiency in terms of
computation costs and communication bandwidth compared to the original (not threshold) anonymous
PAKE protocol [22].

References

1. M. Abdalla and D. Pointcheval. Simple Password-Based Encrypted Key Exchange Protocols. In Proc. of
CT-RSA 2005, LNCS 3376, pp. 191-208. Springer-Verlag, 2005.

2. M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and Analysis of Authentication
and Key Exchange Protocols. In Proc. of 30th ACM Symposium on Theory of Computing (STOC), pp. 419-
428, ACM, 1998.

3. E. Bresson, O. Chevassut, and D. Pointcheval. New Security Results on Encrypted Key Exchange. In Proc.
of PKC 2004, LNCS 2947, pp. 145-158. Springer-Verlag, 2004.

4. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-based Protocols Secure against Dictio-
nary Attacks. In Proc. of IEEE Symposium on Security and Privacy, pp. 72-84, 1992.

5. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure against Dictionary Attacks.
In Proc. of EUROCRYPT 2000, LNCS 1807, pp. 139-155. Springer-Verlag, 2000.

6. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols.
In Proc. of ACM CCS ’93, pp. 62-73, 1993.

7. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Proc. of CRYPTO ’93, LNCS
773, pp. 232-249. Springer-Verlag, 1993.

8. C. K. Chu and W. G. Tzeng. Efficient k-Out-of-n Oblivious Transfer Schemes with Adaptive and Non-
adaptive Queries. In Proc. of PKC 2005, LNCS 3386, pp. 172-183. Springer-Verlag, 2005.

9. W. Diffie and M. Hellman. New Directions in Cryptography. In IEEE Transactions on Information Theory,
Vol. IT-22(6), pp. 644-654, 1976.

10. W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated Key Exchange. In Proc. of
Designs, Codes, and Cryptography, pp. 107-125, 1992.

11. http://grouper.ieee.org/groups/1363/passwdPK/submissions.html

12. H. Krawczyk. SIGMA: the ’SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and its Use in the
IKE Protocols. In Proc. of CRYPTO 2003, LNCS 2729, pp. 400-425. Springer-Verlag, 2003.

13. P. MacKenzie. On the Security of the SPEKE Password-Authenticated Key Exchange Protocol. Cryptology
ePrint Archive: Report 2001/057, http://eprint.iacr.org/2001/057.

14. P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold Password-Authenticated Key Exchange. In Proc.
of CRYPTO 2002, LNCS 2442, pp. 385-400. Springer-Verlag, 2002.

15. M. H. Nguyen. The Relationship Between Password-Authenticated Key Exchange and Other Cryptographic
Primitives. In Proc. of TCC 2005, LNCS 3378, pp. 457-475. Springer Verlag, 2005.

16. A. Shamir. How to Share a Secret. In Proc. of Communications of the ACM, Vol. 22(11), pp. 612-613, 1979.
17. V. Shoup. On Formal Models for Secure Key Exchange. IBM Research Report RZ 3121, 1999. Available at

http://eprint.iacr.org/1999/012.
18. V. Shoup. OAEP Reconsidered. Journal of Cryptology, Vol. 15(4), pp. 223-249, September 2002.
19. V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs. Cryptology ePrint Archive:

Report 2004/332, http://eprint.iacr.org/2004/332.

12 SeongHan Shin et al.

20. S. H. Shin, K. Kobara, and H. Imai. A Secure Threshold Anonymous Password-Authenticated Key Exchange
Protocol. In Proc. of IWSEC 2007, LNCS 4752, pp. 444-458. Springer-Verlag, 2007.

21. W. G. Tzeng. Efficient 1-Out-n Oblivious Transfer Schemes. In Proc. of PKC 2002, LNCS 2274, pp. 159-171.
Springer-Verlag, 2002.

22. D. Q. Viet, A. Yamamura, and H. Tanaka. Anonymous Password-Based Authenticated Key Exchange. In
Proc. of INDOCRYPT 2005, LNCS 3797, pp. 244-257. Springer-Verlag, 2005.

23. D. Q. Viet, A. Yamamura, and H. Tanaka. Anonymous Password-Based Authenticated Key Exchange. In
Proc. of the 2006 Symposium on Cryptography and Information Security (SCIS 2006), 3D3-4, January 2006.

24. S. B. Wilson, D. Johnson, and A. Menezes. Key Agreement Protocols and their Security Analysis. In Proc.
of IMA International Conference on Cryptography and Coding, December 1997.

25. J. Yang and Z. Zhang. A New Anonymous Password-Based Authenticated Key Exchange Protocol. In Proc.
of INDOCRYPT 2008, LNCS 5365, pp. 200-212. Springer-Verlag, 2008.

A Proof of Theorem 51

In this proof, we incrementally define a sequence of games starting at the real game G0 and ending up
at G5 where the hash functions are modelled as random oracles. We use Shoup’s difference lemma [18,
19] to bound the probability of each event in these games. For visual simplicity, we denote {X∗

i }1≤i≤n
and {Zj}1≤j≤n by {X∗

i } and {Zj}, respectively, in the proof.

Game G0 (Real protocol): This is the real protocol in the random oracle model. We consider the
following two events:

– S0 (for semantic security) which occurs if the adversary correctly guesses the bit b involved in
the Test-query;

– A0 (for S-authentication) which occurs if an instance SGµ accepts with no partner instance Sν

with the same transcript ((C, t, {X∗
i }), (S, Y, {Zj}, VS))

Adv
ake

P (A) = 2 Pr[S0]− 1,Adv
S−auth

P (A) = Pr[A0] . (3)

In any game Gn below, we study the event An and the restricted event SwAn = Sn ∧ ¬An.

Game G1 (Simulation for hash and other queries): In this game, we simulate the hash oracles
(F , G, H1 and H2, but as well additional hash functions H′

k : {0, 1}⋆ → {0, 1}lk , for k = 1, 2, which
will appear in the Game G3) as usual by maintaining hash lists ΛF , ΛG , ΛH and ΛH′ (see below).
Note that we do not use the private oracles for F and G. We also simulate all the instances, as the
real parties would do, for the Send-queries and for the Execute, Reveal and Test-queries (see below).
From this simulation, we can easily see that the game is perfectly indistinguishable from the real
attack.

Simulation of the hash functions: F , G and Hk
– For a hash-query F(q) (resp., G(q)), such that a record (q, r) appears in ΛF (resp., ΛG), the

answer is r. Otherwise, one chooses a random element r
R← Z

⋆
p (resp., r

R← Gp), answers with it,
and adds the record (q, r) to ΛF (resp., ΛG).

– For a hash-query Hk(q) (resp., H′
k(q)), such that a record (k, q, r) appears in ΛH (resp., ΛH′),

the answer is r. Otherwise, one chooses a random element r
R← {0, 1}lk , answers with it, and

adds the record (k, q, r) to ΛH (resp., ΛH′).

Simulation of the TAP protocol

Send-queries to SG
We answer to the Send-queries to a SG-instance as follows:
– A Send(SGµ, Start)-query is processed by first setting the threshold t (t > 1) and randomly

selecting t indices from the set C. We apply the following rules:
◮ Rule SG1(1)

Choose a random element b
R← Z

⋆
p, and compute h ≡ gb and Wi ≡ hωi where

A Secure Threshold Anonymous PAKE Protocol 13

ωi ← F(i, pwCi
).

◮ Rule SG2(1)

For Ci ∈ SG, choose a random element θi
R← Z

⋆
q , and compute Xi ≡ gθi and

X∗
i ≡ Xi ×Wi. For Cj ∈ C\SG, choose a random element X∗

j
R← Gp.

Then the query is answered with (C, t, {X∗
i }), and the instance goes to an expecting state.

– If the instance SGµ is in an expecting state, a query Send(SGµ, (S, Y, {Zj}, VS)) is processed by
reconstructing the secret S and by computing the alleged authenticator and the session key. We
apply the following rules.

◮ Rule SG3(1)

For Ci ∈ SG, compute Ki ≡ Y θi and Si = Zi
⊕

G(i,Ki).
◮ Rule SG4(1)

Compute the expected authenticator and the session key:
V ′
S ← H1(C||S||t||{X∗

i }||Y ||{Zj}||S′), SKSG ← H2(C||S||t||{X∗
i }||Y ||{Zj}||S′).

If V ′
S = VS , then the instance accepts. In any case, it terminates.

Send-queries to S
We answer to the Send-queries to a S-instance as follows:
– A Send(Sν , (C, t, {X∗

i }))-query is processed according to the following rule:
◮ Rule S1(1)

Choose random elements ϕ
R← Z

⋆
p and S

R← Gp, and compute Y ≡ gϕ.
Then, the instance computes the authenticator and the session key after generating the shares
Sj of S by (t, n)-threshold secret sharing scheme [16]. We apply the following rules:

◮ Rule S2(1)

For j (1 ≤ j ≤ n), compute Xj ≡ X∗
j /Wj , Kj ≡ Xϕ

j and Zj = G(j,Kj)
⊕

Sj .

◮ Rule S3(1)

Compute the authenticator and the session key:
VS ← H1(C||S||t||{X∗

i }||Y ||{Zj}||S), SKS ← H2(C||S||t||{X∗
i }||Y ||{Zj}||S).

Finally, the query is answered with (S, Y, {Zj}, VS), and then the instance accepts and terminates.

Other queries
– An Execute(SGµ, Sν)-query is processed using successively the above simulations of the Send-

queries: (C, t, {X∗
i }) ← Send(SGµ, Start), (S, Y, {Zj}, VS) ← Send(Sν , (C, t, {X∗

i })), and then
outputting the transcript ((C, t, {X∗

i }), (S, Y, {Zj}, VS)).
– A Reveal(U)-query returns the session key (SKSG or SKS) computed by the instance U (if the

latter has accepted).
– A Test(U)-query first gets SK from Reveal(U), and flip a coin b. If b = 1, we return the value of

the session key SK, otherwise we return a random value drawn from {0, 1}l2 .

Game G2 (Collisions): For an easier analysis in the following, we cancel games in which some
collisions (Coll2) are unlikely to happen:
– collisions on the partial transcripts ((C, t, {X∗

i }), (S, Y, {Zj})): any adversary tries to find out a
pair (t, {X∗

i }, Y, {Zj}), coinciding with the challenge transcript, and then obtain the correspond-
ing session key using the Reveal-query. However, at least one party involves with the transcripts,
and thus one of (t, {X∗

i }) and (Y, {Zj}) is truly uniformly distributed.
– collision on the output of F .
– collision on the output of G.

These probabilities are upper-bounded by the birthday paradox (and when t = 2):

Pr[Coll2] ≤
(qe + qs)

2

2|Gp|2
×
(

1 +
1

|Gp|

)

+
q2f
2p

+
q2g

2|Gp|
. (4)

Game G3 (Using private oracles): In order to make the authenticator and the session key unpre-
dictable to any adversary, we compute them using the private oracles H′

1 and H′
2 (instead of H1 and

14 SeongHan Shin et al.

H2), respectively, so that the values are completely independent from the random oracles. We reach
this aim by using the following rule:

◮ Rule SG4/S3(3)

Compute the authenticator VS ← H′
1(C||S||t||{X∗

i }||Y ||{Zj}).
Compute the session key SKSG/S ← H′

2(C||S||t||{X∗
i }||Y ||{Zj}).

Since we do no longer need to compute the value S, we can simplify the following rules:
◮ Rule SG3(3)

Do nothing.
◮ Rule S1(3)

Choose random elements ϕ
R← Z

⋆
p and T

R← Gp, and compute Y ≡ gϕ.

◮ Rule S2(3)

For j (1 ≤ j ≤ n), set Zj ← Tj where Tj is a share of T.
Finally, the secret ωi is not used anymore either so that we can also simplify the generation of {X∗

i }
using the group property of Gp.

◮ Rule SG2(3)

For i (1 ≤ i ≤ n), choose a random element xi
R← Z

⋆
p and compute X∗

i ≡ gxi .
The games G3 and G2 are indistinguishable unless some specific hash queries are asked, denoted by
event AskH3 = AskH13 ∨ AskH2w13:
– AskH13: H1(C||S||t||{X∗

i }||Y ||{Zj}||S) has been queried by A to H1 for some execution tran-
scripts ((C, t, {X∗

i }), (S, Y, {Zj}));
– AskH2w13: H2(C||S||t||{X∗

i }||Y ||{Zj}||S) has been queried by A to H2 for some execution tran-
scripts ((C, t, {X∗

i }), (S, Y, {Zj})), where some party has accepted, but event AskH13 did not
happen;

The above obviously leads to the following (these probabilities are computed at the Game G5):

Pr[AskH3] ≤ Pr[AskH13] + Pr[AskH2w13] .

The authenticator is computed with a random oracle that is private to the simulator, then one
can remark that it cannot be guessed by the adversary, better than at random for each attempt,
unless the same partial transcript ((C, t, {X∗

i }), (S, Y, {Zj})) appeared in another session with a real
instance Sν . But such a case has already been excluded (in Game G2). A similar remark holds on
the session key:

Pr[A3] ≤
qs
2l1

Pr[SwA3] =
1

2
. (5)

When collisions of the partial transcripts have been excluded, the event AskH1 can be split in three
disjoint sub-cases:

– AskH1-Passive3: the transcript ((C, t, {X∗
i }), (S, Y, {Zj})) comes from an execution between in-

stances of SG and S (Execute-queries or forward of Send-queries, relay of part of them). This
means that both (t, {X∗

i }) and (Y, {Zj}) have been simulated;
– AskH1-WithSG3: the execution involved an instance of SG, but (Y, {Zj}) has not been sent by any

instance of S. This means that (t, {X∗
i }) has been simulated, but (Y, {Zj}) has been produced

by the adversary;
– AskH1-WithS3: the execution involved an instance of S, but (t, {X∗

i }) has not been sent by any
instance of SG. This means that (Y, {Zj}) has been simulated, but (t, {X∗

i }) has been produced
by the adversary.

Game G4 (Introduction of Diffie-Hellman instance): In order to evaluate the above events,
we introduce a random Diffie-Hellman instance (P,Q) (where both P and Q are generators of Gp.
Otherwise, the Diffie-Hellman problem is easy.) We first modify the simulation of the party SG for
the element Q.

◮ Rule SG1(4)

Set h← Q and compute Wi ≡ Qωi , for i (1 ≤ i ≤ n), where ωi
R← Z

⋆
p.

By the isomorphic property of Gp, the new Wi is perfectly indistinguishable from before since there
exists a unique discrete logarithm for each Wi. We also introduce the other part P of the Diffie-
Hellman instance in the simulation of the party S.

A Secure Threshold Anonymous PAKE Protocol 15

◮ Rule S1(4)

Choose random elements y
R← Z

⋆
p and T

R← Gp, and compute Y ≡ P y.
It would let the probabilities unchanged, but note that we excluded the cases Wi ≡ 1 and Y ≡ 1.

Game G5 (Probability of AskH): It is now possible to evaluate the probability of the event AskH

(or more precisely, the sub-cases). Indeed, one can see that the password is never used during the
simulation. It doest not need to be chosen in advance, but at the very end only. Then, an information-
theoretic analysis can be done which simply uses cardinalities of some sets.
To this aim, we first cancel a few more games, involved in a communication between an instance Sν

and either the adversary or an instance SGµ. That is, for some pairs (t, {X∗
i }, Y, {Zj}) there are two

events (which are denoted GuessS5 and CollW5) to be explained below.

|Pr[AskH5]− Pr[AskH4]| ≤ Pr[GuessS5] + Pr[CollW5] .

The event GuessS5 is to guess S and it is clearly bounded by:

Pr[GuessS5] ≤
qs + qe
|Gp|

. (6)

The CollW5 is an event that there are two distinct elements S where the tuple (t, {X∗
i }, Y, {Zj},S) is

in ΛH and S is the secret recovered from t shares Sj = Zj
⊕G(j,Kj). Here we claim the following:

Claim. For any pair (t, {X∗
i }, Y, {Zj}) involved in a communication with an instance Sν , there are

two distinct elements Wj , such that (j,CDHg,Gp
(X∗

j /Wj , Y)) is in ΛG , granted that two distinct
elements S exist where the tuple (t, {X∗

i }, Y, {Zj},S) is in ΛH and S is the secret recovered from t
shares Sj = Zj

⊕G(j,Kj). Proof. Let Uj = G(j,Kj). Note that Uj is effectively a one-time pad for
Zj and {Zj} is controlled by the simulator. That means, if there are two distinct elements S, there
are also two distinct elements Wj for at least one j, such that the tuple (j,CDHg,Gp

(X∗
j /Wj , Y)) is

in ΛG , since we have already excluded the random guess on S above and the collision on the output
of G at Game G2. �

Now the event CollW5 can be upper-bounded by the following lemma:

Lemma 1 If for any pair ({X∗
j }, Y) ∈ G

n+1
p , involved in a communication with an instance Sν ,

there are two distinct elements Wj0 and Wj1 such that the tuple (j,Kjm = CDHg,Gp
(X∗

j /Wjm, Y))
is in ΛG, one can solve the computational Diffie-Hellman problem:

Pr[CollW5] ≤
nq2g
2
× Succ

cdh

g,Gp
(t1 + τe) . (7)

Proof. We assume that there exist ({X∗
j }, Y ≡ P y) ∈ G

n+1
p involved in a communication with

an instance Sν , and two elements Wj0 ≡ Qωj0 and Wj1 ≡ Qωj1 , for each j, such that the tuple

(j,Kjm
def
= CDHg,Gp

(X∗
j /Wjm, Y)) is in ΛG , for m = 0, 1. Then,

Kjm = CDHg,Gp
(X∗

j /Wjm, Y) = CDHg,Gp
(X∗

j ×Q−ωjm , Y)

= CDHg,Gp
(X∗

j , Y)× CDHg,Gp
(Q,Y)−ωjm

= CDHg,Gp
(X∗

j , Y)× CDHg,Gp
(P,Q)y(−ωjm) .

As a consequence,
Kj1/Kj0 = CDHg,Gp

(P,Q)y(ωj0−ωj1)

and thus CDHg,Gp
(P,Q) = (Kj1/Kj0)

ψ where ψ is the inverse of y(ωj0−ωj1) in Z
⋆
p. The latter exists

since Wj0 6= Wj1 and y 6= 0. By guessing the two queries asked to the G for any j, one can get the
above result (the upper-bound is obtained when t = 2). �

In order to conclude the proof, let us study separately the three sub-cases of AskH1 and then AskH2w1

(keeping in mind the absence of several kinds of collisions: for partial transcripts, for outputs of F
and G, and for Wj in G-queries):

16 SeongHan Shin et al.

– AskH1-Passive: About the passive transcripts (in which both (t, {X∗
i }) and (Y, {Zj}) have been

simulated), one can state the following lemma:

Lemma 2 If for any pair ({X∗
j }, Y) ∈ G

n+1
p , involved in a passive transcript, there is an element

Wj such that (j,Kj = CDHg,Gp
(X∗

j /Wj , Y)) is in ΛG, one can solve the computational Diffie-
Hellman problem:

Pr[AskH1-Passive5] ≤
nqg
2
× Succ

cdh

g,Gp
(t1 + 2τe) . (8)

Proof. We assume that there exist ({X∗
j ≡ gxj}, Y ≡ P y) ∈ G

n+1
p involved in a passive transcript

and Wj ≡ Qωj , for each j, such that the tuple (j,Kj = CDHg,Gp
(X∗

j /Wj , Y)) is in ΛG . As above,

Kj = CDHg,Gp
(X∗

j , Y)× CDHg,Gp
(Q,Y)−ωj

= P xjy × CDHg,Gp
(P,Q)−yωj .

As a consequence, CDHg,Gp
(P,Q) = (Kj/P

xjy)ψ where ψ is the inverse of −yωj in Z
⋆
p. The latter

exists since we have excluded the cases where y = 0 and wj = 0. By guessing the query asked
to the G for any j, one can get the above result (the upper-bound is also obtained when t = 2). �

– AskH1-WithSG: This corresponds to an attack where the adversary tries to impersonate S to
SG (break unilateral authentication). But each authenticator sent by the adversary has been
computed with at least two ωj = F(j, pwCj

) since t > 1 and SG can check the degree of f(x).
The maximal probability of the adversary can be obtained when t = 2 (see Section 6 for more
details):

Pr[AskH1-WithSG5] ≤
⌈n

2

⌉2 qs
N(N − 1)

. (9)

– AskH1-WithS: The above Lemma 1, applied to games where the event CollW5 did not happen,
states that for a pair ({X∗

j }, Y) involved in a transcript with an instance Sν , there is at most

one element Wi=j such that for Wi ≡ hF(i,pwCi
) the corresponding tuple is in ΛG : the probability

for the adversary over a random password is as above:

Pr[AskH1-WithS5] ≤
⌈n

2

⌉2 qs
N(N − 1)

. (10)

About AskH2w1 (when the above three events did not happen), it means that only executions with
an instance of S (and either SG or the adversary) may lead to acceptance. Exactly the same analysis
as for AskH1-Passive and AskH1-WithS leads to

Pr[AskH2w15] ≤
nqg
2
× Succ

cdh

g,Gp
(t1 + 2τe) +

⌈n

2

⌉2 qs
N(N − 1)

. (11)

As a conclusion, we get an upper-bound for the probability of AskH5 by combining all the cases:

Pr[AskH5] ≤
⌈n

2

⌉2 3qs
N(N − 1)

+ nqg × Succ
cdh

g,Gp
(t1 + 2τe) . (12)

Combining equation (4), (5), (6), (7) and (12), one gets either

Pr[A0] ≤
qs
2l1

+∆ Pr[SwA0] =
1

2
+∆ , (13)

where

∆ ≤
⌈n

2

⌉2 3qs
N(N − 1)

+ nqg × Succ
cdh

g,G(t1 + 2τe) +
nq2g
2
× Succ

cdh

g,Gp
(t1 + τe)

+
(qe + qs)

2

2|Gp|2
×
(

1 +
1

|Gp|

)

+
q2f
2p

+
q2g + 2(qs + qe)

2|Gp|

≤ 3(n+ 1)2qs
4N(N − 1)

+
3nq2g

2
× Succ

cdh

g,Gp
(t1 + 3τe)

+
(qe + qs)

2

|Gp|2
+
q2f
2p

+
q2g + 2(qs + qe)

2|Gp|
. (14)

A Secure Threshold Anonymous PAKE Protocol 17

One can get the result as desired by noting that Pr[S0] ≤ Pr[SwA0] + Pr[A0]. �

B A Countermeasure to Two Attacks of [25]

In this section, we give a countermeasure of the TAP (t ≥ 2) protocol against both the impersonation
and off-line dictionary attacks, shown in [25]. The idea is simple in that we just add a tag for each client
to the second message from the server to the subgroup (see below).

Step 2’
2.1’ same as Step 2.1
2.2’ same as Step 2.2 except the following addition (shown in bold): server S generates a tag

Tj ← H3(Cj ||j||S||t||{X∗
i }1≤i≤n||Y ||{Zj}1≤j≤n||Sj ||Kj), for j (1 ≤ j ≤ n), where H3 is a secure

one-way hash function.
2.3’ same as Step 2.3 except the following changes (shown in bold): Also, server S generates an

authenticator VS ← H1(C||S||t||{X∗
i }1≤i≤n||Y ||{(Zj ,Tj)}1≤j≤n||S) and a session key SK ←

H2(C||S||t||{X∗
i }1≤i≤n||Y ||{(Zj ,Tj)}1≤j≤n||S). Then, the server sends its identity S, the Diffie-

Hellman public value Y , {(Zj ,Tj)}1≤j≤n and the authenticator VS to subgroup SG.
Step 3’

3.1’ same as Step 3.1 except the following addition (shown in bold): if Ti 6= H3(Ci||i||S||t||{X∗
i }1≤i≤n

||Y ||{Zj}1≤j≤n||Si||Ki), each client Ci in the subgroup SG terminates the protocol. Otherwise,
proceed to Step 3.2’.

3.2’ same as Step 3.2 with the obvious changes in verifying VS and generating SK. Note that
subgroup SG should reconstruct and share S′ securely6 from the t shares Si.

C An Attack on the D-NAPAKE Protocol of [25]

In this section, we show an attack on the D-NAPAKE protocol of [25] where only one legitimate client
can impersonate any subgroup of clients to the server. In other words, the D-NAPAKE protocol is NOT
a threshold anonymous PAKE protocol.

C.1 The D-NAPAKE Protocol

Here, we describe the D-NAPAKE protocol of [25] (see Fig. 4). The main idea of the D-NAPAKE
protocol is that, after sharing a secret based on SPEKE [13], the subgroup and the server run a masked
sequential Diffie-Hellman protocol in a threshold secret sharing manner.

Let G = 〈g〉 be a finite, cyclic group of prime order q. Let G : {0, 1}∗ → G be a full-domain hash
function, and H0,H1 : {0, 1}∗ → {0, 1}l be two random hash functions where l is the security parameter.
Let pwi be a password shared between the client Ci and the server S, and PWi = G(i, pwi). The subgroup
SG and the server S agree on the client group Γ = {C1, · · · , Cn} in advance.

1. The server S chooses a random number rS
R← Z

⋆
q , and for all n clients in Γ generates Aj = PW rS

j

where 1 ≤ j ≤ n. Then, server S sends (S, {Aj}1≤j≤n) to subgroup SG.
2. The subgroup SG (⊂ Γ) checks all the values in {Aj}1≤j≤n are different one another. If not, subgroup
SG aborts the protocol. Otherwise, each client Ci ∈ SG picks Ai from {Aj}1≤j≤n, and chooses two

random numbers (ri, xi)
R← Z

⋆
q . Then, each client Ci ∈ SG computesXi = gxi , Zi = Ari

i , Bi1 = Zi·Xi

and Bi2 = PW ri

i . The subgroup SG sends (t, {Bi1, Bi2}1≤i≤t) to server S where t (t ≥ 2) is the
threshold.

3. The server S chooses a random number y
R← Z

⋆
q and computes Y ≡ gy. For j (1 ≤ j ≤ t), server S gen-

erates a share yj of y by using Shamir’s secret sharing scheme [16] over Z
⋆
q , and computes Z ′

j = BrS

j2 ,
X ′
j = Bj1/Z

′
j and Kj = (X ′

j)
yj . Also, server S generates an authenticator AuthS = H1(Trans||Y)

and a session key sk = H0(Trans||Y) where Trans = Γ ||S||{Aj}1≤j≤n||t||{Bi1, Bi2}1≤i≤n||{Kj}1≤j≤n.
Finally, server S sends ({Kj}1≤j≤t, AuthS) to subgroup SG.

6 With the use of secure channels

18 SeongHan Shin et al.

Γ = {C1, · · · , Cn}, PWi = G(i, pwi)

Subgroup: SG ⊂ Γ (|SG| = t) Server: S

rS
R← Z

⋆
q

For j = 1 to n, Aj = PW rS
jS, {Aj}1≤j≤n

✛

For each Ci ∈ SG,

(ri, xi)
R← Z

⋆
q , Xi = gxi , Zi = Ari

i

Bi1 = Zi ·Xi, Bi2 = PW ri
i t, {Bi1, Bi2}1≤i≤t

✲

y
R← Z

⋆
q , Y ≡ gy

f(x) =
∑t−1

k=1 uk · xk + y where

uk
R← Z

⋆
q (1 ≤ k ≤ t− 1)

For j = 1 to t,

yj = f(j), Z′
j = BrS

j2 ,

X ′
j = Bj1/Z

′
j , Kj = (X ′

j)
yj

AuthS = H1(Trans||Y)

sk = H0(Trans||Y)

{Kj}1≤j≤t, AuthS
✛

For each Ci ∈ SG, Y ′
i = K

1/xi

i

Y ′ =
∏

Ci∈SG Y ′λi
i where λi ≡

∏

1≤m≤t,m6=i
m

m−i

Verify AuthS = H1(Trans||Y ′)

sk = H0(Trans||Y ′)

Fig. 4. The D-NAPAKE protocol [25] where the threshold t ≥ 2 and Trans = Γ ||S||{Aj}1≤j≤n||t||
{Bi1, Bi2}1≤i≤n||{Kj}1≤j≤n

4. Each client Ci ∈ SG computes Y ′
i = K

1/xi

i . Then, the subgroup SG recovers Y ′ from t Y ′
i values

by Lagrange interpolation. The subgroup SG checks whether AuthS is equal to H1(Trans||Y ′).
If not, subgroup SG abots the protocol. Otherwise, subgroup SG computes a session key sk =
H0(Trans||Y ′) and accepts it.

C.2 The Attack

Now, we are ready to show an attack on the D-NAPAKE protocol of [25]. W.l.o.g., client Cl ∈ Γ , who
is sharing pwl with server S, is trying to impersonate any subgroup SG (t ≥ 2) of clients to server S.
Note that Yang and Zhang [25] proposed the D-NAPAKE protocol as a threshold version of NAPAKE
protocol so that server S should authenticate any subgroup SG (t ≥ 2) of clients anonymously.

1. same as 1. of Section C.1
2. The client Cl ∈ Γ picks Al from {Aj}1≤j≤n, and chooses 2t random numbers {(ri, xi)}1≤i≤t R← Z

⋆
q .

For i (1 ≤ i ≤ t), the client Cl computes Xi = gxi , Zi = Ari

l , Bi1 = Zi ·Xi and Bi2 = PW ri

l . The
client Cl sends (t, {Bi1, Bi2}1≤i≤t) to server S where the threshold t (t ≥ 2).

3. same as 3. of Section C.1
4. The client Cl ∈ Γ computes Y ′

i = K
1/xi

i for i (1 ≤ i ≤ t). Then, the client Cl recovers Y ′ from t
Y ′
i values by Lagrange interpolation. Finally, the client Cl shares a session key sk = H0(Trans||Y ′)

with the server S because Y ′ = Y .

Correctness of the attack. It is enough to show Kj = (gxi)yj for i = j:

Kj = (X ′
j)
yj =

(

Bj1
Z ′
j

)yj

=

(

Bj1
BrS

j2

)yj

=

(

Zi ·Xi

(PW ri

l)rS

)yj

=

(

Ari

l · gxi

(PW ri

l)rS

)yj

=

(

(PW rS

l)ri · gxi

(PW ri

l)rS

)yj

