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Abstract. Compressed sensing MRI is a classic inverse problem in the
field of computational imaging, accelerating the MR imaging by mea-
suring less k-space data. The deep neural network models provide the
stronger representation ability and faster reconstruction compared with
”shallow” optimization-based methods. However, in the existing deep-
based CS-MRI models, the high-level semantic supervision information
from massive segmentation-labels in MRI dataset is overlooked. In this
paper, we proposed a segmentation-aware deep fusion network called
SADFN for compressed sensing MRI. The multilayer feature aggrega-
tion (MLFA) method is introduced here to fuse all the features from
different layers in the segmentation network. Then, the aggregated fea-
ture maps containing semantic information are provided to each layer in
the reconstruction network with a feature fusion strategy. This guaran-
tees the reconstruction network is aware of the different regions in the
image it reconstructs, simplifying the function mapping. We prove the
utility of the cross-layer and cross-task information fusion strategy by
comparative study. Extensive experiments on brain segmentation bench-
mark MRBrainS and BratS15 validated that the proposed SADFN model
achieves state-of-the-art accuracy in compressed sensing MRI. This pa-
per provides a novel approach to guide the low-level visual task using
the information from mid- or high-level task.

Keywords: Compressed Sensing · Magnetic Resonance Imaging · Med-
ical Image Segmentation · Deep Neural Network

1 Introduction

Magnetic resonance imaging (MRI) is a medical imaging technique used in ra-
diology to produce the anatomical images in human body with the advantages
of low radiation, high resolution in soft tissues and multiple imaging modalities.
However, the major limitation in MRI is the slow imaging speed which causes
motion artifacts [1] when the imaging subject moves consciously or unconscious-
ly. The high resolution in k-t space is also difficult to be achieved in dynamic
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(a) Full-sampled (b) Under-sampled (c) Seg Label

(d) Whole (e) BG (f) GM (g) WM (h) CSF

(i) Whole (j) BG (k) GM (l) WM (m) CSF

Fig. 1. A full-sampled MR image in Figure 1(a), its under-sampled counterpart in
Figure 1(b) and segmentation labels in Figure 1(c). We plot the histograms of under-
sampled MRI (second row) and full-sampled MRI (third row) on training MRI datasets.

MRI because of long imaging period [2]. Thus compressed sensing technique is
introduced to accelerate the MRI by measuring less k-space samples called com-
pressed sensing MRI (CS-MRI) [3]. The CS-MRI is a classic inverse problem in
computation imaging requiring proper regularization for accurate reconstruction.

The standard CS-MRI can be formulated as

x̂ = argmin
x

‖Fux− y‖
2
2 +

∑

i

αiΨi (x), (1)

where x ∈ CP×1 is the complex-valued MR image to be reconstructed, Fu ∈
CM×P is the under-sampled Fourier operator and y ∈ CM×1 (M ≪ P ) are the
k-space measurements by the MRI machine, Ψi represents a certain prior trans-
form, αi is the parameter balancing the data fidelity term and the prior term.
The first data fidelity term ensures consistency between the Fourier coefficients
of the reconstructed image and the measured k-space data, while the second
prior term regularizes the reconstruction to encourage certain image properties
such as sparsity in a transform domain.

In conventional CS-MRI methods, the sparse and nonlocal are common priors
for the inverse recovery in situ, which brings three limitations: (1) The common
complex patterns hiding massive MRI datasets are overlooked in the capacity-
limited “shallow” prior [4]. (2) The sparse or nonlocal regularization lacks se-
mantic representation ability, which is difficult to distinguish between the image
structure details and structural artifacts brought by under-sampling. (3) The
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optimization for conventional priors requires long time to iterate to reach con-
vergence, which brings long reconstruction time consumption [5].

Recently, the deep neural network models are introduced in the field of CS-
MRI to overcome the limitations of conventional CS-MRI methods. where the
information from massive training MRI datasets can be encoded in the network
architecture in training phase with large model capacity. Once the network is
well-trained, the forward reconstruction for test MRI data is much faster com-
pared with methods based on conventional sparse priors because no iteration is
required. More importantly, the deep neural network models enjoy the benefit
of modeling the semantic information in the image, providing an appropriate
approach to integrate information for different visual tasks, however, which is
rarely considered in the existing models for inverse problem, leaving high-level
supervision information poorly utilized, causing negative effect on the later au-
tomatic analysis phase.

We take segmentation information for example to prove the benefits of intro-
ducing high-level supervision information into reconstruction. Usually different
tissues in the MR image not only have different diagnostic information, but also
show different statistical properties. In Figure 1(a) and Figure 1(b), we show
a full-sampled and corresponding under-sampled T1-weighted brain MR image
which contains three different labeled tissues: gray matter (GM), white matter
(WM) and cerebrospinal fluid (CSF). The corresponding GM, WM and CSF la-
bels are shown in green, yellow and red in the segmentation label map in Figure
1(c). Clearly, different regions show different intensity scales. To further quantify
this phenomenon, we give the statistical histograms of the three tissues, back
ground (BG) and the whole images of the under-sampled/full-sampled MRI data
in the second/third row in Figure 1 on all the training MRI data. We observe
each of the GM, WM and CSF tissues has simple single-mode distribution on
the full-sampled and under-sampled MRI data. Since the deep neural network
usually learns the function mapping from the under-sampled MR images to their
full-sampled counterparts. The function mapping can be significantly simplified
by learning the corresponding relations between the single-mode distributions.
However, the distributions of the whole under-sampled and full-sampled MRI in
Figure 1(d) and 1(i) are much more complicated, making the learning of function
mapping more difficult.

In this paper, we propose a segmentation-aware deep fusion network (SADFN)
architecture for compressed sensing MRI to fuse the semantic supervision infor-
mation in the different depth from the segmentation label and propagate the
semantic features to each layer in the reconstruction network. The main contri-
bution can be summarized as follows:

– The proposed SADFN model can effectively fuse the information from tasks
and depths in different levels. Both the MRI reconstruction and segmentation
accuracies are significantly improved under the proposed framework.

– The semantic information from the segmentation network is provided to
reconstruction network using a feature fusion strategy, helping the recon-
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struction network be aware of the content it reconstructs and simplifying
the function mapping.

– We adopt the multilayer feature aggregation to effectively collect and extract
the information from different depth in the segmentation network.

2 Related Work

2.1 Compressed Sensing MRI

In the study of CS-MRI, the researches focus on proposing appropriate reg-
ularization. In the pioneer work SparseMRI [3], the fixed transform operator
wavelets and total variation is adopted for regularization in Equation 1. More
methods [6–8] are proposed to address the same objective function efficiently.
The variants of wavelet are proposed to exploit the geometric information in MR
images adaptively in [9–11]. Dictionary learning techniques are also utilized in
situ to model the MR images adaptively [5, 12, 13]. Nonlocal prior also can be
introduced as regularizator [14] or combined with sparse prior in [10].

Recently, the deep neural network models are introduced in CS-MRI. A vanil-
la deep convolutional neural network (CNN) is used to learn the function map-
ping from the zero-filled MR images to the full-sampled MR images [15]. Fur-
thermore, a modified U-Net architecture is utilized to learn the residual mapping
in [17]. The above deep-based CS-MRI models overlooks the accurate informa-
tion on the sampled positions in the compressive measurements. In [4], a deep
cascaded CNN (DC-CNN) is proposed to cascade several basic blocks to learn
the mapping with each block containing the nonlinear convolution layers and
a nonadjustable data fidelity layer. In data fidelity layers, the reconstructed
MR images are corrected by the accurate k-space samples. Despite the state-
of-the-art reconstruction quality has been achieved using the DC-CNN model,
the high-level supervision information from the manual labels in MRI datasets
hasn’t been taken into consideration, still leaving room for further improvement
on model performance.

2.2 MR Image Segmentation

With the segmentation labels in MRI datasets, different models are proposed to
learn to automatically segment the MR images into different tissues from the
test set. Compared with conventional segmentation methods based on manually
designed features, the deep neural network models can extract image features au-
tomatically, leading to better segmentation performance. Recently, the U-shaped
network called U-Net trained in end-to-end and pixel-to-pixel manner is proposed
in [18], which can take the input of arbitrary size and produce the output of the
same size, achieving the state-of-the-art medical image segmentation accuracy
and computational efficiency. Its variant where the 2D operations are replaced
with 3D ones is proposed in [19] called 3D U-Net. The residual learning is also
utilized in the segmentation model in [20]. The recurrent neural network can
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efficiently model the relation among different frames in the volumetric MR da-
ta can introduced in the medical image segmentation [21, 22]. Throughout the
paper, we use the classic 2D U-Net for single-frame MRI segmentation for the
single-frame MRI reconstruction, and the proposed model can be easily extended
to volumetric MRI data.

2.3 Multilayer Feature Aggregation

The works [23] on visualization of deep CNN has revealed the feature maps at
different layers describe the image in different scales and views. In the conven-
tional deep neural network models, the output is produced based on the deep
layers or even the last layer of the model, leaving the features in lower layer-
s containing information from different scales underemphasized. In the field of
salient object detection, the multilayer feature aggregation is a popular approach
to integrate information from different layers in the network [24–26].

2.4 High-level Information Guidance for Low-level Tasks

In [16], the MRI reconstruction and segmentation are integrated into a single
objective function, resulting in both improvements on reconstruction and seg-
mentation. However, the sparse-based method is limited by the model capacity
and lack of semantic representation. Recently, some works are devoted to com-
bining the low-level task with tasks in higher levels. In the work of [27], a well
pre-trained segmentation network is cascaded behind a denoising network, then
the loss functions for both segmentation and denoising are optimized to train
the denoising network without adjusting the parameters in segmentation net-
work. With this model, the denoising network produces the denoised images
with higher segmentation accuracy using automatic segmentation network at
the expense of limited improvement in restoration accuracy or even degrada-
tion. In the AOD-Net [28], the well-trained dehaze model is jointly optimized
with a faster R-CNN, resulting better detection and recognition results.

3 The Proposed Architecture

To incorporate the information from segmentation label into the MRI recon-
struction, we proposed the segmentation-aware deep fusion network (SADFN).
The network architecture is shown in Figure 2. The reconstruction network and
segmentation network are first pre-trained. Then a segmentation-aware feature
extraction module is designed to provide features with rich segmentation infor-
mation to reconstruction network using a feature fusion strategy.

3.1 The Pre-trained MRI Reconstruction Network

As we introduced above, the DC-CNN architecture achieves the state-of-the-art
performance in reconstruction accuracy and computational efficiency. We train a
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Fig. 2. The network architecture of SADFN model.

DC-CNN network with N cascaded blocks. Each block contains several convolu-
tional layers and a data fidelity layer. The details of each block in the DC-CNN
architecture is shown in Table 1. The data fidelity layer enforces consistency
between k-space value of the reconstructed image and the measured data. The
details can also be found in [4]. Note the identity function is used in last convolu-
tional layer to admit the negative values because of the global residual learning
in the blocks. We also refer to the DC-CNN architecture as Pre-RecNet for sim-
plicity. The Pre-RecNet with N blocks are called Pre-RecNetN . We train the

Table 1. The parameter setting of a block in the Pre-RecNet.

Layer Input Filter Size Stride Number of Filters Activation Output

Conv1 240*240 3*3 1 32 ReLU 240*240*32

Conv2 240*240*32 3*3 1 32 ReLU 240*240*32

Conv3 240*240*32 3*3 1 32 ReLU 240*240*32

Conv4 240*240*32 3*3 1 32 ReLU 240*240*32

Conv5 240*240*32 3*3 1 1 Linear 240*240

Data Fidelity 240*240 N/A N/A N/A N/A 240*240

Pre-RecNetN using the under-sampled and full-sampled training data pairs by
minimizing the following Euclidean loss function

LRec

(

yi, x
fs
i ; θr

)

=
1

Lr

Lr
∑

i=1

∥

∥

∥
x
fs
i − fθr

(

FH
u yi

)

∥

∥

∥

2

2
. (2)
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Where the x
fs
i is the full-sampled MR image, yi is the under-sampled k-space

measurements in the training batch. θr denotes the network parameter and Lr

is the number of MRI data in the training batch.

3.2 The MRI Segmentation Network

To fully utilize the segmentation supervision information, we train a automatic
segmentation network. We adopt the popular U-Net architecture as the seg-
mentation model called Pre-SegNet. The parameter setting of the Pre-SegNet
is shown in Table 2. The pooling operation can help the network extract the

Table 2. The parameter setting of the Pre-SegNet.

Layer Input Filter Size Stride Number of Filters Activation Output
Conv1 240*240 3*3 1 32 ReLU 240*240*32
Conv2 240*240*32 3*3 1 32 ReLU 240*240*32

Max Pooling1 240*240*32 N/A 2 N/A N/A 120*120*32
Conv3 120*120*32 3*3 1 64 ReLU 120*120*64
Conv4 120*120*64 3*3 1 64 ReLU 120*120*64

Max Pooling2 120*120*64 N/A 2 N/A N/A 60*60*64
Conv5 60*60*64 3*3 1 128 ReLU 60*60*128
Conv6 60*60*128 3*3 1 128 ReLU 60*60*128

Deconv1 60*60*128 3*3 1 64 ReLU 120*120*64
Conv7 120*120*(64+64) 3*3 1 64 ReLU 120*120*64
Conv8 120*120*64 3*3 1 64 ReLU 120*120*64

Deconv2 120*120*64 3*3 1 32 ReLU 240*240*32
Conv9 240*240*(32+32) 3*3 1 32 ReLU 240*240*32
Conv10 240*240*32 3*3 1 32 ReLU 240*240*32
Conv11 240*240*32 3*3 1 5 Linear 240*240*5
Softmax 240*240*5 N/A N/A N/A N/A 240*240

image features in different scales and the symmetric concatenation is utilized
to propagate the low-layer features to high layers directly, providing accurate
localization. We train the Pre-SegNet using the full-sampled MR images and
their corresponding segmentation labels as training data pairs by minimizing
the following pixel-wise cross-entropy loss function

LSeg

(

x
fs
i , t

gt
i ; θs

)

= −

Ls
∑

i=1

R
∑

j=1

C
∑

c=1

t
gt
ijc ln tijc. (3)

Where the tgti is the segmentation label in the training batch and ti is the corre-
sponding segmentation result produced by Pre-SegNet. θs denotes the network
parameter and Ls is the number of MRI data in the training batch. C denotes
the the number of classes of the label. Taking the brain segmentation for ex-
ample [29], the brain tissues can be classified into white matter, gray matter,
cerebrospinal fluid and background. Thus C is 4 for segmentation.

3.3 Deep Fusion Network

With the well-trained Pre-RecNet and Pre-SegNet, we can construct the segmentation-
aware deep fusion network with N blocks (SADFNN ) by integrating the features
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from the Pre-RecNet and Pre-SegNet, which involving a cross-layer multilayer
feature aggregation strategy and a cross-task feature fusion strategy.

Segmentation-aware Feature Extraction Module As we discussed in the
related work section, the multilayer feature aggregation can be used to fuse the
information from layers in different depth. Here we extract the feature maps from
the output of the Conv1, Conv2, Conv3, Conv4, Conv5, Conv6, Conv7, Conv8,
Conv9, Conv10 and concatenate them into a single “thick” feature map tensor.
Note the smaller size feature maps are up-sampled using bilinear interpolation
to the same size of features from the Pre-RecNetN . Then the “thick” feature
maps of the size 240 ∗ 240 ∗ 640 (32+32+64+64+128+128+64+64+32+32) are
further compressed into a “thin” feature tensor of the size 240 ∗ 240 ∗ 32 via the
1× 1 convolution with ReLU as activation function.

The Feature Fusion cross Tasks The compressed feature tensor obtained by
the multilayer feature aggregation strategy contains the supervision information
from the Pre-SegNet. We concatenate the feature tensor of the size 240∗240∗32
with the feature maps of the size 240 ∗ 240 ∗ 32 output by convolutional layers in
the Pre-RecNet as shown in Figure 2. Then the concatenated features of the size
240∗240∗64 are further compressed into a feature tensor of the size 240∗240∗32
via 1 × 1 convolution with ReLU activation function. The information from
feature maps can be efficiently fused via such a concatenation and compression
strategy. Note the compressed feature tensor is concatenated to the first four
convolutional layers in each Pre-RecNet block, the supervision information from
segmentation can guide the reconstruction in different depth. Also, in the Figure
2, the feature fusion strategy is also utilized in each block of the Pre-RecNet.

To prove the supervision information is effectively fused into the reconstruc-
tion, we give some feature maps in the fused feature tensor yielded by the 1× 1
convolution in Figure 3. In Figure 3(a) we show the segmentation label of a
certain MRI data. In Figure 3(b), Figure 3(c) and Figure 3(d), we visualize the
feature maps selected from the fused feature tensors in the second layer and
fourth layer. We observe the feature maps show clear segmentation information,
while no such feature maps are observed in the Pre-RecNetN model.

The Fine-tuning Strategy With the well-constructed deep fusion network,
we further fine-tune the resulting architecture. Given a zero-filled MR image in
the training dataset, a corresponding high-quality MR image can be yielded by
the Pre-RecNetN in Section 3.1. Then the MR image is sent to the Pre-SegNet
to extract the segmentation features, which are then utilized for the multilayer
feature aggregation in Pre-SegNet and feature fusion. Meanwhile, the zero-filled
MR image is also input to the deep fusion network. The ℓ2 Euclidean distance
between the output reconstructed MR image and the corresponding full-sampled
MR image in the training dataset is minimized. During the optimization, the
parameters in the Pre-RecNetN and Pre-SegNet are kept fixed, while we only
adjust the parameters in the deep fusion network.
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(a) Seg Labels (b) Feature (2nd Layer) (c) Feature (4th Layer) (d) Feature (4th Layer)

Fig. 3. The selected feature maps from the feature tensors produced by the feature
fusion in the deep fusion network.

4 Experiments

4.1 Datasets

We train and test our SADFN model on MRBrainS datasets from Grand Chal-
lenge on MR Brain Image Segmentation(MRBrainS) Benchmark [29]. The dataset-
s provides well-aligned multiple modalities MRI including T1, T1-IR and T2-
FLAIR with segmentation labels by human experts. For simplicity, we only use
the T1 weighted MRI data. In the future work, we plan to extend the model on
multi-modalites MRI imaging. Total 5 scans are provided public segmentation
labels. We randomly choose four scans for training containing total 172 slices.
The training MR images are of size 240×240. We use the remaining MRI scan
for testing the model performance containing total 48 slices.

4.2 Implementation Details

We train and test the algorithm on Tensorflow for the Python environment on
a NVIDIA Geforce GTX 1080Ti with 11GB GPU memory and Intel Xeon CPU
E5-2683 at 2.00GHz. The detailed network architectures for Pre-RecNet, Pre-
SegNet and SADFN have been introduced in previous section.

The ADAM is used as the optimizer. We train the Pre-RecNet for 32000
iterations using a batch containing four under-sampled and their corresponding
full-sampled MR images as training pairs in Equation 2. The Pre-SegNet is also
pre-trained for 32000 iterations using a batch containing 16 randomly cropped
fully-sampled 128×128 patches and their segmentation labels. Again, we note
that during the fine-tuning of the SADFN model, compressed feature tensor
is yielded by multilayer features aggregation (MLFA) and the feature tensor
is propagated to the Pre-RecNet before the feature fusion in each block. The
SADFN is fine-tuned 12000 iterations using the same training batchsize as the
pre-training of Pre-RecNet. We select the initial learning rate to be 0.001 for
pre-trained stage and 0.0001 for fine-tune stage, the first-order momentum to
be 0.9 and the second momentum to be 0.999 for both stages. We adopt batch
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normalization (BN) in Pre-SegNet. We also adopt data augmentation for training
as implemented in [30].

4.3 Quantitative Evaluation

We use peak signal-to-noise ratio (PSNR) and structural similarity index (S-
SIM) [31] for the reconstruction quantitative evaluation. We adopt a 30% 1D
Cartesian pattern for under-sampling. We compare the proposed SADFN5 with
other state-of-the-art CS-MRI models including transform learning MRI (TLM-
RI) [12], patch-based nonlocal operator (PANO) [10], fast composite splitting al-
gorithm (FCSA) [8] , graph-based redundant wavelet tranform (GBRWT) [11],
and the deep models such as vanilla CNN [15], U-Net [17] the Pre-RecNet5
(which is also the state-ot-the-art DC-CNN with 5 blocks [4]). For the non-deep
CS-MRI methods, we adjust the parameters to their best performance. We al-
so compare the proposed SADFN5 with the the model proposed in [27], where
the pre-trained Pre-RecNet5 and Pre-SegNet are cascaded during fine-tuning
and only the parameters in Pre-RecNet5 are adjusted for optimization. Since no
name for the model is provided in the original work, we refer the model as Liu
[27]. Besides, we compare the proposed SADFN model with the model without
the guidance of segmentation information (SADFN-WOS). For fair comparison,
we design the building block of the SADFN-WOS network architecture in Table
3. Note the network architecture is kept unchanged with the only difference is
some feature maps in SADFN come from Pre-SegNet while all the features come
from the reconstruction network in SADFN5-WOS. In the model Pre-RecNet5
and SADFN5-WOS, no segmentation label is utilize for training, meaning the
corresponding supervision information is overlooked.

Table 3. The parameter setting of a block in the SADFN-WOS model

Layer Input Filter Size Stride Number of Filters Activation Output

Conv1 240*240 3*3 1 64 ReLU 240*240*64

Conv2 240*240*64 1*1 1 32 ReLU 240*240*32

Conv3 240*240*32 3*3 1 64 ReLU 240*240*64

Conv4 240*240*64 1*1 1 32 ReLU 240*240*32

Conv5 240*240*32 3*3 1 64 ReLU 240*240*64

Conv6 240*240*64 1*1 1 32 ReLU 240*240*32

Conv7 240*240*32 3*3 1 64 ReLU 240*240*64

Conv8 240*240*64 1*1 1 32 ReLU 240*240*32

Conv9 240*240*32 3*3 1 32 ReLU 240*240*32

Conv10 240*240*32 3*3 1 1 Linear 240*240

Data Fidelity 240*240 N/A N/A N/A N/A 240*240

We show the objective evaluation indexes in Figure 4. Note the deep-based
models outperform most non-deep CS-MRI models in reconstruction. We observe
the proposed SADFN5 model achieves the optimal performance in PSNR and
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SSIM indexes among the compared methods. From the standard deviation of the
indexes. we note the improvement of the SADFN5 is quite steady for different
MRI test data. We observe the model Liu [27] brings little improvement in
objective evaluation indexes compared with the Pre-RecNet5. We also observe
the SADFN5 model outperforms the comparative SADFN5-WOS around 1dB
in PSNR and 0.03 in SSIM in average, which proves the benefits are brought by
introducing the supervision information from the segmentation labels instead of
merely increasing the network size.

(a) PSNR (b) SSIM

Fig. 4. The comparison in averaged PSNR and SSIM index on the test MRI data.

4.4 Qualitative Evaluation

We give the qualitative reconstruction results produced by compared CS-MRI
methods in Figure 5. We also plot the reconstruction error maps to better observe
their differences. The display range for the error maps is [0 0.12]. We observe
the Pre-RecNet5 (DC-CNN [4]) architecture, produce better reconstruction than
the conventional sparse- and nonlocal- regularized CS-MRI models. The model
in [27] didn’t brought significant improvement in reconstruction. The SADFN5-
WOS with larger network size also brought limited improvement. We observe
the proposed SADFN5 achieves much smaller reconstruction errors compared
with other models, which is consistent with our observations in objective index
evaluations.

4.5 Running Time

We compare the running time of the compared models in Table 4. As we men-
tioned in the Section 1, the CS-MRI models based on sparse or non-local regular-
ization requires a large number of iterations, resulting slow reconstruction speed.
Although the running time of the proposed SADFN model is slower than the
other deep-based CS-MRI models, it achieves the state-of-the-art reconstruction
accuracy, providing the best balance between running time and reconstruction
quality.
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(a) Full-sampled (b) Mask (c) Zero-filled (d) TLMRI (e) PANO

(f) GBRWT (g) Pre-RecNet5 (h) Liu [27] (i) SADFN5-WOS (j) SADFN5

(k) ∆ ZF (l) ∆ TLMRI (m) ∆ PANO (n) ∆ GBRWT

(o) ∆ Pre-RecNet5 (p) ∆ Liu [27] (q) ∆ SADFN5-WOS (r) ∆ SADFN5

Fig. 5. The reconstruction results of zero-filled (ZF), TLMRI, PANO, GBRWT, Pre-
RecNet5, Liu [27], SADFN5-WOS and SADFN5. We also give the corresponding re-
construction error maps ∆ with display ranges [0 0.12].

5 Discussions

5.1 The Number of Blocks

In Figure 6, we discuss how the model performance varies with the different
number of blocks from 1 to 5 in the Pre-RecNet5, SADFN5-WOS and SADFN5

models. As expected, the SADFN5 model achieves steady improvement to large
margins with different model capacity, meaning the supervision information can
robustly improve the reconstruction accuracy.
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Table 4. The comparison in runtime (seconds) between the compared models.

TLMRI GBRWT PANO Pre-RecNet5 Liu[26] SADFN5-WOS SADFN5

Runtime 127.67 100.60 11.37 0.03 0.03 0.07 0.07

(a) PSNR (b) SSIM

Fig. 6. The comparison in averaged PSNR and SSIM index on the test MRI data.

5.2 Different Under-sampling Patterns

We also test the proposed SADFN model on the 20% Random under-sampling
mask shown in Figure 5. The SADFN5 achieves the optimal performance, proving
it can be well generalized on various kind of under-sampling patterns.

5.3 The Evaluation on the Segmentation Performance

With the reconstructed MR images produced by different CS-MRI models, we
input them into the pre-trained automatic segmentation models in Section 3.2
to evaluate the effect of different reconstruction models on the segmentation
task. We adopt the Dice Coefficient (DC), the 95th-percentile of the Hausdoff
distance (HD) and the absolute volume difference (AVD) as objective evaluation
indexes for segmentation as recommended in [29]. The higher DC, lower HD and
lower AVD values indicate better segmentation accuracy. Details on evaluation
of segmentation performance can be referred to [29]. The segmentation results
with full-sampled MR image inputs are the performance upper bounds. We show
the averaged segmentation results with compared models on the test MRI data
set in Table 5. We observe the proposed SADFN5 achieves the best accuracy on
the segmentation task of the compared models.

6 Conclusion

In this paper, we proposed a segmentation-aware deep fusion network (SADFN)
for compressed sensing MRI. We showed the high-level supervision information
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(a) Full-sampled (b) Mask (c) GBRWT (d) Pre-RecNet5 (e) SADFN5

(f) ∆ GBRWT (g) ∆ Pre-RecNet5 (h) ∆ SADFN5

Fig. 7. The reconstruction results of zero-filled (ZF), TLMRI, PANO, GBRWT, Pre-
RecNet5, Liu [27], SADFN5-WOS and SADFN5 on the 20% Random mask. We also
give the corresponding reconstruction error maps ∆ with display ranges [0 0.1].

can be effectively fused into deep neural network models to help the low-level
MRI reconstruction. The multilayer feature aggregation is adopted to fuse cross-
layer information in the MRI segmentation network and the feature fusion strat-
egy is utilized to fuse cross-task information in the MRI reconstruction network.
We prove the proposed SADFN architecture enables the reconstruction network
aware of the contents it reconstructs and the function mapping can be signif-
icantly simplified. The SADFN model achieves state-of-the-art performance in
CS-MRI and balance between accuracy and efficiency.

Table 5. The averaged DC, HD and AVD values on the test MRI data.

Methods
GM WM CSF

DC % HD AVD DC % HD AVD DC % HD AVD
ZF+Pre-SegNet 64.78 2.587 6.202 54.07 2.085 4.294 57.37 2.221 4.689

TLMRI+Pre-SegNet 76.28 2.093 3.985 63.77 1.870 3.185 68.17 2.072 3.796
PANO+Pre-SegNet 83.73 1.819 2.958 75.72 1.348 1.815 78.93 1.653 2.361

GBRWT+Pre-SegNet 83.66 1.821 2.937 76.14 1.353 1.783 79.39 1.647 2.342
Pre-RecNet5+Pre-SegNet 83.63 1.795 2.874 75.16 1.378 1.813 78.99 1.668 2.386

SADFN5-WOS+Pre-SegNet 83.85 1.782 2.838 75.84 1.357 1.762 79.25 1.661 2.364
Liu[27]+Pre-SegNet 84.08 1.776 2.814 76.30 1.335 1.724 79.37 1.661 2.357

SADFN5+Pre-SegNet 85.76 1.690 2.579 81.29 1.143 1.381 80.08 1.649 2.305

Full-sampled+Pre-SegNet 87.30 1.596 2.328 86.89 0.973 1.092 80.76 1.617 2.225
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