

A Security Credential Management System for V2V Communications

William Whyte (Security Innovation); André Weimerskirch (ESCRYPT); Virendra Kumar (ESCRYPT); Thorsten Hehn (Volkswagen of America)

Outline of presentation

- Significance of this design
 - There are lots of papers written every year about certificate management for V2V safety, why is this special?
 - If V2V safety communications happen, the design in this presentation is the leading candidate for real-world deployment in the US.
- Overall architecture + privacy by design
- Original features of the design
 - Linkage authorities and linkage values
 - Butterfly keys

Who are we and what are we doing?

- Crash Avoidance Metrics Partnership (CAMP)
 - Founded by Ford and GM, forms and manages project teams for precompetitive technical research
 - Partner organization, Vehicle Infrastructure Integration Consortium (VIIC), provides coordinated policy statements from automotive OEMs
- CAMP Vehicle Safety Communications 3 (VSC3) Consortium: Ford, General Motors, Honda, Hyundai-Kia, Mercedes-Benz, Nissan, Toyota*, and Volkswagen / Audi
- VSCS Aim: Develop a design for a Secure Credential Management System (SCMS) suitable for deployment across 300 million vehicles
 - Plus potentially aftermarket and nomadic devices
 - Identify full set of functionality that must be supported in day 1 devices

* Toyota is not part of the VSCS Study Team developing the SCMS

Background

- 32,000 deaths on the road in the US in 2012
- Significant reduction may be possible from V2V wireless communications for 360° warning applications.
 - 300 m range, 802.11-derived medium access
 - Basic Safety Message (BSM)
 - Location, velocity, steering angle...
 - Allows receiving unit to predict collisions
 - Forward, longitudinal, intersection
 - Warn driver, driver action can prevent or reduce impact of collision
 - Spectrum reserved for these communications since 1999
- USDOT (NHTSA) currently considering mandating this system for inclusion in new light vehicles
 - Decision on mandate to be made 2013, some years before it takes effect

Security considerations

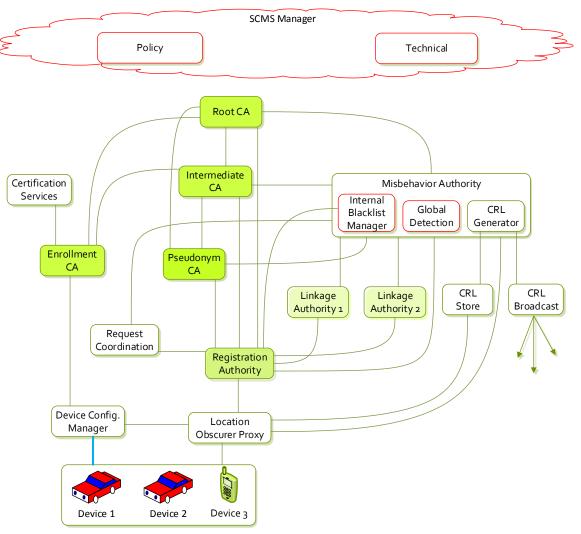
- Risk of false messages
 - Reduce users' faith in system and cause warnings to be ignored
 - (not safety-related): Messages may affect choice of route or have other mobility/efficiency impacts
 - Requirement: must be able to detect untrustworthy senders or messages and let receivers know not to trust them
- Impact on privacy
 - Don't want the system to be used as a tracking system
 - Tracking is always possible, don't want this option to be the cheapest
 - Prevent eavesdroppers or insiders from collecting Personally Identifiable Information (PII)
 - Conflict with requirement to detect and remove untrustworthy senders
- Design constraints
 - Constraints on available data rate using current V2V system (6 MBps under ideal conditions)
 - Cost-sensitive suppliers: limits on processing power, storage, connectivity, number of 5.9 GHz radios, ...

Security concept of operations

- Protect against false messages:
 - Messages are signed and not encrypted
 - Signed using ECDSA over the NISTp256 curve
 - Signed message includes (or references) a certificate that specifies permissions (not identity) of holder
 - Misbehaving units can have their certificates identified and revoked
- Protect privacy:
 - Don't directly reveal information: No personal information included in broadcast messages
 - Prevent tracking: "Identifiers" at application, network and other levels should be transient
 - Eavesdropper can only track from place to place if they record all your messages
 - Vehicles have a number of simultaneously valid certificates, can choose which certificate to use to sign each message
 - Baseline number of certs =20 per week
 - When cert changes, all other identifiers change too
 - Currently no standardized algorithm for cert change
 - SCMS is split into a number of components so that no individual component knows the full set of certificates that belong to a single device
 - Policy: out of scope for this presentation (and CAMP). Could consider
 - Restricting law enforcement use of the system
 - Data retention rules for storage of BSMs

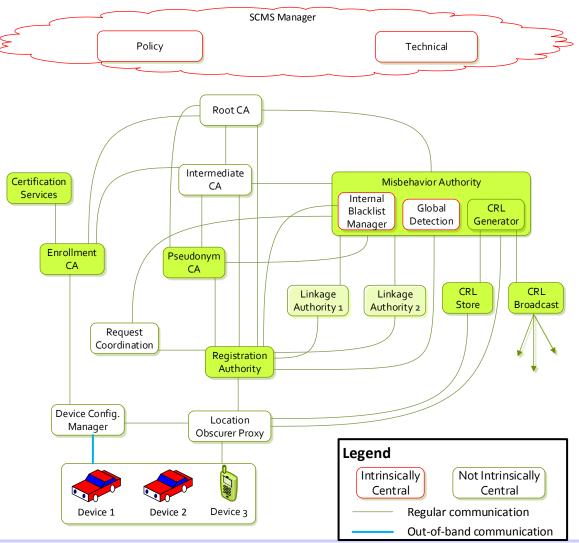
Privacy by Design, an OEM perspective

- Privacy from attacks by an SCMS insider
 - Don't link certificates to VIN or require legal process
 - Separate operation of SCMS components: Two or more components should not be run by the same organization without "proper" separation


if

the combined information held by the components would allow the organization to track* a vehicle

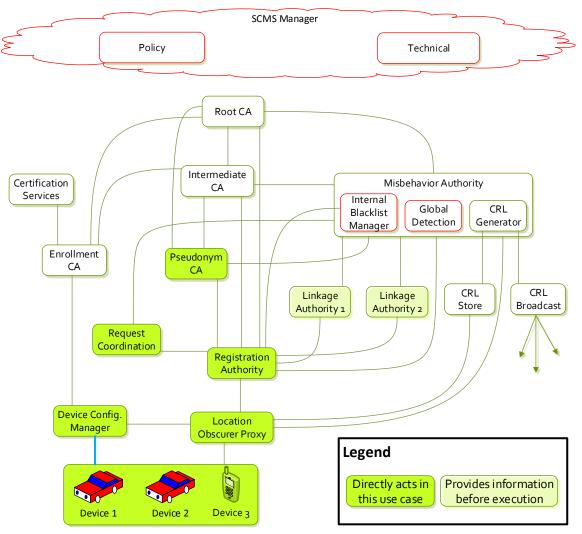
*predict next pseudonym certificate based on current one or find out whether two certificates belong to the same device


 Divide functionality between SCMS components as necessary to satisfy this approach

Overview / Standard PKI Hierarchy

December 2013

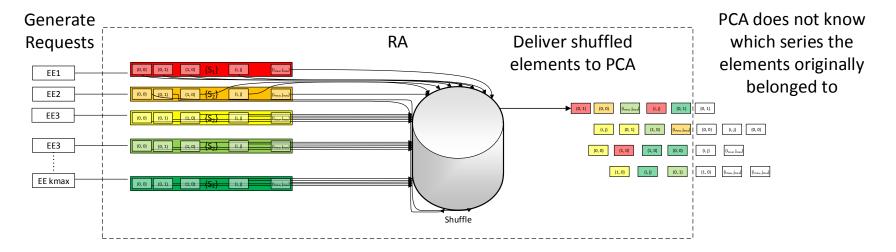
Lifecycle



December 2013

Unique Features

- RA shuffle for privacy
- Certificate request: Butterfly keys
 - Allows more responsiveness & robustness, less work on OBE
- Certificate issuance and revocation: Linkage authorities and linkage values
 - Allows efficient revocation while preventing any SCMS component from tracking non-revoked vehicle
- Misbehavior analysis and revocation
 - Allows certs from misbehaving vehicles to be linked while respecting the privacy of correctly behaving vehicles


Certificate Provisioning

December 2013

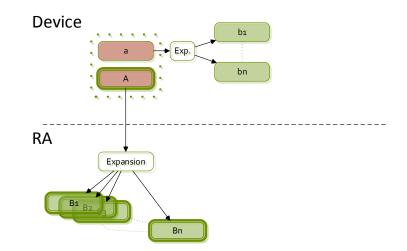
Shuffle at the RA

- RA receives requests from multiple end-entity devices
- Combines requests so that PCA doesn't know that two individual cert requests received at the same time come from the same vehicle

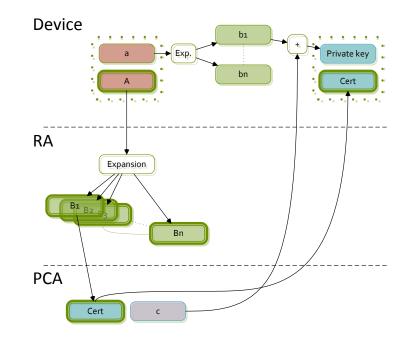
Butterfly keys: Certificate generation goals

- OBE could simply generate a large number of cert requests and send them encrypted to the PCA, but:
 - OBE is constrained
 - Minimum processing on the OBE
 - Minimum wasted processing on the OBE
 - Connectivity is not guaranteed
 - Small uploads
 - Want to request as many certificates as possible at a given time
 - What if the PCA goes out of business?
- Butterfly keys address all these issues
 - Performance and robustness enhancement, not security enhancement as such

Butterfly keys: concept

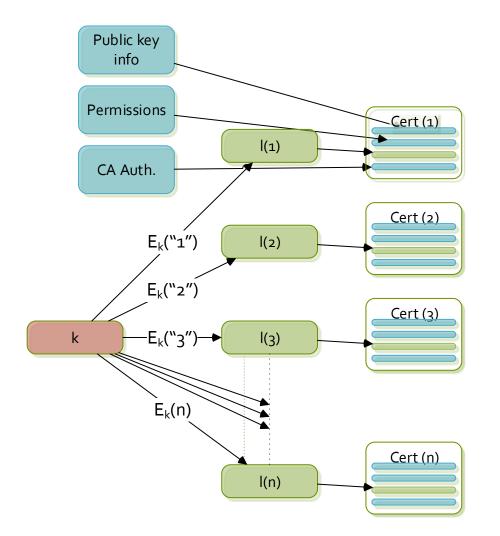

- Device generates
 - A seed or "caterpillar" keypair
 - An expansion function
 - Cost: ~1 key generation

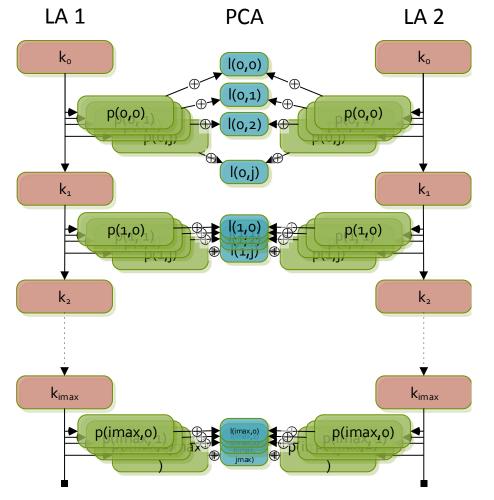
Device


Butterfly keys: concept

- Device generates
 - A seed or "caterpillar" keypair
 - An expansion function
 - Cost: ~1 key generation
- RA runs the expansion function to generate "cocoon" public keys from the caterpillar public key
 - Cocoon public keys from the same caterpillar keys are not correlated
 - Expansion function lets you generate arbitrarily many cocoon keys
 - RA submits cocoon keys to CA for certification

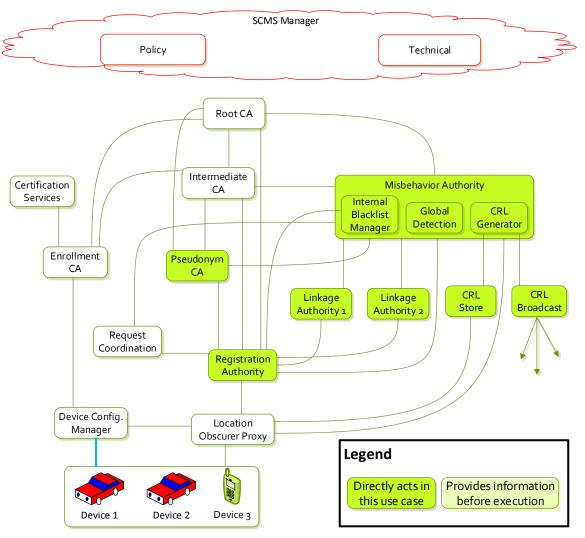
Butterfly keys: concept


- Device generates
 - A seed or "caterpillar" keypair
 - An expansion function
 - Cost: ~1 key generation
- RA runs the expansion function to generate "cocoon" public keys from the caterpillar public key
 - Cocoon public keys from the same caterpillar keys are not correlated
 - Expansion function lets you generate arbitrarily many cocoon keys
 - RA submits cocoon keys to CA for certification
- CA randomizes each public key separately so the RA can't recognize them
 - Certs contain the resulting "butterfly" keys
 - CA returns certs and private randomization values to the OBE
- Result: Large number of certs generated from a single initial keypair
 - OBE is the only device that knows private keys
 - Public keys cannot be correlated by any entity
 - · Low computational burden on OBE at request time
 - Request once, generate keys for the entire lifetime of the vehicle


Butterfly keys vs goals

- Minimum processing on the OBE:
 - One cert request from OBE allows generation of arbitrary number of individual certs
- Minimum wasted processing on the OBE:
 - Certs that are not used need not be decrypted
- Small uploads:
 - Upload is two public ECC keys + two expansion functions (= AES keys)
- Want to request as many certificates as possible at a given time
 - One cert request from OBE allows generation of arbitrary number of individual certs
- What if PCA goes out of business?
 - Requests are not encrypted for a particular PCA; any PCA change can be handled on the backend by the RA

- Why do we need revocation?
 - Why not just choose not to issue new certs to a misbehaving vehicle?
- Not all vehicles will have good data connection
 - Even vehicles that do may be out of coverage
 - Vehicles need to be provisioned with a minimum number of certs in case they are turned off for some time and turned on in an area with no coverage
- If you have a month's worth of certs, you can misbehave for a month
 - If you have three months' worth of certs, you can misbehave for three months
 - If you have three years' worth of certs...
- Revocation must be supported to reduce potential disruption within system, even if in practice it isn't used.
- Need efficient, privacy-preserving revocation



- Revoke all *n* of a device's certs with just one entry on the CRL
- Multiple certs valid in one time period
- Backwards unlinkability
- No component in the SCMS knows the chain

- Revoke all *n* of a device's certs with just one entry on the CRL
- Multiple certs valid in one time period
- Backwards unlinkability
- No component in the SCMS knows the chain
 - LAs encrypt chain for PCA
 - Send to RA
 - RA groups
 - PCA decrypts, XORs

Revocation

December 2013

Misbehavior investigation

- Misbehavior reporting:
 - OBE -> MA
- Misbehavior analysis:
 - MA by itself
- Misbehavior investigation:
 - MA asks PCA if two certs belong to same vehicle
 - PCA asks LAs
 - Yes/no answer
 - Interfaces can be defined to require evidence to be presented at each stage
 - Interfaces protect privacy only yes/no answer, linkage seeds are not revealed
 - If a vehicle misbehaves often enough it can be revoked
- Revocation:
 - Linkage seed from each LA goes on the CRL
 - CRL recipients at each time period:
 - Hash linkage seeds forward to that time period
 - Calculate 20 pre-linkage values for each
 - XOR to get linkage value
 - Compare to received cert and reject if match

Outlook and Ongoing Projects

- VSCS Study One: Design Optimization and Cost Analysis of Connected Vehicle Security System
- Period of Performance: April 3, 2013 January 3, 2014
- Activities:
 - Define baseline security model and baseline OBE requirements
 - Develop security system cost model
 - Perform cost analysis on baseline security model
 - Analyze potential simplifications to the deployment model
 - Analyze alternative device-SCMS connectivity approaches
 - Identify technical approaches to linking enrollment certificates to batches of devices to aid defect investigations
 - Provide design recommendations for V2V Security System

December 2013

Extra slides

Butterfly Keys: Elliptic Curve background

Alice	Bob		
a, A = aG	G, A	a = private key, A = public key, G = base point	
		Alice uses a to sign	
		Bob knows A and G but can't find a	
		Bob can use A to verify Alice's signatures	
	b, $B = bG$	"ephemeral keypair"	
a+b, A+B b, A <mark>+B</mark> A		A+B = (a+b) G	
		Only Alice knows a+b although Bob has contributed to key	
		Alice can sign with (a+b) just as with any private key; no-one else can	
		Bob and others can verify with A+B just as with any public key	

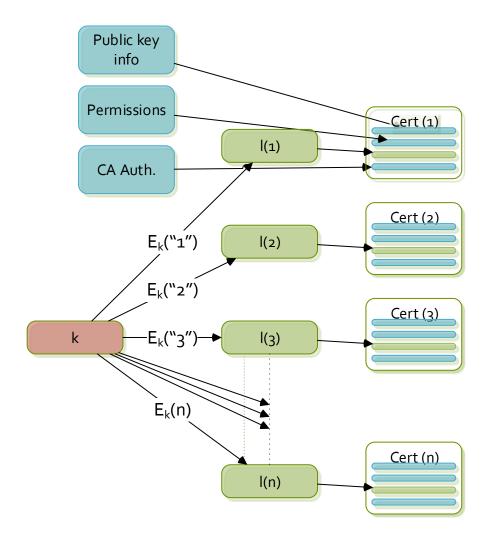
Why does this matter?

Butterfly key process

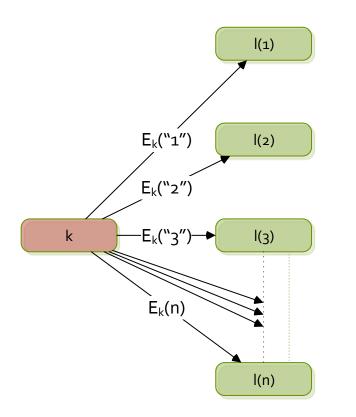
(Notation is different from paper for space reasons)

27

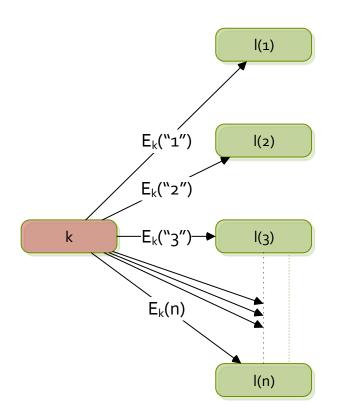
	OBE	RA	РСА	
	a, A = aG f _s (i, j)	A, f _s		f _s = "pseudorandom permutation" = AES _k (i j) for some k
		$B_{1,1} = A + f_s(1,1)^*G$ $B_{1,2} = A + f_s(1,2)^*G$ $B_{1,3} = A + f_s(1,3)^*G$ 		$a+f_s(1,1)$ is private key for $B_{1,1}$ $a+f_s(1,2)$ is private key for $B_{1,2}$ $a+f_s(1,3)$ is private key for $B_{1,3}$
		B _{1,1} -	c, C = cG Issue Cert(B _{1,1} +C)	c is randomly generated & distinct for each received B
			E = Enc _{OBE} (Cert, c, "1,1")	Encrypt response so that RA can't see cert contents Response encryption key is butterfly key formed from (H, f _e)
Dec	(Cert, c, "1,1")		Sign _{CA} (<i>E</i>)	Signing proves that CA encrypted message, not RA
200	$a+f_{s}(1,1)+$			$a + f_s(1,1) + c$ is private key for


Butterfly keys: OBE to RA

- Start with a single "caterpillar" public key A in a cert request
 - A = aG, a = private key (integer) mod p, G = Elliptic Curve Base Point
 - Given A & G, very hard to find the value a
 - $(a+b)^*G = aG + bG$
- Want to expand this to certs for time period (*i*, *j*)
 - OBE defines expansion function $f_s(i, j)$ that takes (i, j) to (pseudo)random integer mod p
 - Pick AES key k
 - $f_s(i, j) = AES_k(0^{128} \text{ XOR } [i_{32} || j_{32}]) || AES_k(1^{128} \text{ XOR } [i_{32} || j_{32}])$
 - Shares $f_s(i, j)$ with RA (i.e. shares k)

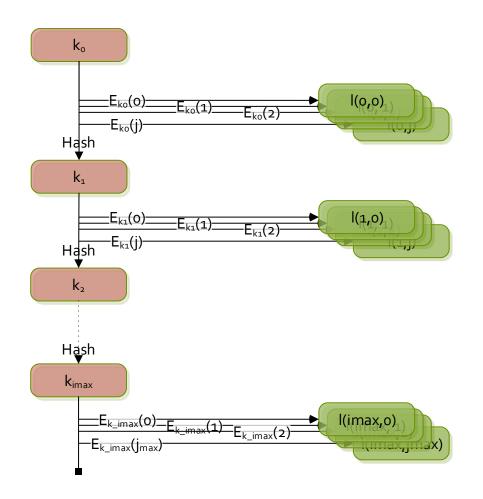

 - Then RA can calculate B_{ij} = A + f_s(i, j)*G
 f_s is pseudorandom, so the PCA cannot determine that B_{ij}s from the same A are related
 - Corresponding private key is $a + f_s(i, j)$ which only OBE knows
- So:
 - A single cert request from the OBE to the RA leads to... •
 - Multiple individual uncorrelated public keys from the RA to the PCA ٠
 - These can be shuffled together, protecting OBE privacy against PCA ۲

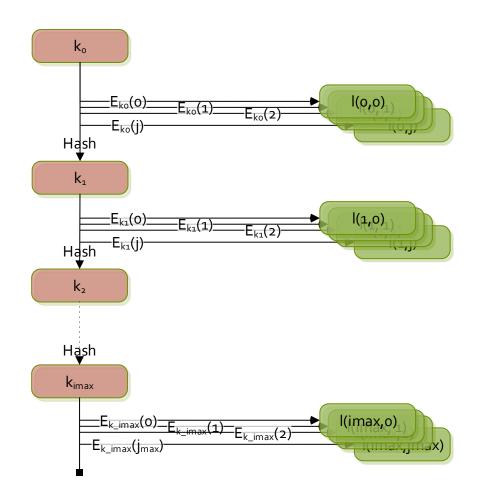
Butterfly keys: RA to PCA

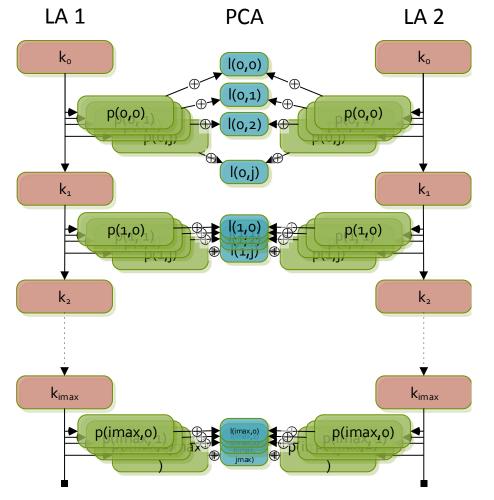

- One more requirement: RA must not know the public keys in the certs
 - But RA has put the public keys in the requests
- PCA generates an offset
 - Integer c, point C = cG, generated freshly at random for each request
 - PCA receives request containing B_{ij} , signs cert containing $B_{ij} + C$
 - B_{ij} = "coccoon" public key, B_{ij} +C = "butterfly" public key
 - PCA returns (c, Cert) to RA to return to OBE
 - Encrypted under a separate butterfly encryption key
 - Ciphertext signed by PCA to prevent MITM attack by RA
 - Encrypted response includes indication of the request it is associated with so RA can return it to the right OBE
- Now:
 - Shuffle prevents PCA from knowing which certs go together
 - Offset prevents RA from knowing which certs go together
 - Only the OBE knows the contents of its certs
 - OBE knows $a, f_s(i, j)$, receives c:
 - $(a + f_s(i,j) + c) * G = A + f_s(i,j)G + C = B_{ij} + C \leftarrow$ public key in cert
 - ... so $a + f_s(i,j) + c = private key for cert$

- Revoke all *n* of a device's certs with just one entry on the CRL
 - Include linkage value
 l(*i*) = E_k(*i*) in the cert
 - Include key k on CRL; in each time period i, vehicles calculate E_k(i) for all entries and compare to the linkage value in the cert.

- Revoke all *n* of a device's certs with just one entry on the CRL
 - Include linkage value
 l(*i*) = E_k(*i*) in the cert
 - Include key k on CRL; in each time period i, vehicles calculate E_k(i) for all entries and compare to the linkage value in the cert.


- Revoke all *n* of a device's certs with just one entry on the CRL
- Multiple certs valid in one time period


- Revoke all *n* of a device's certs with just one entry on the CRL
- Multiple certs valid in one time period


- Revoke all *n* of a device's certs with just one entry on the CRL
- Multiple certs valid in one time period
- Backwards unlinkability

- Revoke all *n* of a device's certs with just one entry on the CRL
- Multiple certs valid in one time period
- Backwards unlinkability

- Revoke all *n* of a device's certs with just one entry on the CRL
- Multiple certs valid in one time period
- Backwards unlinkability
- No component in the SCMS knows the chain

- Revoke all *n* of a device's certs with just one entry on the CRL
- Multiple certs valid in one time period
- Backwards unlinkability
- No component in the SCMS knows the chain
 - LAs encrypt chain for PCA
 - Send to RA
 - RA groups
 - PCA decrypts, XORs