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A seed-expanding method based 
on random walks for community 
detection in networks with 
ambiguous community structures
Yansen Su, Bangju Wang & Xingyi Zhang

Community detection has received a great deal of attention, since it could help to reveal the useful 

information hidden in complex networks. Although most previous modularity-based and local 

modularity-based community detection algorithms could detect strong communities, they may 

fail to exactly detect several weak communities. In this work, we define a network with clear or 
ambiguous community structures based on the types of its communities. A seed-expanding method 

based on random walks is proposed to detect communities for networks, especially for the networks 

with ambiguous community structures. We identify local maximum degree nodes, and detect 

seed communities in a network. Then, the probability of a node belonging to each community is 

calculated based on the total probability model and random walks, and each community is expanded 

by repeatedly adding the node which is most likely to belong to it. Finally, we use the community 

optimization method to ensure that each node is in a community. Experimental results on both 

computer-generated and real-world networks demonstrate that the quality of the communities 

detected by the proposed algorithm is superior to the- state-of-the-art algorithms in the networks with 

ambiguous community structures.

Extensive researches on real-world networks show that community structure is an important property1,2. �e 
nodes of the same community may be the individuals with certain relationships in social networks, the genes 
or proteins with the similar function and the web pages dealing with the same topic3,4. �erefore, it is helpful to 
reveal community structures to understand the structures of networks and detect potentially useful information 
of networks.

Communities can be loosely de�ned as the subsets of nodes which are more densely linked than the rest of 
the network. In this sense, modularity and local modularity were proposed as indices of community structure1,5. 
�ere are also two community de�nitions (i.e., the strong and weak community de�nitions) based on the topol-
ogy of networks, where the strong community is the community in which each node has more connections than 
in each rest community and the weak community is the community in which the sum of all degrees is larger than 
the sum of all degrees in each rest community6,7. In this article, following the strong and weak community de�-
nitions, we de�ne that a network has a clear or ambiguous community structure as follows. If the communities 
in a network are all strong communities, then the network has a clear community structure; otherwise, if some 
communities in a network are weak communities, then the network has an ambiguous community structure.

Many e�orts have focused on detecting community structures in complex networks8–14. Popular algorithms 
include modularity-based algorithms (e.g. Girvan-Newman algorithm (GN)8, fast Newman algorithm (FN)9 and 
Fast unfolding algorithm (FUA)13) and local modularity-based algorithms (e.g. local maximum degree algorithm 
(LMDR)14). Most of the modularity-based and local modularity-based community detection algorithms could 
exactly detect communities in several networks, especially for the networks with clear community structures15–17. 
However, these algorithms still su�er from some limitations, which may prevent them to achieve satisfactory 
performance on the network with ambiguous community structures. For instance, the modularity-based meas-
urement may fail to identify the modules which are smaller than the scale which depends on the total number 
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of edges and on the degree of interconnectedness of the modules7. LMDR is a greedy maximum algorithm 
which starts from a local degree central node whose degree is greater than or equal to the degree of its neighbor 
nodes, and then iteratively adds the nodes yielding the largest increase of the local modularity until the com-
munity reached a prede�ned size. However, some weak communities may fail to be detected by LMDR. �e 
modularity-based and local modularity-based algorithms mainly maximize the modularity and local modularity, 
which only compare the inner edges of a community with the edges between the community and the rest part 
of the network. �us, it is hard to exactly detect some weak communities by the modularity-based and local 
modularity-based algorithms.

Besides the community detection methods mentioned above, researches explore several random walks-based 
methods for community detection (e.g., a seed set expansion algorithm18 and an algorithm for �nding and 
extracting a community (FEC)19), since the random walks-based techniques have a good ability to deal with 
uncertainty or fuzziness. Previous researches show that the communities identi�ed by random walks-based algo-
rithms are structurally close to real-world communities20. Speci�cally, the basic idea of FEC algorithm is that a 
random walker is more likely to reach the nodes in its own community, when compared to other communities19. 
Following the basic idea, the algorithm checks whether a node should be added into the community by com-
paring the probability of this node in the community with the one of the node in each of the rest communities. 
It is likely to identify the communities, in which each node has more connections than in each rest community. 
However, FEC is unstable, as the algorithm starts with an arbitrary destination node; the performance of FEC 
needs to be enhanced in networks, as it is hard to accurately detect weak communities.

Here, inspired by the basic idea of FEC algorithm, we propose a random walks-based algorithm named RWA 
to detect communities for complex networks, especially for the networks with ambiguous community structures. 
�e overall framework of RWA is selecting the dense subgraphs which contain important nodes in a network, and 
expanding these dense subgraphs based on random walks. Speci�cally, (1) the seed communities are detected 
based on the nodes whose degree is greater than or equal to the degree of its neighbor nodes; (2) the seed com-
munities are expanded using random walks; (3) the expanded communities are adjusted to ensure each node 
in a network is in a community. A di�erence between FEC and RWA is that, a seed in FEC is an arbitrary node 
which leads to the instability of detection results, while a seed in RWA is a dense subgraph which could avoid the 
instability of detection results. �e performance of RWA is tested on both computer-generated and real-world 
networks. Experimental results demonstrate that the quality of the communities detected by RWA is superior to 
those detected by comparative algorithms, especially in the networks which have ambiguous community struc-
tures. RWA may be helpful to understand the real-world networks, most of which have ambiguous community 
structures.

Results
�is section presents the comparative results of the proposed algorithm and the traditional algorithms in the 
experiments preformed on both computer-generated and real-world networks.

Computer-generated and real-world networks. The first kind of computer-generated networks 
employed in the experiments are the GN benchmark networks, proposed by Girvan and Newman8. �is network 
is constructed as follows: 128 nodes are randomly and equally divided into four communities; edges are randomly 
placed between node pairs to make the average degree of the graph equal to 16. Each pair of nodes in the same 
community has an edge with probability Pin. Here, Pin is a parameter of networks generated. Generally speaking, 
when Pin <  0.40, it is unable to detect community structures. When the value of Pin becomes larger, the commu-
nity can be more easily detected. In our experiments, 0.40 ≤  Pin ≤  0.90. For each ∈ . . .P {0 40, 0 45, , 0 90}in , 100 
networks are generated. According to the parameter Pin, the computer-generated networks could be classi�ed into 
two classes. When 0.80 ≤  Pin ≤  0.90, all of the communities in the networks are strong communities 
(p-value =  0.05). �ese networks have clear community structures. When 0.40 ≤  Pin <  0.80, some of the prede-
�ned communities are not strong communities, but they are weak communities. In this situation, the networks 
have ambiguous community structures.

Another set of computer-generated networks is the LFR benchmark networks21. Compared with the GN 
benchmark networks, the LFR benchmark networks have more adjustable parameters, which control the number 
of nodes generated, the average degree of nodes and the size of communities generated. �e LFR benchmark net-
works mainly include the following parameters: N is the number of nodes in networks; d is the average degree of 
nodes in network; Maxd is the biggest degree of node; Minc is the number of nodes that the smallest community 
contains; Maxc is the number of nodes that the biggest community contains; and µ is the probability of nodes 
connected with nodes of external community. �e bigger µ is, the more di�cult the community detection is. 
When u ≥  0.3, the networks have ambiguous community structures (p-value <  0.05). We produce two groups 
of the LFR benchmark networks. �ese two groups share these parameters d =  10, Maxd =  50, Minc =  10 and 
Maxc =  20. �e numbers of nodes in these two groups of networks are set to N =  200 and N =  300, respectively. 
�e value of µ in each group is set from 0.1 to 0.6, with the interval 0.1.

We also employ four real-world networks in the experiments. �e four real-world networks are the Zachary’s 
Karate Club network (Karate network, for short)22, the Bottlenose Dolphins network (Dolphins network, for 
short)23, the Books about US politics network (Polbooks network, for short)24 and the American College Football 
network (Football network, for short)8, respectively. Each real-world network employed in our work has at 
least one weak community (see Table 1). �us, all of the four real-world networks have ambiguous community 
structures.
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Comparison and evaluation. Comparison with other algorithms. We verify the performance of the pro-
posed algorithm (RWA) by comparing it with �ve representative algorithms (GN, FN, FUA, FEC and LMDR) on 
both computer-generated networks and four real-world networks.

(1) We apply our algorithm and other �ve algorithms (GN, FN, FUA, FEC and LMDR) to the GN benchmark 
networks with 128 nodes and four predetermined communities ∈ . . .Pin( {0 4, 0 45, , 0 9}). �e comparative 
results on computer-generated networks are given in Fig. 1, with both the mean of the normalized mutual 
information (NMI) values and the mean of the F-measure (F1) values averaged over 30 independent runs for 
RWA and other �ve representative algorithms.
As can been seen from Fig. 1(a), when the networks have clear community structures (i.e., Pin ≥  0.80), all 
algorithms except FEC and LMDR can get the nearly true partition results (NMI value is nearly 1.0). In this 
situation, RWA performs very similar to the comparative algorithms (GN, FN and FUA). However, RWA gen-
erates the best detection results when the networks have ambiguous community structures (0.40 ≤  Pin <  0.80), 
and the results obtained through our algorithm remain relatively stable. When the networks have clear com-
munity structures (i.e., Pin ≥  0.80), the F1 value obtained through RWA is no less than those obtained by 
other �ve comparative algorithms. In details, the F1 values of RWA and four comparative algorithms (GN, 
FN and FUA) are almost 1.0 when Pin ≥  0.80. �at is, the proposed algorithm and four of the �ve comparative 
algorithms could get the nearly true partition results. In contrast, both LMDR and FEC produce the F1 values 
which are less than 0.90. When the networks have ambiguous community structures (i.e., 0.40 ≤  Pin <  0.80), 
the values of F1 obtained by RWA are not the largest, and RWA performs slightly less well than some of the 
comparative algorithms (e.g. LMDR) for few detection problems (i.e., Pin =  0.40). However, the detection 
results shows that RWA has the best performance. When two evaluation measures (NMI and F1) are con-
sidered together, although the F1 value of RWA is smaller than that of LMDR for few detection problems, 
the performance of RWA is still better than LMDR. Actually, when 0.40 ≤  Pin ≤  0.55, it can be seen that the 
F1 values of LMDR are lager than some comparative algorithms, and the NMI values of LMDR are equal to 
zero in networks. �at is because in these situations, all nodes in the network fall into a community, which 
is far from the true partition. Besides, the F1 values obtained through RWA decline relatively stable, and our 
algorithm obtains the best results when 0.4 ≤  Pin <  0.80. We can conclude from Fig. 1 that RWA performs the 
best among the comparative algorithms on the GN benchmark networks, especially when the networks have 
ambiguous community structures.

Karate Dolphins Polbooks Football

strong 0 1 1 8

weak 2 1 2 4

Table 1.  �e number of strong and weak communities in real-world networks. ‘Karate’, ‘Dolphins’, 
‘Polbooks’ and ‘Football’ represent the Zachary’s Karate Club network, the Bottlenose Dolphins network, the 
Books about US politics network and the American College Football network, respectively.

Figure 1. �e comparative results on the GN benchmark networks. Each point is the mean of NMI and F1 
values averaged over 30 independent runs. Error bars show the standard deviations estimated from 30 networks.
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(2) In our work, the performance of RWA is also compared with other �ve algorithms on two groups of the LFR 
benchmark networks. Figure 2 shows the average results over 30 runs on LFR benchmark networks. It can 
be seen form Fig. 2(a,c) that, when the value of µ is smaller than or equal to 0.2, the NMI obtained by RWA 
is larger than 0.9, but it is less well than LMDR. It suggests that although RWA gets the nearly true partition 
results, its performance is not the best. As µ increases, the NMI obtained by RWA remains relatively stable 
and RWA obtains the best results when µ is greater than or equal to 0.3. Similarly, RWA generates the largest 
and stablest value of F1 when µ is larger than or equal to 0.3 (see Fig. 2(b,d)). �e value of NMI obtained by 
RWA is a slightly larger than that obtained by FN. However, compared with FN, RWA generates much larger 
value of F1. It is concluded that the performance of RWA is superior to the comparative algorithm on the LFR 
benchmark networks.

(3) All algorithms run 30 times on the four real-world networks, and the average NMI values and the average 
F1 values are shown in Fig. 3. As can be seen from Fig. 3(a), RWA generates signi�cantly better results than 
the comparative algorithms. Speci�cally, RWA can achieve the largest NMI values on the four real-world net-
works (p_value <  0.05). Similarly, as can be seen from Fig. 3(b), the average F1 values obtained by RWA are 
also larger than the comparative algorithms on the four real-world networks (p_value <  0.05). �erefore, the 
proposed algorithm achieves the best detection results when tested on the four benchmark networks.

�e communities in a real-world network could be divided into two classes: strong and weak communities. 
For each class, we count the number of times that each algorithm shows the best performance. As we can see from 
Table 2, one of the comparative algorithms shows better performance than the proposed algorithm in ≤ 60% of 
all strong communities and ≤ 22.22% of all weak communities. However, in 60% of all strong communities and 
77.78% of all weak communities, RWA shows the best performance. �at is, RWA surpasses previously proposed 
algorithms in most cases. We can conclude that RWA performs better than the comparative algorithms in both 
strong and weak communities, particularly in weak communities.

Selection of the parameter Z. In the proposed algorithm, a seed community is used as a seed by extending it 
to a larger community. �e nodes of the seed community should be connected as densely as possible. To this 
end, we choose a complete subgraph as a seed community. Due to the fact that a complete subgraph with one 
node or two nodes is meaningless, we only consider complete subgraphs consisting of three or more nodes in 

Figure 2. �e comparative results on the LFR benchmark networks. Each point is the mean of NMI and F1 
values averaged over 30 independent runs. Error bars show the standard deviations estimated from 30 networks.
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this work. Let Z be the number of nodes in a seed community. In the following, we investigate the in�uence of 
Z ≥  3 on the performance of RWA in our work.

We do experiments on computer-generated and real-word networks. �e results of NMI values and F1 values 
for different settings of Z ∈ Z( {3, 4, , 9}) on computer-generated networks ∈ . . .P( {0 4, 0 5, , 0 9})in  are 
shown in Fig. 4(a,b), averaging over 30 independent runs. According to Fig. 4(a), if Pin is either 0.6 or 0.7, then the 
value of NMI is the largest when Z is 3, and it is little larger than those when Z ∈  {4, 5, 6, 7, 8, 9}; if Pin ∈  {0.4, 0.5, 
0.8, 0.9}, the values of NMI are the same, regardless of what Z is. Similarly, if Pin is either 0.6 or 0.7, when Z is 3, 
our algorithm produces the largest F1; otherwise, the value of F1 is unrelated with Z. �us, the values of NMI and 
F1 have low sensitivity of Z when the experiments are tested on computer-generated networks. Figure 4(c,d) show 
the results of NMI values and F1 values for di�erent settings of Z ∈ Z( {3, 4, , 9}) on four real-word networks. 
We can see that, on Dolphin network, the values of NMI (F1) are the same, regardless of what Z is; and on Karate, 
Polbooks, and Football networks, the best performance has been achieved when Z is 3.

Sensitivity analysis of this parameter shown in Fig. 4 has indicated that complete subgraphs with three nodes 
can achieve the best performance of the proposed algorithm. To obtain the best performance of RWA, Z can be 
set to 3.

Discussion
In this paper, we have proposed the algorithm RWA to detect community structure in a network, especially for 
the network with ambiguous community structure. In order to avoid the instability of detection results, seed 
communities were detected based on local maximal degree nodes, which have relatively high degree compared 
with their neighbors. In addition, the seed communities were expanded through random walks by adding nodes 
step by step.

We have test the performance of the proposed algorithm, and compared it with other representative algo-
rithms on both computer-generated and real-world networks. (1) �e experimental results have demonstrated 
the superior performance of RWA over the comparative algorithms (GN, FN, FUA, FEC and LMDR) in terms of 
NMI and F1 for detecting communities. An interesting observation was that the proposed algorithm surpassed 
�ve previously proposed algorithms in detecting weak communities in real-world networks. It is concluded that 
the performance of RWA showed more advantages in the networks which have ambiguous community structures, 

Figure 3. �e comparative results on real-world networks. ‘kar’, ‘dol’, ‘pol’ and ‘foo’ represent the Zachary’s 
Karate Club network, the Bottlenose Dolphins network, the Books about US politics network and the American 
College Football network, respectively.

Karate Dolphins Polbooks Football Total

s(0) w(2) s(1) w(1) s(1) w(2) s(8) w(4) s(10) w(9)

GN 0 0 0 1 0 0 1 0 10% 11.11%

FN 0 0 0 0 0 0 1 0 10% 0

FUA 0 2 0 0 0 0 0 0 0 22.22%

FEC 0 0 0 0 0 0 3 2 30% 22.22%

LMDR 0 0 1 0 0 0 5 1 60% 11.11%

RWA 0 2 1 1 1 1 5 3 60% 77.78%

Table 2.  �e performance in strong and weak communities of real-world networks. ‘Karate’, ‘Dolphins’, 
‘Polbooks’ and ‘Football’ represent the Zachary’s Karate Club network, the Bottlenose Dolphins network, the 
Books about US politics network and the American College Football network, respectively. ‘s(*)’ represents the 
number of strong communities is ‘*’ in a speci�c network. ‘w(**)’ represents the number of strong communities 
is ‘**’. ‘Total s(10)’ means the total number of strong communities in four real-world networks is 10, and ‘Total 
w(9)’ means the total number of weak communities in four real-world networks is 9.
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when compared with the comparative algorithms. (2) An initial community is a dense subgraph with Z nodes. 
�e experimental results have demonstrated that the proposed algorithm showed good performance with low 
sensitivity of Z. Furthermore, if Z is equal to three, then the proposed algorithm gained the best results. �erefore, 
we adopt Z =  3 in our work. In total, the experimental results have showed the e�ectiveness and robustness of the 
proposed algorithm. �ese experimental results con�rmed that the proposed algorithm might be more suitable 
for the community detection of the complex networks with ambiguous community structures.

In future research, we will focus on the detection problem in networks with larger scale, such as networks 
with hundreds of thousands, or even millions nodes. We will extend the algorithm to detect overlap communi-
ties. In addition, we will improve the detection accuracy, so that the algorithm can detect community structures 
e�ciently.

Methods
�e proposed algorithm (RWA) aims to select the dense subgraphs which contain important nodes in the net-
work, and expand these dense subgraphs based on random walks. �e overall framework of the proposed algo-
rithm (RWA) contains the following three steps: (1) A procedure is proposed to detect seed communities based on 
local maximal degree nodes. �ese local maximal degree nodes have relatively high degree compared with their 
neighbors and locate dispersedly in the network, which could be considered as a local hub of a community14. (2) 
A strategy is applied to expand seed communities using random walks. In the expansion process, we calculate the 
probability of a node in a community based on random walks, and then add the node to the community which 
it most likely belongs to. A community may have more than one seed community, so that the expanded commu-
nities which have a large number of common nodes are deserved to be merged. (3) �e expanded communities 
are adjusted to ensure each node in a network is in a community. In what follows, we introduce the details about 
RWA.

Detecting seed communities. �e basic idea of seed-based community detection algorithms includes the 
identi�cation of the seeds, which are special nodes in networks25. From a topological point of view, a single seed 
may be a set of nodes which are not necessarily connected18,26, or a set of nodes which are closely connected27. 
For instance, the seed is proposed to be random nodes in a network28. However, it does not use the topological 
information of the real-world networks. Generally speaking, the nodes which suit to constitute a seed are always 
the important nodes in a network. �e seed has been proposed to be composed of the top k highest degree 

Figure 4. Sensitivity of Z. Each point is the mean of NMI and F1 values averaged over 30 independent runs 
and error bars show the standard deviations estimated from 30 networks.
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nodes, which playing the role of leaders in the network (i.e., the nodes whose removal from the network implies 
community collapse)18,26. Besides, the local hubs, such as the nodes with local maximal degree in a network, are 
selected as seeds29,30. �e seed is also proposed to be a core set, in which the nodes are densely connected based 
on structural similarity27.

Here, a seed community includes the important node which is most likely in a community, as well as the nodes 
and edges which are closely connected with the important node. �us, a single seed is no longer a set of nodes, 
and it is a dense subgraph in a network. In what follows, the important nodes in a network are identi�ed �rst, and 
then the dense subgraphs are detected.

A local maximal degree node is de�ned as a node which has a larger number of edges compared with its neigh-
bors in a network14. Here, we identify local maximal degree nodes from all nodes in a complex network. �e way 
to discover local maximal degree nodes from a given starting node was referred in a pervious work14.

We detect the dense subgraphs based on the local hub set, which is a union of all local maximal degree nodes 
in a complex network. For the node (node1) in the local hub set, we detect its local maximal degree nodes. �e 
node (node1) and one of its local maximal degree node (node2) may have a common neighbor node (node3). A 
dense subgraph with three nodes is comprised by the nodes node1, node2 and node3, together with the edges 
among them. In this way, a dense subgraph with more than three nodes may also be detected. We analyze the 
in�uence of the number of nodes in a seed community on the performance of the proposed algorithm. Here we 
choose the dense subgraph with three nodes to be a seed community.

Expanding seed communities. Let = = Y Y k q{ 1, , }k  be the set of all communities, where Yk =   
(Vk, Ek) is the kth community, Vk is the set of nodes in the kth community, Ek is the set of edges in the kth commu-
nity and q is the number of communities. Particularly, in the initial situation, = Y k q( 1, , )k  is a seed 
community.

Let the walker start from a node u which does not belong to any communities. �e total probability theorem 
and conditional probability model are used to calculate the probabilities of the walker teleporting from the node 
u to each community (i.e. → = p u Y k q( )( 1, , )k ). A community is expanded by iteratively adding the nodes 
which has the largest probability to reach the community. �ere are q communities, so we perform q runs of ran-
dom walks to calculate p(u →  Yk).

At the kth run of random walks, it is supposed that u belongs to the kth community. �e graph of the kth random 
walk process is:

= ′ ′G V E( , ), (1)k k k

where ∪ ∪=
′

=
V V u( ) { }k t

q
t1 , ∪ ∪= ∈ ≤ ≤

′
=E E u v v V k q( ) {( , ) , 1 }k t

q
t i i k1 .

First, we calculate the probability of the walker teleporting from u to the node ∪∈ =
v Vi t

q
t1  in the graph Gk, 

which is denoted as p(u →  vi|u ∈  Gk). From the time t to the time t +  1, the walker has a teleporting probability α 
to jump, as well as a probability 1 −  α to stay. Usually, the teleporting probability α is 0.1531. When the walker 
jumps, it may jump to a node with a transition probability. Suppose that the transition probability for the walker 
jumping from u to each node in ∪ = Vt

q
t1  is the same, then the transition probability vector is 

= ⋅ ⋅ ⋅( )d , , ,
m m m

T1 1 1 , where m is the number of nodes in the node-set ∪ = Vt
q

t1  and d is a m ×  1 vector. When 

the walker stays, it may reach a node on the basis of the similarity between nodes (See the ‘Calculation of similar-
ity’ subsection for the way to calculate the similarity between nodes). Let the matrix M with dimension of m ×  m 
denote the normalization of similarity between nodes in V. Suppose the probability of the walker teleporting from 
u to vi is st(i) at the time t. At the time t +  1, the probability vector st+1 is calculated as follows.

α α= − ⋅ ⋅ + ⋅
−

s M s d(1 ) , (2)t
T

t 1

where MT is the transpose of the matrix M, and t ≥  1. Particularly, in the initial situation, the probability of u 
teleporting to vi is proportional to the similarity between u and vi (See the ‘Calculation of similarity’ subsection). 
Here, s0(i) is the normalization of the similarity between u and vi.

Iterate the Eq. (2) until s is convergent. Suppose the distribution vector is π =  (π1, … , πm), then π satis�es 
π =  (1 −  α) · MT · π +  α · d. In this situation, π is the stationary distribution, where the ith entry captures the condi-
tional probability that the walker teleports from the node u to the node vi when u belongs to the kth community.

Next, the walker has an average conditional probability p(u →  Yj|u ∈  Gk) to teleport from the node u to a 
community Yj when u belongs to the kth community. Speci�cally, p(u →  Yj|u ∈  Gk) is the average value of the 
conditional probabilities.

→ | ∈ = → | ∈ | ∈p u Y u G avg p u v u G v V( ) ({ ( ) }), (3)j k i k i j

where p(u →  vi|u ∈  Gk) =  πi and avg(x) means the average value of the elements in the set x.
Finally, the average probability that the node u belongs to the kth community is calculated as:

∈ = |∀ ∈ ′p u G avg Similar u v v V( ) ({ ( , ) }), (4)k i i k

where Similar(u, vi) is the similarity between nodes u and vi ∈  Vk′ (See the ‘Calculation of similarity’ subsection for 
the calculation of Similar(u, vi)) and avg(x) means the average value of the elements in set x.

According to Eq. (3) and Eq. (4), the probability of the walker teleporting from u to Yj, denoted as p(u →  Yj) 
is calculated as Eq. (5).
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∑→ = → | ∈ × ∈ .
=

p u Y p u Y u G p u G( ) [ ( ) ( )]
(5)

j
k

q

j k k
1

�e algorithm to calculate the probability of a node belonging to each community is described in Table 3. A 
community is expanded by iteratively adding the node which is the most likely to belong to the community.

Community optimization. Each node in a connected network should be involved into a community, but 
several nodes with very low degree may still be not included in any communities. In other words, the node which 
is not added into a communities always has small number of neighbors. Given the node u which is not added 
into any communities and the community Yk, denoting by T(u, Yk) that the tightness between the node u and the 
community Yk(1 ≤  k ≤  q), we have

=T u Y
num

num
( , ) ,

(6)
k

1

2

where num1 denotes the number of nodes which have connections with the node u in the community Yk, and 
num2 is the number of nodes in the community Yk. �e node is added to the community which has the largest 
tightness with it.

Two or more of the expanded communities may have a large number of common nodes. �e communities 
which are expanded from di�erent communities may be identical or similar, in which case the expanded com-
munities should be merged into one community. If two communities Ci and Cj satisfy the following formula, then 
they can be merged into a larger community C.

∩
ξ

| |

| | | |
>

C C

min C C( , )
,

(7)

i j

i j

where ξ is a threshold. Let ξ =  0.5, meaning that most members of the small community are in the large commu-
nity, the two communities can be merged into one.

Time complexity. In this section, we analyze the time complexity of the proposed algorithm. �e time 
complexity is O(dN) to �nd local maximum degree nodes in a network, where N is the number of nodes in 
the network and d is the average degree of nodes. At the stage of detecting seed communities, the time used 
to detect seed communities based on local maximum degree nodes is O(dp), where p is the number of local 
maximum degree nodes. At most, there are p seed communities. At the stage of expanding communities, it 
needs to calculate the probability that a node teleports to each node in communities based on an iterative 
formula. It takes a time complexity of O(logm) in each iteration as stated in ref. 32, where m is the number 
of nodes in the communities. �e worst-case complexity is O(logN). �e time complexity of the stage a�er p 
iterations is O(plogN). At the stage of community optimization, a small number of nodes which are not in any 
communities needs to be added to a community based on the tightness. �e time complexity is O(ph) to calcu-
late the tightness between a node and a community, where h represents the number of nodes which are not in 
any communities. �erefore, the time complexity of the entire algorithm is O((d +  p)N), since O(dp) =  O(dN), 
O(ph) =  O(pN) and O(plogN) <  O(pN).

Calculation of similarity. We calculate the similarity between the nodes vi ∈  V and vj ∈  V (1 ≤  i, j ≤  m) as 
follows33.

∩

∪
=
|Γ Γ |

|Γ | |Γ |
Similar v v( , ) ,

(8)
i j

v v

v v

i j

i j

Input
Node-set V = {v1, …, vm}, a node u and the set of communities Y = {Y1, …, Yq},
where vi represent the node included in a community, and q is the number of communities.

Output �e probability vector for the node u in each community P(u → Y) = (p(u → Y1), …, p(u → Yq))

Step 1
Initialize an array PC with dimension of m ×  q (Save the conditional probability that the walker 
teleports from the node u to the node vi when the node u belongs to the kth community); Initialize an 
array PP with dimension of q ×  1 (Save the probability for the node u in the community Gk).

Step 2 For k =  1 to q do

Step 3 Construct the graph Gk;

Step 4 Calculate the matrix M and the initial vector s0;

Step 5 Iterate the Eq. (2) until s is convergent, and the probability vector π =  (π1, … , πm) is s;

Step 6 Calculate p(u →  Yi|u ∈  Gk) = i q( 1, , ), and then PC(k, i) =  p(u →  Yi|u ∈  Gk);

Step 7 Calculate p(u ∈  Gk), and then PP(k) =  p(u ∈  Gk);

Step 8 End For

Step 9 Normalize PC and PP; Calculate p(u →  Yi): p(u →  Yi) =  PC ×  PP;

Step 10 Return P(u →  Y) =  (p(u →  Y1), … , p(u →  Yq)).

Table 3.  �e algorithm to calculate the probability of a node belonging to each community.
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where Γvi
 Γ( )v j

 is the neighborhood of vi (vj) in a network, and |x| indicates the cardinality (i.e., number of ele-

ments in) the set x.
In our work, the similarity between nodes is used to calculate the matrix M and the initial probability vector 

s0. �e similarity between nodes is normalized to obtain the matrix M, i.e., =
∑

M i j( , )
Similar v v

Similar v v

( , )

( , )

i j

v j i j

. Let vj =  u in 

Eq. (8). �e similarity between nodes u and vi ∈  V (1 ≤  i ≤  m) is calculated, and it is denoted as Similar(vi, u) 
(Similar(vi) for short). The initial probability vector s0 is the normalization of vector Similar(vi) (i.e., 

=
∑

s i( )
Similar v

Similar v0
( )

( )
i

vi i

).

Evaluation measures. For networks whose true partitions are known, Normalized Mutual Information 
(NMI)34 and the F-measure (F1)14 are widely used indexes for measuring the performance of community detec-
tion algorithms1,35,36. Both of them re�ect the detection results from di�erent points of view. �us, both NMI and 
F1 are employed here as indexes to test the detection results.

NMI is de�ned as follows:

=

− ∑ ∑










∑ + ∑. .

. .

. .( )( )
NMI P P

X

X X

( , )

2 log

log log
,

(9)

R F

i j ij

X N

X X

i i
X

N j j

X

N

ij

i j

i j

where N is the number of nodes, X is a 2 ×  2 matrix with Xij being the number of nodes from the real community 
i that also belong to the found community j, X.j =  X1j +  X2j, and Xi. =  Xi1 +  Xi2. If the partitioning result PF is the 
same as PR, then NMI(PR, PF) =  1; if they are completely opposite, then NMI(PR, PF) =  0.

�e precision is the ratio of the number of identi�ed nodes which belong to the true community and the num-
ber of nodes in a discovered community14. �e recall is the fraction of identi�ed nodes which belong to the true 
community in the true community14. F1 is the combination of the precision and the recall, and it is calculated as 
follows:

=
×

× +

.F
prescision recall

precision recall
1

( ) (10)
1

2

�e precision and the recall only re�ect one aspect of the performance of an algorithm. However, F1 is the 
combination of precision and recall, and it takes the performance of an algorithm into a comprehensive consider-
ation. �erefore, F1 is of more comparative signi�cance, compared with precision and recall.
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