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Abstract: Location-based services (LBSs) facilitate people’s lives; location-based service providers
(LBSPs) usually outsource services to third parties to provide better services. However, the third party
is a dishonest entity that might return incorrect or incomplete query results under the consideration of
saving storage space and computation resources. In this paper, we propose a security-enhanced query
result verification scheme (SEQRVS) for the outsourced data in a LBS. Specifically, while retaining
fine-grained query result verification, we improve the construction process of verification objects to
enhance the security of the outsourced data. To prevent the third party from deducing the knowledge
of the outsourced data stored in itself (statistically), our scheme designs a novel storage structure to
enhance the ability of privacy preservation for the outsourced data. Furthermore, based on the secure
keyword search and query result verification mode proposed in our scheme, the user cannot only
verify the correctness and completeness of the query result but also achieve consistency verification
by the blockchain. Finally, the security analysis and extensive simulation results show the security
and practicality of the proposed scheme.

Keywords: location-based service (LBS); query result verification; privacy preservation; blockchain

1. Introduction

Location-based services (LBSs) are pervasive in people’s social lives. With the increase
in LBS applications, users can enjoy many convenient social services, such as map navi-
gation, restaurant recommendations, and taxi reservations. One typical LBS is the point
of interest (POI) information query system. By inputting locations and POI types, users
can reach relevant POI information [1]. However, since the location-based service provider
(LBSP) has to maintain exponentially-growing POI data to provide a better service, storing
and computing data have been burdens for LBSP.

Outsourcing a service, as a prevalent service mode, has many advantages, such as cost
saving, quick deployment, and flexible resource configuration [2]. In this mode, enterprises
could migrate their service data to a third party, such as the cloud or fog side, and outsource
their services to the cloud or fog server. Motivated by the rich benefits brought about by
outsourcing services, the LBSP could reduce its burden by utilizing the computing and
storage resources of a third party [3–5]. However, how to guarantee the confidentiality of
outsourced data has become a key problem (due to the separation from the direct control of
outsourced data) [6].

To address this problem, one common way is to encrypt the service data before out-
sourcing. Therefore, many research studies focus on how to search for encrypted data.
Searchable encryption, as a method that enables the outsourced data to be searched without
decrypting, has been adopted in many research studies [4,7,8]. For example, searchable
encryption is used in [7] to store electronic health records, allowing different participating
healthcare organizations and individuals (e.g., physicians, hospitals, medical laboratories,
and insurance companies) to securely access electronic health records, enabling efficient
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data sharing. However, driven by illegal profits, such as saving storage costs, the third party
may behave dishonestly.

Therefore, many researchers have designed query result verification mechanisms to
guarantee the correctness and completeness of query results. For example, researchers in [9]
proposed a fine-grained query result verification scheme. In this scheme, the verification
object of the query result was constructed by the Bloom filter, and a user who received the
query result can check the correctness and completeness by verifying the corresponding
verification object. Although the scheme achieves a fine-grained query result verification,
the construction process is not perfect. Specifically, the structure of the certain verification
object has an exceptional layout, which will provide additional knowledge to the third
party and further lead to the privacy disclosure of the outsourced data. For example, if the
LBSP outsources its service data to the cloud side and adopts this query result verification
mechanism, the cloud side could easily figure out which is the largest number of encrypted
outsourced POI type data.

The schemes [10–12] also provide verification solutions to support the check of the
query result. Although the confidentiality of the query index and the outsourced data can
be guaranteed by the method of encryption, the relationship between the encrypted query
index and corresponding encrypted query objects (e.g., the verification object) is one-to-one.
That is, the above query result verification mechanisms will provide additional statistical
information to the third party and further lead to the information leakage of the encrypted
outsourced data. For example, if the LBSP outsources its service data to the cloud side
and adopts the above query result verification mechanisms, the cloud side could infer the
meaning of the encrypted POI type by counting the frequency of the query indexes and
popularity of POI types.

Although current schemes have proposed various query result verification mecha-
nisms to prevent the third party from returning erroneous or incomplete query results,
there is little research on the non-repudiation of the returned data. In practice, the third
party may blame the situation of returning erroneous or incomplete query result on the
communication process. For example, when the user finds out the erroneous or incomplete
query result by verifying the corresponding verification object, the third party may claim
that it has returned the correct and complete query result and the reason for missing data
in other aspects such as the network communication problem.

To address the above problems, we designed a Security Enhanced Query Result
Verification Scheme (SEQRVS) for the outsourced data in LBS. Specifically, the contribution
of our paper can be summarized as follows.

(1) Based on the outsourcing service of LBS, a secure keyword search and query result
verification mode over encrypted outsourced data were constructed. In this mode, we
improved the construction process of the verification object on the basis of analyzing
the deficiency of the scheme [9]. Therefore, while retaining fine-grained query result
verification, our scheme can effectively prevent the third party (i.e., the fog side) from
obtaining additional knowledge from the structure of the verification object, and
further enhance the security of the outsourced data.

(2) To prevent the third party (i.e., the fog side) from deducing the meaning of the
outsourced data stored in itself by the way of statistics, we designed the one-to-n
lookup table as the storage structure of the outsourced data. By implementing this
storage structure, the fog side not only knows nothing about what data are requested
by the user and which query object is returned to the user, but also cannot determine
the correspondence between the query index and the corresponding query object,
which further enhances the ability of privacy preservation for the outsourced data.

(3) To prevent the third party (i.e., the fog side) from attributing dishonest behaviors
(e.g., storage errors) to the unreliability of network communication, we introduced the
blockchain to guarantee the non-repudiation of the query result from the third party.
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(4) A comprehensive security analysis is provided to show the security of the mode and
the storage structure adopted in our scheme, and extensive simulation results also
demonstrate the security and practicality of the proposed scheme.

The rest of this paper is organized as follows. We review the related work in Section 2.
The background, including the system model, threat model, and preliminary techniques to
be used in the paper are described in Section 3. We propose the process of data outsourcing,
data retrieval, and data verification of the scheme in Section 4. Then, we analyze the
security and evaluate the performance of our proposed scheme in Sections 5 and 6. In
Section 7, we conclude the paper.

2. Related Works

In this section, we review some recent research work on privacy preservation, includ-
ing secure storage, query, verifiable search, and methods to resist dishonest behavior.

2.1. Secure Storage and Query

Since the introduction of technologies, such as storage and computing in the cloud to
LBS, many researchers have conducted work on how to ensure secure storage and query
of outsourced data. Based on attribute encryption, linear encryption, and RSA encryp-
tion, Huang et al. [13] introduced a private-protected spatial–temporal LBS searchable
framework, which effectively solved the problem of an expressive and practical search over
encrypted LBS data. In [14], Wang et al. designed a secure dynamic spatial keyword query
(SDSKQ) structure and proposed cryptographic text-signed quad-trees to improve search
security, satisfying the requirements in practical applications, such as dynamic updates and
diverse query type queries. Zhang et al. [15] also adopted the structure of quad-trees to
build the index for the POI database, solving the secure problem of linear region search,
and bridging the gap in research on linear region search. In [16], Guo et al. improved on the
existing k-anonymity algorithm, compensating for the fact that the existing algorithm can
leak some contents of POIs, providing a foundation for subsequent research on the security
of the k-anonymity algorithm. Manju et al. [17] proposed a fog-assisted privacy protection
scheme for LBS to process the users’ query in the fog server, efficiently protecting privacy
security, solving the problem of double identity attacks in mobile phones. All of the above
studies have addressed the issue of secure data storage and query to some extent; however,
few papers have considered the pitfalls of the cloud as a potential attacker, which may leak
or forge the outsourced data to reach illegal benefits.

2.2. Verifiable Search

To ensure that LBS works without a hitch, verifying the outsourced data returned from
the cloud is also an essential part of the process. Yin et al. [9] constructed a data verification
object using the Bloom filter to verify the correctness and completeness of data, realizing
fine-grained and efficient verification of data. In [18], Zhu et al. implemented fine-grained
access control based on blind signatures and key policy attribute-based encryption (KPABE),
and used function hidden inner product encryption (FHIPE) to encrypt Bloom filters for
data file authentication, achieving secure and efficient data validation. In [19], Zhou et al.
devised a lightweight and secure comparison protocol LSCP without interactions between
the cloud and users. By using this protocol, users can easily eliminate duplicate and useless
encrypted LBS messages during the authentication process, making the verification process
in VANETs much faster. Benarous et al. [20] proposed a privacy-preserving scheme for
verifying location data transmission for the Internet of Vehicles, improving the security of
privacy for LBS of vehicles. All of the above studies on data verifiability have certain flaws.
There is no guarantee that dishonest clouds will not obtain useful information from them,
and they cannot be directly applied to the data verification process in LBS either.
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2.3. Resistance to Dishonest Behavior

How to prevent dishonest behavior in the cloud is also a current area of research.
Liao et al. [21] designed the continuous query KAT algorithm to prevent the cloud from ana-
lyzing the user’s privacy based on the user’s trajectory. By using this algorithm, the situation
that the user’s privacy may be compromised by the continuous query can be effectively solved.
To further protect privacy, Kuang et al. [22] designed double-hidden regions in k-anonymity
algorithms to prevent the cloud from accessing user privacy. In previous research, scholars have
never really looked at the cloud as an attacker, to disrupt the entire LBS system, to examine the
implementation options. However, in practical situations, especially when massive amounts of
location data are increasingly and profoundly affecting people’s lives, it is necessary to consider
the cloud as an entity that threatens the security of the entire LBS system.

Therefore, in this work, we use the Paillier cryptosystem and lookup table technology
to guarantee storage and query privacy. We use verification objects to provide a fine-grained
and reliable verification of fog nodes and outsourced data. Moreover, we use blockchain
technology to effectively prevent dishonest behaviors of fog nodes.

3. Background

In this section, the techniques used in the scheme are introduced firstly, then the
system model and threat model are illustrated.

3.1. Preliminaries

To better illustrate our scheme, we briefly introduce several key techniques used in the
scheme, including the Voronoi diagram used to divide the fog nodes, the counting Bloom
filter used to construct the verification objects, and so on.

3.1.1. Voronoi Diagram

A Voronoi diagram [23] is composed of several geometries in a plane, and each
geometric is known as the Voronoi polygon. These Voronoi polygons are generated by a set
of generator points, and the generation process is as follows. Given a set of generator points
specified beforehand, by making perpendicular bisectors for the straight lines composed
of generator points, the whole plane can be divided into several regions. For each point
x in the region R, the distance between x and generator point Pi is less than that between
x and any other generator points, i.e., ∀x ∈ R(Pi), dist(x, Pi) < dist(x, Pj), where Pi 6= Pj.
According to the properties of the Voronoi diagram, if fog nodes can be seen as generator
points, then a two-dimensional map can be divided into a Voronoi diagram. Figure 1 is an
example of a Voronoi diagram based on fog nodes.

Figure 1. Voronoi diagram based on fog nodes (for an example in a UK location).
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3.1.2. Counting Bloom Filter

The counting Bloom filter [24] is an improved version of the Bloom filter, which can
support elemental addition and deletion operations. Before introducing the counting Bloom
filter, it is necessary to explain the Bloom filter. The structure of a Bloom filter is a bit array
of m bits, where each bit is set to 0 initially. The Bloom filter is usually used to determine
whether an element is in or not in certain sets. Suppose that there is a set S = {s1, s2, . . . , st}
of t elements. To enable an element, s ∈ S can be represented in the Bloom filter; it needs to
use l independent hash functions {h1, h2, . . . , hl} to hash s to obtain l different positions
in the Bloom filter, and these hash functions are with the same output range [0, m − 1].
Then these l different positions in the structure of the Bloom filter are set to be 1. To decide
whether x ∈ S, it needs to examine whether all the positions in the structure of the Bloom
filter corresponding to hi(x) are equal to 1, where 1 ≤ i ≤ l. Therefore, if one of these
corresponding positions is 0, x /∈ S. If all the corresponding positions are 1, then x ∈ S or a
false positive. To minimize the impact of the false positive, our scheme adopts the same
way as the paper [9]. That is, the parameter l is set to be m∗ln2

t , which will result in the
minimum probability of the false positive (i.e., 2−l). However, since each position of the
standard Bloom filter only represents a single bit, it does not support element addition and
deletion operations. Thus, the counting Bloom filter uses fixed size counters to represent
an element instead of single bits. In this case, the corresponding counters are added by 1
when an element is inserted and the corresponding counters are decreased by 1 when an
element is deleted.

3.1.3. Paillier Cryptosystem

The Paillier cryptosystem is a classic homomorphic encryption and is usually used to
implement addition operations over the ciphertext domain [25]. In general, it consists of
three polynomial-time algorithms (i.e., Gen, Enc, and Dec).

Gen(1n): Firstly, two independent large prime numbers p and q are randomly selected.
Then we compute N = p · q and λ = lcm(p− 1, q− 1), where lcm( ) is the least common
multiple function. Finally, the public key pk = N and private key sk = (λ, ψ(N)) can be
obtained, where ψ(N) = λ−1mod N.

Enc(pk, m): Assume m is a plaintext to be encrypted. Firstly, a random number r ∈ Z∗N
is selected. Then the encrypted result c can be computed by Equation (1):

c = [(1 + N)m · rNmod N2] (1)

Dec(sk, c): To obtain the plaintext m, the encrypted result c can be recovered with the
private key sk by Equation (2):

m =
(cλmodN2)− 1

N
· ψ(N) mod N (2)

3.2. System Model

As shown in Figure 2, the proposed scheme has four entities: the LBSP, the fog node,
the user, and the blockchain, which describe the following scenario: due to the storage
and computing advantages of fog computing, the LBSP outsources its private data to the
fog nodes. However, to guarantee data security, the outsourced data need to be encrypted
and the storage structures of outsourced data also need to be constructed to support the
secure keyword search over the encrypted outsourced data. When a user requests a certain
type of POI information in a specified query region, s/he can send a POI query request
to the third party (i.e., the fog node) based on some parameters obtained from the LBSP.
Similar to [9], the third party (i.e., the fog node) is considered to be a dishonest entity that
could maliciously delete the stored outsourced data or tamper with the user’s query result;
the secure verification objects should be constructed and contained in the outsourced data.
When a query ends, the query result along with the corresponding verification objects are
returned to the user. Finally, the user can implement the correctness and completeness
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verification based on the received verification objects, taking a step towards consistency
verification under the support of the blockchain.
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Figure 2. System model.

3.3. Threat Model

Our threat model is mostly consistent with work in [9]. The LBSP and the blockchain
are assumed to be honest; that is, they honestly behave similar to the scheme designed. To
some extent, they can be regarded as reliable entities without leaking any privacy of users
or colluding with the fog side. The fog side is assumed to be dishonest and curious; that is,
they may maliciously discard or tamper with outsourced data to obtain improper benefits
while attempting to analyze not only the users’ queries themselves and their frequencies
but also the outsourced encrypted data. The two threat models are described as follows:

Given two fog node verification objects VOg, VOg′ of two different fog node identifiers

g, g
′
, the attackers cannot tell the difference between the above two verification objects.

The semantic security (i.e., fog node verification object indistinguishability security) of the
fog node verification object is defined by a game between probabilistic polynomial-time
adversary A and challenger B.

(Ĝame1)

(1) Setup.
(2) Phase 1. A asks B to return the fog node verification objects after submitting different

fog node identifiers many times.
(3) Challenge. A sends two challenge fog node identifiers g1, g2 to B, which have not

been sent in Phase 1. A asks B for the challenge fog node verification object. After
receiving two challenge fog node identifiers g1, g2, B fairly chooses a bit b ∈ {1, 2}
and returns the challenge fog node verification object VOgb of gb to A.

(4) Phase 2. A continues to ask B to return the fog node verification objects after submit-
ting different fog node identifiers many times. The only restriction is that the fog node
identifiers are different from the identifiers sent in Phase 1 and Challenge.

(5) Guess. The adversary A outputs a guess b
′

of b. If b = b
′
, A wins the game.

As the space of b is only two, A can choose the correct number with the probability of
50% if taking a random guess.



Appl. Sci. 2022, 12, 8126 7 of 25

Definition 1. The advantage of the probabilistic polynomial-time adversary A wins (Ĝame1) is

AdvA =| Pr[b = b
′
]− 1

2
| . (3)

If AdvA is negligible in the game, the fog node verification object is semantically secure and
achieves indistinguishability.

Given two description file verification objects VOw, VOw′ of set c(ds)w, c(ds)w′ for
two different keywords w, w

′
, the attackers cannot tell the difference between the above

two verification objects. The semantic security (i.e., the description file verification object
achieving indistinguishability) of the description file verification object is defined by a
game between probabilistic polynomial-time adversary A and challenger B.

(Ĝame2)

(1) Setup.
(2) Phase 1. A asks B to return the corresponding description file verification objects after

submitting different keywords many times.
(3) Challenge. A sends two challenge keywords w1, w2 to B, which have not been sent in

Phase 1. A asks B for the challenge description file verification objects. After receiving
two challenge keywords, w1, w2, B fairly chooses a bit b ∈ {1, 2} and returns the
challenge description file verification object VOwb of wb to A.

(4) Phase 2. A continues to ask B to return the corresponding location data file verification
objects after submitting different keywords many times. The only restriction is that
the keywords are different from the keywords sent in Phase 1 and Challenge.

(5) Guess. The adversary A outputs a guess b
′

of b. If b = b
′
, A wins the game.

As the space of b is only two, A can choose the correct number with the probability of
50% if taking a random guess.

Definition 2. The advantage of the probabilistic polynomial-time adversary A winning (Ĝame2) is

AdvA =| Pr[b = b
′
]− 1

2
| . (4)

If AdvA is negligible in the game, the description file verification object is semantically secure
and achieves indistinguishability.

4. Proposed Scheme

In this section, we first describe the overview of our scheme. Then, based on three
main processes, the proposed scheme is explained in detail. The summary of notations is
presented in Table 1.

Table 1. Summary of notations.

Notation Description

G The identifier set of fog nodes.
g The identifier of a fog node.
W The keyword set related to POI types.
w A keyword in set W.
DSW The set of description files containing all keywords.
(ds)w The set of description files containing keyword w.
C(X) The corresponding ciphertext set of plaintext X.
pr fk A pseudo-random function with the key k.
c A secure encryption algorithm, e.g., AES.
(pk, sk) Key pair generated by Paillier cryptosystem.
VOG The verification object set of all fog nodes.
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Table 1. Cont.

Notation Description

VOg The verification object of a fog node.
vog[ ] The position in the verification object of a fog node.
VOW The verification object set of description files containing all keywords.
VOw The verification object of description files containing keyword w.
vow[ ] The counter in the verification object of description files containing keyword w.
H The set of l hash functions.
h A hash function.

4.1. Overview

In brief, the design goal of our scheme was to support the security verification of query
results on the basis of providing a secure query over the outsourced data. That is, when
a query ends, both the query result and corresponding verification objects are returned
to the user by the fog node. Upon receiving these returned data, the user can obtain the
query result that corresponds to his/her query index as well as verify the completeness
and correctness of the query result according to the verification objects and check the
consistency of the query result based on the blockchain.

Our scheme is mainly composed of three processes: data outsourcing process, data
retrieval process, and data verification process. (1) The data outsourcing process: given
a flat map (e.g., a city), the LBSP constructs a Voronoi diagram mentioned in Section 3.1.
Then, according to the fog node in each Voronoi cell, the LBSP forms the original database,
shown in Table 2. Note that the fog nodes can vary based on the frequency layers or in
case the user devices are connected to some local Wi-Fi hotspots. Based on the original
database, the LBSP begins to construct the encrypted outsourced data, such as the retrieval
index, the query result, and the corresponding verification objects. While introducing the
construction process of outsourced data, Section 4.2 explains the improved construction
process of verification objects to fix the deficiency of the scheme [9]. (2) The data retrieval
process: based on encrypted outsourced data constructed in the data outsourcing process,
the storage structure of the outsourced data (i.e, one-to-n lookup table) stored in each fog
node is illustrated. When a user specifies a query region, the fog nodes contained in the
query region will be in charge of the user’s query service. Based on the one-to-n lookup
table, Section 4.3 states how the user obtains the query service from the fog nodes and
how to prevent the fog nodes from deducing the meaning of the outsourced data stored
in themselves by the way of statistics. (3) The data verification process: after obtaining
the returned data from the fog nodes, Section 4.4 shows how to verify the correctness
and completeness of the query result according to the verification objects and check the
consistency of the query result based on the blockchain.

Table 2. The original database structure of the LBSP.

G W DSW

g1

w1 (ds)w1

w2 (ds)w2

· · ·
wθ (ds)wθ

g2

w1 (ds)w1

w2 (ds)w2

· · ·
wθ (ds)wθ
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Table 2. Cont.

G W DSW

· · ·

gs

w1 (ds)w1

w2 (ds)w2

· · ·
wθ (ds)wθ

4.2. Data Outsourcing Process

The process of constructing the encrypted outsourced data will be illustrated based
on the original database structure. For each keyword w related to a certain POI type
and each set of description files containing the keyword w, the LBSP uses the pseudo-
random function with the key k (i.e., pr fk) and AES to form the encrypted retrieval index
set pr fk(W) = {pr fk(w1), pr fk(w2), . . . , pr fk(wθ)} and the ciphertext set C(DSw∈W) =
{c(ds)w1 , c(ds)w2 , . . . , c(ds)wθ

}. Moreover, to support the query result verification, the
verification objects need to be constructed. Similar to the scheme proposed in [9], our
scheme also adopts the Bloom filter to generate verification objects.

4.2.1. Design of the Fog Node Verification Object

For each fog node identifier gi, the LBSP first uses AES to obtain the corresponding
ciphertext c(gi), where 1 ≤ i ≤ s and s indicates the total number of fog nodes. Then,
for each c(gi), the LBSP uses the pseudo-random function (i.e., pr fk) to obtain the secret
value pr fk(c(gi)) and prepares a standard Bloom filter VOgi with m bits, where the ini-
tial value of each bit is 0. Further, the LBSP utilizes set H that is composed of l hash
functions to hash pr fk(c(gi)) and obtains the set of hashed values {h1(pr fk(c(gi))) ∈
[0, m − 1], . . . , hl(pr fk(c(gi))) ∈ [0, m − 1]}. Finally, the LBSP enabling these hashed
values can be represented in the standard Bloom filter and sets the corresponding bit
vogi [hj(pr fk(c(gi)))] to be 1, where 1 ≤ j ≤ l.

4.2.2. Design of Description File Verification Objects

For each set of description files containing the keyword wi (i.e., c(ds)wi ), the LBSP
prepares a counting Bloom filter VOwi with m counters, where the initial value of each
counter is 0. Then, for each encrypted description file c ∈ c(ds)wi , the LBSP uses the
pseudo-random function (i.e., pr fk) to obtain the secret value pr fk(c) and utilizes the
set H composed of l hash functions to hash pr fk(c), obtaining the set of hashed values
{h1(pr fk(c)) ∈ [0, m− 1], . . . , hl(pr fk(c)) ∈ [0, m− 1]}. Finally, the LBSP enabling these
hashed values can be represented in the counting Bloom filter, adding the corresponding
counter vowi [hj(pr fk(c))] by 1, where 1 ≤ j ≤ l, 1 ≤ i ≤ θ, and θ indicate the total number
of keywords.

Problem statement: If the verification object VOwi is directly outsourced to the third
party (i.e., the cloud side or the fog side), the number of description files represented in

VOwi can be easily figured out by calculating
∑m−1

j=0 vowi [j]
l , where l is the number of hash

functions. Therefore, the scheme in [9] proposed a novel structure for the verification
object to fix the above issue by adding a padding region, shown in Figure 3. In the
structure, the number of counters is extended to n. The counters from 0 to m − 1 are
inserted corresponding to description files of c(ds)wi by using pr fk and H, and the counters
from m to n are inserted corresponding to l× |c(ds)w∈W |max −∑m−1

j=0 vowi [j] random strings
{R1, R2, ...} by using a pad function P with the range [m, n− 1], where |c(ds)w∈W |max is
the maximum number of description files containing the same keyword. The computed
result P(R) = m + pr fk(R) mod (n−m), R ∈ {0, 1}∗ is not 0, the corresponding counter
vowi [p(R)] is added by 1.
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0 m-1

1 3 2 2 4 ... 1 23

m n-1
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Figure 3. The verification object with a padding region.

Although the padding region can efficiently prevent the third party from calculating
how many description files are contained in c(ds)wi , the structure of the verification object is
not perfect since this construction will leak some important information. For example, since
each VOwi satisfies ∑n−1

j=0 vowi [j] = l× |c(ds)w∈W |max. Then, the structure of the verification
object VOmax is an exceptional layout since all of the values of counters in the padding
region are 0, where VOmax represents the verification object of {c(ds)w∈W}max. In other
words, the value in the last m to n counters are all 0, as shown in Figure 4. Due to the layout
shown in Figure 4, the third party can easily lock the verification object VOmax and further
figure out the corresponding encrypted query. Consequently, the layout will support the
third party to infer the meaning of the encrypted query index by investigating the data
number of the POI type related to keyword w.
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Figure 4. The structure of the special verification object.

Improved construction process of verification objects: The main idea of our improved
method is to set the sum of genuine description files and dummy description files of each
keyword w ∈ W to be a fixed value S = |c(ds)w∈W |max + r, where |c(ds)w∈W |max is the
maximum number of genuine description files and r is a random value. |c(ds)w∈W |max −
|c(ds)w|+ r indicates the number of dummy description files. Suppose that |c(ds)w∈W | de-
notes the number of genuine description files for each keyword w ∈ W, then the total num-
ber of description files that need to be represented (i.e., the number that needs to be inserted
into the structure of the verification object) can be set as Sum = l × (|c(ds)w∈W |max + r).
Specifically, in the structure of the verification object VOwi , the verification region is inserted
l × |c(ds)wi | times and the padding region is inserted ndummy = l × (S− |c(ds)wi |) times.
Finally, the sum of the inserted times (i.e., the sum of numbers in all counters) for each
verification object is l × S. An example of our verification object is shown in Figure 5. The
improved construction process of the verification object is shown in Algorithm 1.
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Algorithm 1 Improved construction process of verification objects.

Input: The ciphertext files sets C(G) and C(DSw∈W)
Output: The verification object sets VOG and VOW
1: for each c(gi) ∈ C(G) do
2: Generate a standard Bloom filter with m bits;
3: Calculate pr fk(c(gi));
4: Calculate{h1(pr fk(c(gi))), . . . , hl(pr fk(c(gi)))} by using the set H that composed of

l hash functions;
5: for 1 ≤ j ≤ l do
6: Set the counter vogi [hj(pr fk(c(gi)))] to be 1;
7: end for
8: return VOgi ;
9: end for

10: return The verification object set VOG;
11: for each c(ds)wi ∈ C(DSw∈W) do
12: Generate a counting Bloom filter with n counters;
13: for each c ∈ c(ds)wi do
14: Calculate pr fk(c);
15: Calculate {h1(pr fk(c)), . . . , hl(pr fk(c))} using H;
16: for 1 ≤ j ≤ l do
17: Add the counter vowi [hj(pr fk(c))] by 1 in the verification region;
18: end for
19: Generate ndummy = S− |c(ds)wi | dummy description files;
20: for each c ∈ c(dummy)wi do
21: Calculate pr fk(c);
22: Calculate {h1(pr fk(c)), . . . , hl(pr fk(c))} using H;
23: for 1 ≤ j ≤ l do
24: Add the counter vowi [hj(pr fk(c))] by 1 in the padding region;
25: end for
26: end for
27: end for
28: return VOwi ;
29: end for
30: return The verification object set VOW ;
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Figure 5. The structure of the verification object in our scheme.

4.2.3. Design of the Lookup Table

After the above settings, the encrypted retrieval index set (i.e., pr fk(W)), the encrypted
query result set containing keywords (i.e., C(DS)w∈W), the verification object set of fog
nodes (i.e., VOG), and the description file verification object set corresponding to the
encrypted query result set (i.e., VOW) are obtained. Based on the above-encrypted data, the
LBSP can outsource these data to a third party (i.e., the fog side). However, how to use the
user’s encrypted query index to obtain the corresponding query result and the verification
objects without leaking any useful information to the third party is an important problem
that needs to be solved.
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Problem statement. To overcome the disclosure of query privacy, it is common to use
the user’s encrypted query index to support the secure query over the outsourced data.
Although this way can prevent the third party from obtaining the plaintext information of
the user’s query index (e.g., the plaintext information about the query keyword w in our
scheme), it still exposes important information, such as the frequency or rarity of requests
for outsourced data corresponding to the user’s encrypted query index, and accurate
statistical information on the frequency of all encrypted outsourced data requested. Upon
the above-exposed information, the third party may carry out some dishonest behaviors,
such as deleting the outsourced data that are rarely requested or inferring the meaning of
the encrypted query index (e.g., pr fk(w) in our scheme).

Improved storage structure of the outsourced data. In brief, the reason that a third party
can obtain the exposed information is that the relationship between the encrypted query
index and the corresponding query objects is designed to be one-to-one in the storage struc-
ture. Therefore, to prevent the third party from implementing the inference attack based
on the above one-to-one correspondence, our scheme designs the one-to-n lookup table
as the storage structure of the outsourced data to disturb the corresponding relationship
between the encrypted query index and the corresponding query objects. For example,
Table 3 shows the improved storage structure with the one-to-two correspondence (i.e.,
the one-to-two lookup table). By using this storage structure, the relationship between
the encrypted query index (i.e., pr fk(w)) and the corresponding query objects (e.g., VOw)
stored in the fog node can achieve the goal of one-to-two. Note that each fog node only
owns the encrypted outsourced data within its Voronoi cell (i.e., the LBSP outsources the
lookup table T(g) that contains the ciphertext data to the corresponding fog node). In the
lookup Table 3, a and b are two random numbers, where 1 ≤ a ≤ θ and 1 ≤ b ≤ s. If
i + a > θ, then i + a = (i + a) mod θ. If i + b > s, then i + b = (i + b) mod s. Moreover,
ID is the identifier set of data items and each id indicates the identifier of a data item.
c(Λ) is the encrypted set of the number of genuine description files and each c(λw∈W)
denotes the encrypted number of genuine description files corresponding to the set of
encrypted description files (i.e.,c(ds)w∈W), where λw∈W indicates the number of genuine
description files and it is obtained by encrypting the genuine number with AES. Based on
the improved storage structure, the next subsection will show how to remedy the proposed
problems with our scheme.

Table 3. Improved storage structure with one-to-two correspondence.

T(G) ID pr fk(W) C(DS)w∈W C(Λ) VOG VOW

T(g1)

id1 pr fk(w1), pr fk(w(1+a)) c(ds)w1 , c(ds)w(1+a) c(λw1 ), c(λw(1+a) ) VOg1 , VOg(1+b) VOw1 , VOw(1+a)

id2 pr fk(w2), pr fk(w(2+a)) c(ds)w2 , c(ds)w(2+a) c(λw2 ), c(λw(2+a) ) VOg1 , VOg(1+b) VOw2 , VOw(2+a)

· · ·
idθ pr fk(wθ), pr fk(w(θ+a)) c(ds)wθ , c(ds)w(θ+a) c(λwθ ), c(λw(θ+a) ) VOg1 , VOg(1+b) VOwθ , VOw(θ+a)

T(g2)

id1 pr fk(w1), pr fk(w(1+a)) c(ds)w1 , c(ds)w(1+a) c(λw1 ), c(λw(1+a) ) VOg2 , VOg(2+b) VOw1 , VOw(1+a)

id2 pr fk(w2), pr fk(w(2+a)) c(ds)w2 , c(ds)w(2+a) c(λw2 ), c(λw(2+a) ) VOg2 , VOg(2+b) VOw2 , VOw(2+a)

· · ·
idθ pr fk(wθ), pr fk(w(θ+a)) c(ds)wθ , c(ds)w(θ+a) c(λwθ ), c(λw(θ+a) ) VOg2 , VOg(2+b) VOwθ , VOw(θ+a)

· · ·

T(gs)

id1 pr fk(w1), pr fk(w(1+a)) c(ds)w1 , c(ds)w(1+a) c(λw1 ), c(λw(1+a) ) VOgs , VOg(s+b) VOw1 , VOw(1+a)

id2 pr fk(w2), pr fk(w(2+a)) c(ds)w2 , c(ds)w(2+a) c(λw2 ), c(λw(2+a) ) VOgs , VOg(s+b) VOw2 , VOw(2+a)

· · ·
idθ pr fk(wθ), pr fk(w(θ+a)) c(ds)wθ , c(ds)w(θ+a) c(λwθ ), c(λw(θ+a) ) VOgs , VOg(s+b) VOwθ , VOw(θ+a)
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4.3. Data Retrieval Process

Since the process of the user registration in the LBSP is not the focal point of our scheme,
we explain the data retrieval process based on the registered user who has obtained the key
k of the pseudo-random function, the key kAES of AES, the set of l hash functions H from
the LBSP, and a hash function hv that used to verify the consistency of the query result in
the registration process. When an authenticated user wants to request a query service, s/he
could specify a query region by the client-side installed on his/her mobile device (e.g., an
app) and send the query region to the LBSP. Subsequently, the LBSP sends the identifier set
of fog nodes contained in the query region and a guide set that is used to fix the proposed
problems, such as preventing the fog nodes from obtaining accurate statistical information
about the frequency of the encrypted outsourced data. Upon receiving the identifiers of
fog nodes and the guide set, the user begins to communicate with the corresponding fog
nodes and enjoys the outsourced data retrieval service. Herein, since the interaction process
between the user side and the fog side is the same, we focus on explaining the interaction
process between one user and one fog node go. In what follows, we first introduce how the
LBSP designs a guide set based on the one-to-n lookup table and then shows how the user
uses the guide set to request the encrypted outsourced data.

4.3.1. Design of Guide Set

Based on the one-to-n lookup table, the LBSP can set a guide set in the form of
F = { fd|1 ≤ d ≤ n}, where n is the redundancy of the one-to-n lookup table. Specifically,
a guide set F consists of a series of binary digits and each element fd is a binary number.
Herein, note that there is only one binary ’number 1’ in each guide set. For example, Table 3
is a one-to-two lookup table, then the guide set can be designed in the form of {1, 0} or
{0, 1}. Note here that the form of the guide set sent from the LBSP to the user is random, i.e.,
the guide set received by the user may be {1, 0} or {0, 1}.

4.3.2. Query Request Submission

When a user wants to request a query service, the user should submit the query
request in the form of Q = {pr fk(ω), C, E} to the fog node go. In the query request Q,
ω ∈ W indicates a keyword of interest related to a POI type and pr fk(ω) is gained by
encrypting ω with the shared key k of the pseudo-random function. Moreover, C is a
ciphertext set composed of a series of encrypted data in the form of {cd|1 ≤ d ≤ n}, in which
cd represents encrypted data obtained by the public key pk and an element fd in the guide
set F. Specifically, to obtain cd, the user encrypts the fd using the Paillier cryptosystem
under the public key pk = N and a random number rd ∈ Z∗N as follows:

cd = [(1 + N) fd · rN
d modN2] . (5)

Moreover, E represents encrypted data obtained by the public key pk and encrypted
query index pr fk(ω). Specifically, to obtain E, the user encrypts the pr fk(ω) using the
Paillier cryptosystem under the public key pk = N and the set {rd|1 ≤ d ≤ n} as follows:

E = [(1 + N)pr fk(ω) · (
n

∏
d=1

rd)
NmodN2] . (6)

4.3.3. Data Retrieval

Upon receiving the user’s query request Q = {pr fk(ω), E, C}, the fog node go first
scans the column pr fk(W) of the lookup table T(go) and finds the corresponding data items
that contain pr fk(ω). According to the one-to-n lookup table, n data items can be found.
For example, since Table 3 is a one-to-two lookup table, then two data items idi and idy
can be found, where the column pr fk(W) of idi is {pr fk(wi), pr fk(wx)} and the column
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pr fk(W) of idy is {pr fk(wy), pr fk(wi)}, where pr fk(ω) = pr fk(wi). For each found data
item, the fog node performs the computation as follows:

C∗(pr fk(W)) = [
n

∏
d=1

cpr fk(W)
d modN2]

= [(1 + N)∑n
d=1 fd ·pr fk(wd)

· (
n

∏
d=1

rpr fk(wd))NmodN2]

= [(1 + N)1·pr fk(wi) · (
n

∏
d=1

rd)
NmodN2]

= [(1 + N)pr fk(wi) · (
n

∏
d=1

rd)
NmodN2] ,

(7)

where pr fk(wd) ∈ pr fk(W).
Then, the fog node go can find the target data item idt by checking whether C∗(pr fk(W))

is equal to E, i.e., when C∗(pr fk(W)) = E, the corresponding data item is the target data
item idt. After finding the target data item, the fog node go further computes:

C∗(C(DS)w∈W) = [
n

∏
d=1

cC(DS)w∈W
d modN2] , (8)

C∗(C(Λ)) = [
n

∏
d=1

cC(Λ)
d modN2] , (9)

C∗(VOG) = [
n

∏
d=1

cVOG
d modN2] , (10)

C∗(VOW) = [
n

∏
d=1

cVOW
d modN2] . (11)

After completing the above calculations, the fog node go returns C∗(C(DS)w∈W),
C∗(C(Λ)), C∗(VOG), and C∗(VOW) back to the user. Moreover, the fog uses hv sent from
the LBSP to hash C∗(C(DS)w∈W) and sends hgo = hv(C∗(C(DS)w∈W)) to the blockchain.
Upon receiving the returned data, the user can obtain c(ds)ω , c(λω), VOgo , and VOω with
the private key sk and further obtain the available result set dsω and the number of genuine
description files λω with the shared key kAES.

4.4. Data Verification Process

According to the returned data, the correctness, completeness, and consistency of the
query result can be verified by the user.

4.4.1. Correctness Verification

To check the correctness of the fog node go, the user first encrypts go to obtain c(go) by
using AES and further obtains pr fk(c(go)) with k. Then, with the set of l hash functions
H, the user begins to calculate {h1(pr fk(c(go))), . . . , hl(pr fk(c(go)))} and checks the cor-
responding positions in VOgo . According to the above comparison, the user can confirm
whether the returned data are sent by the fog node go. To check the correctness of the
query result c(ds)ω, the user first calculates {h1(pr fk(c)), . . . , hl(pr fk(c))} with the set of l
hash functions H for each encrypted description file c. Then, the user makes a comparison
between {h1(pr fk(c)), . . . , hl(pr fk(c))} and voω . If one of the counters in VOω is 0, this c is
incorrect. The process of correctness verification is shown in Algorithm 2.
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Algorithm 2 Correctness verification.

Input: go, VOgo , k, H, c(ds)ω, VOω

Output: The correctness of go and c(ds)ω

1: Calculate pr fk(c(go));
2: Calculate {h1(pr fk(c(go))), . . . , hl(pr fk(c(go)))} using H;
3: Check all positions h1(pr fk(c(go))), . . . , hl(pr fk(c(go))) in VOgo . If one of them is equal

to 0, go is incorrect;
4: for each c ∈ c(ds)ω do
5: Calculate pr fk(c);
6: Calculate {h1(pr fk(c)), . . . , hl(pr fk(c))} using H;
7: Check all counters {h1(pr fk(c)), . . . , hl(pr fk(c))} in VOω. If one of them is equal to

0, c is incorrect;
8: end for

4.4.2. Completeness Verification

To check the completeness of the query result c(ds)ω , the user first finds out the number
Sumω which indicates the available description files from the available result set dsω . Then,
if Sumω is not equal to the number of genuine description files λω , the query result c(ds)ω

can be directly judged as incomplete. Otherwise, the user finds out the corresponding
available encrypted description files based on dsω. Further, for each available encrypted
description file c ∈ c(ds)ω , the user calculates {h1(pr fk(c)), . . . , hl(pr fk(c))} with the set of
l hash functions H and the corresponding counters voω [h1(pr fk(c))], . . . , voω [hl(pr fk(c))]
in VOω are decreased by 1. Finally, the user can confirm whether the completeness of

the query result c(ds)ω by judging whether Rω is equal to 0, where Rω =
∑m−1

j=0 voω [j]
l . The

process of completeness verification is shown in Algorithm 3.

Algorithm 3 Completeness verification.

Input: λω, VOω, c(ds)ω, dsω

Output: The completeness of c(ds)ω

1: Sumω ← |dsω |
2: if Sumω 6= λω then
3: c(ds)ω is incomplete;
4: else
5: for each available c ∈ c(ds)ω do
6: Calculate pr fk(c);
7: Calculate {h1(pr fk(c)), . . . , hl(pr fk(c))} using H;
8: The corresponding counters {h1(pr fk(c)), . . . , hl(pr fk(c))} in VOω are decreased

by 1;
9: end for

10: Calculate Rω =
∑m−1

j=0 voω [j]
l

11: if Rω 6= 0 then
12: c(ds)ω is incomplete;
13: end if
14: end if

4.4.3. Consistency Verification

To check the consistency of the query result c(ds)ω , the user directly uses the hash func-
tion hv to hash C∗(C(DS)w∈W) sent from the fog node and further sends
hu = hv(C∗(C(DS)w∈W)) to the blockchain for the comparison between hgo and hu. Since
the data stored on the blockchain are obtained based on the consensus mechanisms, such
as PBFT or Raft, if the comparison result shows that the hash value of hgo is equal to the
hash value of hu, the user can confirm that the received query result is consistent with the
query result sent from the fog node go. Moreover, the fog node go cannot repudiate the
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incorrectness and incompleteness of the query result due to network problems. The process
of consistency verification is shown in Algorithm 4.

Algorithm 4 Consistency verification.

Input: hgo , hu, ChainGroup STORAGE
Output: The consistency of c(ds)ω

1: chain← ChainFactory.openChain(STORAGE);
2: table← Chain.EQ(chain, num);
3: list[ ]← table.Entry(time);
4: Store hgo sent from go;
5: Store hu sent from the user;
6: if hgo is equal to hu then
7: The query result is consistent;
8: else
9: May be something wrong with network problems;

10: return
11: end if

Moreover, the scheme divides the cost the LBSP used to pay for the third-party storage
into two parts, one part remains—the original storage cost—and the other part is given by
the user incentivized by verifying the hash value of the data published by the fog node on
the blockchain. The more times fog nodes return data honestly, the more incentive rewards
they receive.

5. Security Analysis

In this section, we provide a comprehensive security analysis of the SEQRVS scheme,
including the semantic security of verification objects and lookup table.

5.1. Security of Verification Objects

The purpose of the scheme containing the fog node verification object and the descrip-
tion file verification object proposed in this paper is the same as [9]; once the verification
objects are constructed, for security’s sake, they reveal nothing about the characteristics
of the fog node or the contents of the description files. That is to say, both the outside
eavesdroppers and the inside data ‘leakers’ can hardly acquire useful information from the
verification objects. To reach such a goal, the proposed scheme focuses on two aspects: the
meaninglessness of the verification objects themselves and the indistinguishability of the
verification objects from each other.

According to Section 4.2, the fog node verification object consists of m bits with binary
numbers and the description file verification objects consist of n counters with natural
numbers. Due to the security of the hash function mapping process (i.e., the secrecy of the
hash function), an attacker cannot obtain information related to the data itself from these
sequences of numbers. Therefore, the verification objects themselves are meaningless. It is
clear to see that guaranteeing the indistinguishability of verification objects means that their
sizes and formats cannot be distinguished. The improved construction process mentioned
in Section 4.2 set the length of the fog node verification object to m and the description file
verification objects to n, solving the size problem. Inserting indistinguishable elements
into the counters of the Bloom filter can further guarantee the indistinguishability of the
inserted elements. In Algorithm 1, we used the pseudo-random function to guarantee the
indistinguishability of the inserted elements.

Before proving the security of the verification objects, the definition of the pseudo-
random function is given first.

Definition 3. For a probabilistic polynomial time distinguisherD with the advantage to distinguish
Fk(x) from a string r of length s, where F : {0, 1}∗ × {0, 1}τ → {0, 1}S is a keyed function,
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x ∈ {0, 1}∗ is a random length string and k ∈ {0, 1}τ and r are chosen uniformly and randomly
from {0, 1}S. This advantage can be defined as

AdvF
D = |Pr[D(r) = 1]− Pr[D(Fk(x)) = 1]|. (12)

Definition 3 means that no polynomial time algorithm can distinguish the output of a
pseudo-random function from the output of a real random function [26]. If F is a pseudo-
random function, then the advantage AdvF

D is negligible under the randomly chosen key k
from {0, 1}τ .

The formal security proof is given as follows.

Theorem 1. If pr f is a pseudo-random function, then the fog node and description file verification
objects are semantically secure and achieve indistinguishability in the random oracle model.

Proof. For (Ĝame1) and (Ĝame2) given in Section 3.3, we define that adversaryA has a non-
negligible advantage ε(ε < 1) to win these two games. In the meantime, a distinguisher D
with a non-negligible advantage to distinguish the output between the pseudo-random
function and the real random function can be constructed by A.

As the function used in Algorithm 1 is pr f , we introduce another algorithm Algorithm 1∗,
which uses a random function rr f : {0, 1}∗ → {0, 1}S to replace the pseudo-random func-
tion pr f . We denote Algorithm 1 as f0 and Algorithm 1∗ as f1. In essence, the pr f and rr f
are modeled as D-accessible random oracles. D emulates the game (Ĝame1) and (Ĝame2)
for A. According to whether adversary A succeeds in the game, D determines whether
x = 0 or x = 1, so that it accepts the algorithm fx, x ∈ {0, 1}. Specifically, if A succeeds,
then D determines x = 0; otherwise, x = 1.

A chooses two keywords w1 and w2 to D. D uses the algorithm fx and chooses a bit
b ∈ {0, 1} randomly. The choice D made influenced whether A can succeed. However, the
chances of b = 0 and b = 1 are uniformly 1

2 . Then D returns VOwb to A. A outputs a bit b
′

and D outputs a guess x
′

for x. As defined above, A has a non-negligible advantage ε to
succeed in games (Ĝame1) and (Ĝame2) (i.e., b

′
= b), we can easily conclude that D also

has a non-negligible advantage ε to determine the guess x
′
= x = 0. This conclusion can

also prove that D can distinguish the output VOwb of f0(wb) (using the pseudo-random
function pr f under the key k) from f1(wb) (using the real random function rr f ) with the
non-negligible advantage ε. Since VOwb contains S× l elements after padding, for each
element c, assume that the advantage thatD distinguishes pr fk(c) from rr f (c) is ε

′
, we have

ε = ∏
S∗l

ε′ ⇒ ε
′
= (S×l)

√
ε (13)

Since ε is non-negligible, the advantage (S×l)
√

ε is also non-negligible. Therefore, if
A wins games (Ĝame1) and (Ĝame2) with a non-negligible advantage ε, then D has the
non-negligible advantage (S×l)

√
ε to distinguish the output between the pseudo-random

function pr f and the real random function rr f , which contradicts Definition 3. So that the
security of verification objects can be proofed.

5.2. Security of Lookup Table

Our scheme also adopts a secure outsourced data storage and query approach by
designing a one-to-n lookup table so that multiple queries to the same POI by different
users or by the same user at different times correspond to different contents of the fog node
storage. By doing so, we completely break the traditional one-to-one storage structure of
the lookup index and lookup content. To ensure the security of the proposed scheme, we
will illustrate the security of the lookup table in the following ways: the security of stored
content in the lookup table, the indistinguishability of individual data items in the lookup
table, the security of the data request process.
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Firstly, the files themselves are secure, because LBSP encrypts the description files
before outsourcing them to the fog node with the keys that attackers cannot achieve.
Secondly, as shown in Table 3, the data items in the lookup table are all composed of
ID, pr fk(W), C(DS)w∈W , C(Λ), VOG, and VOW . Moreover, the data in the data items
are all n-dimension (n = 2 in Table 3), attackers—even the fog node itself—cannot tell the
difference between the different data items. Thirdly, when the same POI is queried, the
description files and verification object returned by the fog node each time will likely be
different data items (i.e., in different positions on the server) and that item will be unique in
that query. As the generation of the guide set is random, the returned data from querying
the same POI will be randomly assigned to multiple data entries in the lookup table, and
the fog side cannot obtain the complete frequency information of the query index through
traditional statistical analysis methods, enabling a secure query process. Moreover, queries
against different POIs may return data from the same data item, which helps to confuse the
one-to-one correspondence between the query index and the returned data.

6. Evaluation

To verify that our proposed query scheme for the description files in LBS is practical
and feasible, we experimentally evaluated the scheme in the following ways.

6.1. Experimental Settings

Because of the large number of description files and the number of queries, we chose
AES as the encryption algorithm for the description files. In addition, we used HMAC-SM3
with 256 bits key to instantiate the pseudo-random hash function pr fk(). For the Hash
function used to validate data on the blockchain, we used SHA-256, the same as Ethereum.

In our experiments, we used Java language to implement all programs. The client-side
was an Inter i7-6700HQ 2.6 GHz computer with 16 GB RAM running Windows 10. The
fog node was simulated by using the Linux CentosOS 7. As for the blockchain, we used
the FISCO BCOS [27] consortium chain as the backbone of the blockchain and the system
environment was also CentOS7. The compiler was the WeBASE IDE and the language was
Solidity 0.4.24 (0.4.24 is upward compatible up to version 0.5).

6.2. Performance of Verification Objects

As a key technique in our query solution, the time to construct the verification objects
greatly affects how well the solution works. Therefore, we first conducted experiments on
the construction time of two types of verification objects.

To evaluate the performances of verification objects, we chose five representative
types of POIs for this experiment: Hotels, Restaurants, Supermarkets, Gas stations, and
Attractions. Table 4 shows the amounts of these POIs in the regions. Moreover, we set
the total inserted times S to 500, which is much more than any number of POIs in our
experiments. The time required to construct the verification objects are shown in Figure 6.
The graph should have consisted of the constructing time of the fog node verification object
and the constructing time of the description file verification object. However, due to the
difference in the construction method of the verification objects (i.e., the difference in the
number of numbers inserted into the verification objects), the construction time of the fog
node verification object was much less than that of the description file verification object
and was negligible in the construction process for both types of verification objects.
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Table 4. The numbers and distribution of the POIs.

Fog Node Hotel Restaurant Supermarket Gas Station Attraction Total

g1 29 41 18 7 5 100

g2 33 32 22 2 11 100

g3 30 38 16 4 12 100

g4 24 38 10 10 18 100

g5 29 36 18 6 11 100

g6 29 31 24 11 5 100

g7 22 43 11 8 16 100

g8 23 42 12 5 18 100

g9 24 41 13 10 12 100

total 243 342 144 63 108 900

Figure 6. Time costs of constructing the verification objects.

The highest bar in the graph represents the construction time corresponding to the
Restaurants, which is positively correlated with the number of POIs in the area; that is, the
more POIs of the same type in the area, the more time it took to construct, which is in line
with the common perception. However, the differences between the different categories
were not very large, especially during the whole process of location-based services. Thus, it
is not a concern for an attacker to infer from the construction time of a verification object
on what it represents.

For the description file verification objects, although the POI numbers were distin-
guishably different, the Restaurant numbers were five times more the Gas station numbers,
and the time cost of Restaurants was only 6.3% (138.17 and 137.30 ms) more than the
Gas stations; hence, not very different. The reason for this result is that the verification
object construction time is mainly determined by the selected pseudo-random function.
Moreover, as shown in Figure 7, we compare our verification object construction scheme
with [9]. It is clear that our construction time is slightly higher, also because the pseudo-
random function chosen is different. Compared to the HMAC-MD5 used in [9], our
pseudo-random function key grew from 128 to 256 bits, addressing the potential security
concerns associated with the use of an insecure cryptographic algorithm in the former, and
the increase in construction time is within acceptable limits.
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Figure 7. The comparison of time costs in constructing verification objects.

The construction time of the verification object affects the efficiency of the outsourced
storage of description files; it is the verification time of the verification object that is critical
for the user. Low latency is an important indicator to verify the feasibility of our solution.
We made experiments on the verification time of the verification object.

Figure 8 shows the time cost increased with the number of data queried in our scheme.
As our solution is similar to the data authenticity verification method in [9], we only
made a comparison of the data completeness verification process. Figure 8 also shows
the difference between our method and [9]. Since our solution stores the true number of
description files corresponding to the verification objects in advance when constructing the
verification object, we have a huge advantage in the data completeness verification process.
As the grey line shows, if the data sent from the third party is incomplete, we can identify
it in a short time and determine the amount of missing data, enabling the description file
query solution to work more efficiently. Compared to the data query scheme in [9], the
other main reason for our scheme, apart from the higher time consumption due to the
introduction of pre-judgment, is a large amount of data we had to pad. The data verification
objects in [9] were all padded to the data verification object corresponding to the keyword
with the most data files, whereas our scheme was padded to T, which is greater than the
maximum value of the former. The increased time cost was solely due to the security of the
verification object. As a result, our verification time was slightly higher than [9], but still
within acceptable limits.

Figure 8. The comparison of time costs of data completeness verifications.
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6.3. Performance of Lookup Table

To better analyze the effectiveness of our proposed scheme, we also needed to further
analyze the lookup table, and the data storage structure in the fog nodes, to ensure that
our scheme was practical and feasible. We conducted experiments on the query time of
the lookup table. With the increase in querying data files, the query time can be seen in
Figure 9.

Figure 9. Query time.

The blue line in Figure 9 represents the one-to-one lookup table method, and the red
and grey lines represent the lookup tables for n = 2 and n = 3, respectively. It can be seen
that the search time increases with the increase of search times. For n = 1, because the
number of data files in the table is only one, the fog node can easily determine the important
priority of data according to the access query times of each data and infer the meaning
of the data representation (and even the encrypted data). At the same time, compared
with n = 2 and n = 3, since the number of searches is determined, once a piece of datum is
found, the search process will end immediately, which leads to a significant decrease in the
average search time. When n = 2, it takes about 46 s to query the description files 200 times
and the average time for each query is 0.23 s, which is within a reasonable limit. It can also
be seen from the graph that the time spent on the look-up table corresponding to n = 3 has
increased by approximately 50% compared to n = 2, but there is no improvement in terms
of functional safety. Therefore, the one-to-two look-up table was ultimately chosen as the
optimal choice.

6.4. Performance of Blockchain Incentive

We also experimented with the incentive benefits obtained by using blockchain in the
fog node as part of the verification process, as shown in Figure 10.

The test results show that—with the increase of query times—if the fog node returns
the description files required by users without error, its incentive income will also increase.
The fog node can reach the service fee as discussed. Our plan is feasible.
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Figure 10. Blockchain incentive.

6.5. Performance of Query Scheme

To verify the feasibility of the whole scheme and to simplify the whole process of
querying description files, we visualized the area responsible for each fog node as a
10 × 10 matrix area, with one POI in each small area. Considering the practical situation,
we designed 3 × 3 of matrix regions, which means that there were 9 fog nodes and
900 different small regions (for simplicity, we specify that each small region has only one
POI attribute). The regions are shown in Figure 11.

10

10

Figure 11. Region area.

We set the range of areas that the user is allowed to query to be a rectangular area
of 5 × 5, locations beyond this range are not considered part of the query result. Since
we used the k-anonymity algorithm to protect the privacy of the querying user, the query
area was expanded accordingly. We set k to 9, which expanded the corresponding query
area to a rectangular range of 7 × 7. The region surrounded by the red line in Figure 11
was the true area of the LBS user, and the region surrounded by the green line was the
expanded area.
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Regarding the size of the verification objects, only when the number of counters was
more than 9585, the false positive was less than 0.01 [9]. So we set the number of counters
in the fog node verification object to 10,000. To verify the impact of the verification and
padding regions of the description file verification objects on the description file query, we
designed two sets of comparison tests, i.e., the verification regions of the counting Bloom
filter of the description file verification objects were designed to be 10,000 and 20,000, and
the padding regions were designed to be 2500 and 5000. As mentioned above, the size of
the fog node verification object was approximately 5 KB (10,000 × 4 bits) and the sizes of
the description file verification objects were approximately 6 to 12 KB (12,500 × 4 bits to
25,000 × 4 bits).

We conducted 100 experiments for each POI type data query, with each query location
randomly selected. The results of the experiments are shown in Figure 12.

(a) Time cost of preparation works. (b) Time cost of one query.

Figure 12. The time of our SEQRVS scheme.

Figure 12a shows the time proportion of the preparation works of our scheme, in-
cluding the construction of verification objects and the storage process. The time is about
1828 ms (100 description files). Figure 12b shows the time proportion of the one query.
For most of them, it involves the incentive time for the fog node to reach the storage
rewards. It takes about 14 s, which was determined by the time the blockchain generated a
block. Indeed, the time the user obtained the required description files after querying and
verifying was only about 307 ms.

From the above experimental results, it can be seen that the average query time for
each description file is within acceptable limits. The experiments show that the scheme
proposed in this paper is practical and feasible.

7. Conclusions

In this paper, we propose a security-enhanced query result verification scheme for
outsourced data in location-based services. We corrected the mistake of the work in [9]
to make the whole description file verification process unobstructed without missing the
advantages of being ’fine-granted’ and secure. We used the one-to-n lookup table to confuse
the corresponding relationship between the query index and the description files. Moreover,
we solved the current problem of fog nodes exploiting vulnerabilities to deny dishonest
behavior and optimize the current cost structure for third-party storage through blockchain
technology. Performance and accuracy experiments demonstrate the validity and efficiency
of our proposed scheme.

However, there are still some defects in our scheme. Compared with the previous
works, our work has a certain improvement in security, but due to the complexity of
using algorithms and technologies, the time consumption has increased slightly (still
within a reasonable range). In addition, this scheme only considers the possible privacy
disclosure caused by the fog node as a third-party storage object, but does not consider that
LBSP may also disclose the user’s private information or analyze user queries to obtain
improper benefits.
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In the future, one research direction will be how to protect the user’s privacy under the
consideration of taking LBSP as a dishonest entity. Moreover, the advantages of blockchain
technology have not been fully brought into play, so another research direction will be to
further use its characteristics to improve the security and feasibility of the scheme.
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