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Summary. Microarray-CGH (comparative genomic hybridization) experiments are used to detect and
map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent
homogeneous regions in the genome whose representative sequences share the same relative copy number
on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide
a biological status for the detected segments. We propose a new model for this segmentation/clustering
problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm
called dynamic programming–expectation maximization (DP–EM) to estimate the parameters of the model
by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model
selection heuristic to select the number of clusters and the number of segments. An example of our procedure
is presented, based on publicly available data sets. We compare our method to segmentation methods and to
hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative
that can be applied in the more general context of signal processing.
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1. Introduction
Chromosomal aberrations often occur in solid tumors: tumor
suppressor genes may be inactivated by physical deletion, and
oncogenes activated via duplication in the genome. The pur-
pose of array-based comparative genomic hybridization (array
CGH) is precisely to detect and map chromosomal aberra-
tions, on a genomic scale, in a single experiment. In a CGH
experiment, genomic DNAs from a test and a reference sample
are hybridized on a slide whose probes can be oligonucleotides,
cDNAs, or BACs. The size of the probes and the distance be-
tween probes then define the resolution of the technique (see
Davies, Wilson, and Lam, 2005, for a complete review of array
CGH platforms and techniques).

A CGH profile is constituted when log ratios are plotted ac-
cording to the physical position of their corresponding probe
on the genome. Each profile can be viewed as a succession of
segments that represent homogeneous regions in the genome
whose probes share the same log ratio on average. The true
copy number in the test sample is then inferred from the rel-
ative ratios. Array CGH data present two major characteris-
tics. First, the signal is spatially ordered along the genome,
and shows abrupt changes at unknown coordinates that cor-
respond to breakpoints on the genome. The second charac-
teristic is that the underlying biological process (deletion/
amplification of DNA sequences) is discrete whereas the sig-
nal is continuous. Consequently, fluorescence log ratios are
structured according to an unknown number of clusters at
unknown levels, each cluster corresponding to a possible copy
number. Regarding these characteristics, two major categories
of analysis methods have been proposed.

One strategy is the search for abrupt changes in the sig-
nal to detect breakpoints on the genome. This is the purpose
of segmentation methods (Hupe et al., 2004; Olshen et al.,
2004; Picard et al., 2005). These methods focus on the or-
dered structure of the data and they aim to provide a parti-
tion of the data into segments characterized by a mean and
a variance. Consequently they need the definition of an ex-
ternal threshold to cluster segments into biological groups.
The clustering result is then dependent on the chosen thresh-
old. Another strategy is to cluster genome-ordered probes into
groups with biological relevance. This is the purpose of hid-
den Markov models (HMM; Fridlyand et al., 2004) and of the
modified hierarchical clustering (CLAC) developed by Wang
et al. (2005). More than pure clustering, these procedures con-
sider the order of the data, with a Markovian distribution for
the hidden variables in HMMs, and with a classification tree
whose leaves are ordered along chromosomes for CLAC. Nev-
ertheless, these method do not consider abrupt changes in the
signal.

In a recent publication, Lai et al. (2005) reviewed and com-
pared 11 methods for the analysis of array CGH data. They
showed that segmentation methods perform consistently well
for the identification of chromosomal aberrations even if the
level of noise is high, indicating that the strategy of break-
points identification is more efficient for array CGH data anal-
ysis. Considering this result and the limitations of segmenta-
tion methods mentioned above, we propose a segmentation/
clustering (SegClust) model that combines a segmentation
model and a mixture model to assign a biological status to
segments. Section 2 is devoted to the precise definition of such
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a model. In Section 3, we propose a hybrid algorithm called
dynamic programming–expectation maximization (DP–EM)
that combines DP and the EM algorithm to alternatively
estimate the breakpoint coordinates and the parameters of
the mixture. The convergence properties of this algorithm are
presented. Once the parameters of the model have been esti-
mated, a key issue is the estimation of the number of segments
and of the number of clusters. One originality of our model is
that this double model selection issue is new, and no method
has yet been proposed. In Section 4, we propose a heuristic
for this choice based on a penalized version of the likelihood.

In a last section, we propose to compare the performance
of SegClust with HMMs and other segmentation methods on
simulated and real data sets. Simulations are also used to
validate the performance of our model selection procedure.
We show the efficiency of our method in terms of clustering
performance and breakpoint identification.

2. A New Model for Segmentation/Clustering
Let yt be the log2 ratio of the tth probe on the genome and
y = {y1, . . . , yn} the entire CGH profile constituted by n data
points. We suppose that y is the realization of a Gaussian
process Y, whose mean and variance are affected by K − 1
abrupt changes at unknown coordinates T = {t1, . . . , tK−1}
with the convention t0 = 1 and tK = n. This defines a parti-
tion of the data into K segments of length nk . We write Y as
{Y 1, . . . , Y K}, where Y k = {Yt , t ∈ Ik}, with Ik = {t, t ∈]tk−1,
tk ]}. Then we add constraints on the values of the parameters,
assuming that the mean and variance of segment Yk can only
take a limited number of values with μk ∈ {m1, . . . ,mP}, and
σ2

k ∈ {s2
1, . . . , s

2
P }. In addition to the spatial organization of

the data, via partition T, there exists a secondary structure
of the process into P clusters, and we adopt a mixture model
approach to handle it.

We assume that the partitionned data {Y 1, . . . , Y K} are
structured into P clusters with weights πp(

∑
p
πp = 1). We in-

troduce a sequence of independent hidden random variables,
Zk = {Zk

1, . . . ,Z k
P} such that Zk is distributed according to

a multinomial distribution consisting of one draw on P cate-
gories with probabilities π1, . . . , πP . The mixing proportions
π1, . . . , πP thus represent the prior probability for segment Yk

to belong to the pth component, while the posterior probabil-
ity of membership to the pth component with Yk having been
observed is: τk

p = Pr{Zk
p = 1 |Y k = yk}. Contrary to classical

mixture models, where the indicator variables provide infor-
mation about the labeling of individual data points (which
would be Yt in our case), our model focuses on the belonging
of the segments Yk to different clusters.

We focus on the case where the data are supposed to be
drawn from a mixture of Gaussian densities, with parameters
θp = (mp , s2

p). Note that the appropriateness of the Gaussian
distribution for array CGH data has previously been demon-
strated by Hodgson et al. (2001) when the noise is moder-
ate. The robustness of our model to this hypothesis will be
studied in Section 5. If we suppose the independence of data
points Yt within a segment, the model can be formulated as
follows:

Y k
∣∣Zk

p = 1 ∼ Nnk

(
mp1nk

, s2
pInk

)
.

We note ψ = {π1, . . . , πP−1, θ1, . . . , θP } the vector of unknown
independent parameters of the mixture. The log likelihood of
the model is:

logLKP (T, ψ) =

K∑
k=1

log

{
P∑

p=1

πpf
(
yk; θp

)}
.

f(yk ; θp) represents the conditional density of a vector of size
nk . Our purpose is to optimize this likelihood to estimate the
parameters of the model using a hybrid algorithm.

3. DP–EM: A Hybrid Algorithm to Optimize
the Likelihood

The principle of DP–EM is as follows: when breakpoint coor-
dinates T are known, the EM algorithm is used to estimate
mixture parameters ψ, and once ψ has been estimated, break-
point coordinates are computed using DP. This algorithm is
run for fixed P and K.

3.1 Estimating Breakpoint Coordinates When Mixture
Parameters Are Known

When the number of segments K and the parameters of
the mixture are known, the problem is to find the best K-
dimensional partition of the data according to the log likeli-
hood logLKP (T, ψ). Because the number of partitions of a set
with n elements into K segments is CK−1

n−1 , and because of the
additivity in K of the log likelihood, we use a DP approach
to reduce the computational load from O(nK) to O(n2). This
approach has been introduced by Auger and Lawrence (1989)
and Picard et al. (2005) showed its efficiency in the context
of array CGH data analysis.

Let Ĉk+1,P (i, j;ψ) be the maximum log likelihood obtained
by the best partition of the data Y ij = {Yi , Y i+1, . . . , Yj } into
k + 1 segments, when the mixture parameters ψ are known.
The algorithm starts as follows: for k = 0 and for (i, j) ∈
[1, n]2, with i < j, calculate:

Ĉ1,P (i, j;ψ) = log

{
P∑

p=1

πpf
(
yij ; θp

)}

= log

{
P∑

p=1

πp

j∏
t=i+1

f(yt; θp)

}
.

Ĉ1(i, j;ψ) represents the local log likelihood for segment Yij .
Then the algorithm is run as follows:

∀k ∈ [1, K] Ĉk+1,P (1, j;ψ)

= max
t

{Ĉk,P (1, t;ψ) + Ĉ1,P (t + 1, j;ψ)}.

More than a reduction in the computational load, this ap-
proach provides an exact solution for the global optimum of
the likelihood that will be central for downstream model se-
lection procedures.

3.2 Estimating Mixture Model Parameters When Breakpoint
Coordinates Are Known

When breakpoint coordinates T are known, we have a parti-
tion of the data into K segments {Y 1, . . . , Y K}. The objective
is to maximize the log likelihood of the model logLKP (T, ψ)
according to ψ. The optimization of the likelihood can be
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handled using the EM algorithm in the complete-data frame-
work proposed by Dempster, Laird, and Rubin (1977). We
note Xk the complete data vector for segment k, with Xk =
(Ytk−1+1, . . . , Ytk

, Zk). Let us define the complete-data log
likelihood:

logLc
KP (T, ψ) =

K∑
k=1

P∑
p=1

zk
p log

{
πpf

(
yk; θp

)}
.

The EM algorithm is as follows:

- E-step: compute the conditional expectation of the
complete-data log likelihood, given the observed data Y,
using the current fit ψ(h) for ψ.

QKP (ψ |ψ(h);T ) =

K∑
k=1

P∑
p=1

τk(h)
p log

{
πpf

(
yk; θp

)}
,

with τk(h+1)
p = Eψ(h) [zk |Y ] =

π(h)
p f

(
yk; θ(h)

p

)
P∑

�=1

π
(h)
� f

(
yk; θ

(h)
�

) .

- M-step: The M-step on the (h + 1) th iteration requires
the global maximization of QKP (ψ |ψ(h); T ) with respect
to ψ to give the updated estimate ψ(h+1):

ψ(h+1) = Argmax
ψ

{
QKP

(
ψ |ψ(h);T

)}
.

3.3 Convergence Properties of the Hybrid Algorithm
Theorem 1: The hybrid algorithm generates a sequence

(T (�), ψ(�))�≥0 such that

logLKP (T (�+1), ψ(�+1)) ≥ logLKP (T (�), ψ(�)).

Proof. The proof of the convergence of our algorithm is
based on the properties of both DP and EM. Both algorithms
are linked through the likelihood they alternatively optimize:
the incomplete-data likelihood of the mixture of segments.
DP globally optimizes the likelihood with respect to T. So at
iteration (�) we have:

logLKP (T (�+1);ψ(�)) ≥ logLKP (T (�), ψ(�)).

On the other hand, the key convergence property of the EM
algorithm is the increase of the incomplete-data log likelihood
at each step (Dempster et al., 1977):

logLKP (T (�+1), ψ(�+1)) ≥ logLKP (T (�+1), ψ(�)).

Put together, our algorithm generates a sequence (T (�),
ψ(�))�≥0 which increases the incomplete-data log likelihood
and the result follows.

As for the complexity of DP–EM, it remains in O(n2).
The algorithm has been implemented using the R software
(http://www.R-project.org) with C functions. We are cur-
rently developing a R package for distribution.

4. Model Selection
In practice neither the number of segments nor the number
of clusters are known, and they should be estimated. Never-
theless, the joint estimation of the number of segments and

groups is new and no method has yet been proposed. Classi-
cal model selection procedures are largely based on penalized
likelihood criteria whose purpose is to establish a trade-off
between a good quality of fit of the model to the data and
a reasonable number of parameters to estimate. When using
such criteria for model selection, it is assumed that the likeli-
hood of the model increases with the number of parameters.
In the following, we show that this property is not true for the
SegClust model due to models nonnestedness. We show that
the likelihood is not necessarily increasing with respect to the
number of segments, whereas it increases with the number of
clusters. This particular behavior motivates the construction
of a two-step heuristic for model selection.

4.1 Nested and Nonnested Models
Let us denote TK the set of possible breakpoints with K seg-
ments and TK a particular configuration. Then we note ΨP the
set of mixture parameters for P clusters. We define M(K, P )
the set of all SegClust models with K segments and P clusters
such that:

M(K, P ) = {M(TK , ψP ), TK ∈ TK , ψP ∈ ΨP }.

Lemma 1: {M(K, P ) �⊂ M(K + 1, P ),

M(K, P ) ⊂ M(K, P + 1).

Proof. The fact that M(K, P ) and M(K + 1, P ) are not
nested is due to the discrete nature of breakpoints. Because
segments of null size are not allowed in the model, it follows
that TK �⊂ TK+1, which implies the first part of the lemma.
For the second part of the proof it is clear that:

∀TK ∈ TK , ΨP ⊂ ΨP+1,

because a proportion πP+1 can be set to 0 to ensure the nest-
ing, and the lemma follows.

From Lemma 1 it follows that the log likelihood increases
with P whereas it may decrease with K. A classical result is
that if models are nested, the likelihoods at their maximum
increase. Nevertheless, no ranking can be inferred if models
are not nested. Moreover, we provide an example for which
the likelihood decreases.

Example. Let us assume that M(T̂K , ψ̂P ) is the model that
maximizes the likelihood for a given K and P and a given
breakpoint configuration. Then we suppose that segment Y�

belongs to cluster p� such that f(Y �; ψ̂) 
 π̂p�f(Y �; θ̂p�). The
log likelihood of this configuration is:

logLKP (T̂K ; ψ̂P ) 

K−1∑
k �=�

log

{
P∑

p=1

π̂pf(Y k; θ̂p)

}

+ log
{
π̂p�f

(
Y �; θ̂p�

)}
Then consider a new configuration of breakpoints T̂K+1 =
{T̂K ∪ tnew} for which Y� is split into (Y �1 , Y �2) without any
change in the labeling. It follows that:
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Figure 1. Incomplete-data loglikelihood logLKP according
to K for different values of P. Data: Glioblastoma Multiform
(GBM29, chromosome 7) analyzed in Section 5.

logLK+1,P (T̂K+1; ψ̂P ) 

K−1∑

k �=�1,�2

log

{
P∑

p=1

π̂pf(Y k; θ̂p)

}

+ log
{
π̂p�f

(
Y �1 ; θ̂p�

)}
+ log

{
π̂p�f

(
Y �2 ; θ̂p�

)}
.

It follows that the log likelihood can decrease because:

logLK+1,P (T̂K+1; ψ̂P ) − logLKP (T̂K ; ψ̂P ) 
 log(π̂p�) ≤ 0.

An example of such log likelihood is provided in Figure 1,
where logLKP is decreasing when P = 2. Because SegClust
models show a disymetrical behavior with respect to P and
K we propose to adopt a two-step strategy for penalization,
choosing the number of clusters first.

4.2 Choosing the Number of Clusters
The first step of the heuristic is to select the number of clusters
whatever the number of segments. To do so, we propose to
construct a sequence of increasing likelihoods as follows.

Hypothesis (H): ∀P ∈ {1, . . . , Pmax}, ∃K̃P ,

K̃P = Argmax
K

{logLKP (T̂ ; ψ̂)}.

Theorem 2: For a set of SegClust models with P clusters,
P ∈ {1, . . . , Pmax} and K segments, under hypothesis (H) there
exists a sequence of increasing log likelihoods noted log L̃P such
that log L̃1 · · · ≤ log L̃P ≤ · · · log L̃Pmax with

log L̃P = max
K

{logLKP (T̂K ; ψ̂P )}.

The proof of this theorem is provided in the Supplementary
Material section. The sequence {log L̃P } can be interpreted as
the maximal fit that can be reached by a SegClust model with
P clusters. This is why we use these likelihoods as targets to
penalize.

In order to select P, we propose to use the adaptive method
proposed by Lavielle (2005). Applied to our problem, this

method aims at finding the number of clusters for which the
log likelihood ceases to increase significantly. It is based on
the calculus of the empirical second derivative of the log like-
lihood. Denoting JP = − log L̃P , the first step consists the
calculus of J̃P such that:

J̃P =
JPmax − JP

JPmax − J1
× (Pmax − 1) + 1.

This normalization step ensures that J̃1 = Pmax and that
J̃Pmax = 1. In a second step, calculate:

∀P ∈ {2, . . . , Pmax − 1}, DP = J̃P−1 − 2J̃P + J̃P+1.

Then select the number of clusters, such that:

P̂ =

{
maxP {P ∈ {2, . . . , Pmax − 1} |DP ≥ s},
1 if ∀P, DP < s.

with s a threshold whose choice is discussed in Section 5. The
default value of this tuning parameter is set to 0.75.

Lavielle (2005) showed that this selection procedure is
equivalent to the use of the penalized criterion log L̃P − βP ×
pen(P ), where pen(P) is a increasing function with P (number
of parameters of the mixture), and where βP is estimated by
(log L̃P+1 − log L̃P )/(pen(P + 1) − pen(P )).

4.3 Choosing the Number of Segments
Once the number of clusters has been chosen, the second step
consists in the estimation of the number of segments K̂P̂ .
Because breakpoint parameters are discrete the likelihood is
not continuous with respect to these parameters. Therefore,
classical model selection techniques cannot be applied to this
case. If a Bayesian information criterion (BIC) criterion is
derived to select KP̂ , the breakpoints need to be fixed. In this
case, the penalty is proportional to the number of continuous
independent parameters of the model, which are the 3P − 1
parameters of the mixture. This means that when the number
of discrete parameters increases, the number of continuous
parameters is constant for a given P. Consequently, deriving
a penalty term in the Bayesian setting does not penalize the
addition of new segments in the SegClust model. In order
to circumvent this difficulty, we propose to use a pseudo-BIC
criterion, which penalizes the addition of new segments as if
they were continuous parameters. Therefore, we consider the
following criterion to select the number of segments:

K̂P̂ = Argmax
K

{
logLKP̂ (T̂ , ψ̂) − 1

2
log(n) × K

}
.

Because the model selection procedure we propose is heuris-
tically based, it is evaluated based on its performance on sim-
ulated data.

5. Performance
Because many methods have been proposed for the analysis
of array CGH data, it is crucial to compare their relative per-
formance. Lai et al. (2005) proposed to compare 11 methods
using simulated and real data sets. They point out that the
comparison is not straightforward because the goals of the
methods are different (i.e., clustering or breakpoint identifi-
cation). The power of the SegClust model is that it combines
the advantages of both strategies: it is based on a segmen-
tation model that aims at finding abrupt changes, and the
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mixture model directly clusters segments into a finite num-
ber of groups. In this section, we show that our model selec-
tion heuristic is performant, based on simulated data. We also
show that the SegClust model is more efficient than HMMs
from the clustering point of view, and as efficient as pure seg-
mentation for the detection of the breakpoints.

5.1 Simulated Data
We use the simulated data set proposed by Lai et al. (2005).
Simulations have been generated with a factorial design, fac-
tors of variations being the width of the amplification (0, 5,
10, 20, and 40 points) and the signal-to-noise ratio (SNR) of
0, 1, 2, 3, and 4. SNR is equal to μ/σ, where μ is the mean
of the amplified segment, and σ is the standard deviation of
a Gaussian noise (fixed at 0.25). For each combination, 100
artificial chromosomes with 100 data points were generated.

In a first step, we compare the performance of HMMs from
Fridlyand et al. (2004) and SegClust in terms of clustering.
To do so, we study the selection of the number of clusters P,
the sensitivity (proportion of points truly assigned to the am-
plification), and the specificity (the proportion of points truly
assigned to the unaltered group) in Figure 2. A first difference
lies in the selection of P. While SegClust selects a constant
number around 2 (with a slight overestimation), HMMs tend
to overestimate P when SNR is high. This behavior may be
linked to the use of Akaike information criterion (AIC) and
BIC to select the number of hidden states, while the adaptive
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Figure 2. Estimated number of clusters, sensitivity, and specificity for clustering with different aberration widths and SNR.
Top: average over width aberration, bottom: average over SNR. Bars correspond to 95% empirical confidence intervals. −�−
SegClust, −�− HMMs.

method we propose is more stable. When P is overestimated,
HMMs should be more sensitive than SegClust with lower
specificity. Nevertheless, we observed that the overestimation
of P often leads to the creation of empty clusters. Moreover,
we report estimation problems due to singular matrices as
mentioned by Lai et al. (2005). The clustering performance
of both methods could be summarized as follows: they are
both highly specific, and SegClust shows a higher sensitiv-
ity which increases with the width of the aberration and the
SNR.

In a second step we compare the performance of segmenta-
tion clustering in terms of breakpoints positioning, with other
segmentation methods whose objectives are similar (CGHSeg
from Picard et al., 2005 and CBS from Olshen et al., 2004).
This study was not performed by Lai et al. (2005). To com-
pare segmentation procedures, we study the estimated num-
ber of segments K and we check that the breakpoints are
correctly located, using specificity and sensitivity (Figure 3).
For the choice of the number of segments we observe three
different behaviors. While CGHSeg tends to overestimate K
when the size of the aberration and the SNR are small, CBS
tends to underestimate this number and SegClust shows a
stable estimation. This result shows the efficiency and the ro-
bustness of our model selection procedure. As a result, CBS is
more conservative, leading to a lower sensitivity and a higher
specificity, and the opposite is observed for CGHSeg. Despite
slight differences regarding the methods, SegClust establishes
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Figure 3. Estimated number of segments, sensitivity, and specificity for breakpoints positioning with different aberration
widths and SNR. Top: average over width aberration, bottom: average over SNR. Bars correspond to 95% empirical confidence
intervals. −•− CGHSeg, −�− SegClust, and −�− CBS.

a good trade-off between a correct estimated number of seg-
ments and a good specificity/sensitivity.

In a last step, we study the robustness of SegClust to the
normality assumption. We consider simulations with the same
experimental design, but with a noise which follows a mix-
ture of Gaussian distributions (1 − α)N (0, σ2) + αN (0, 4σ2),
where α = (0, 0.25, 0.5). Parameter α is used to increase the
weight of the distribution tails. As shown in Figure 4, increas-
ing the weight of the distribution tails leads to an increase in
the estimated number of segments, as heavier tails of distri-
bution lead to a higher dispersion of the data. Nevertheless,
because the overestimation of P remains moderate (Figure 5),
the addition of new segments does not lead to a decrease in
terms of specificity/sensitivity for clustering, meaning that
additional segments are correctly clustered. However, we ob-
serve a slight decrease in the specificity for segmentation,
which remains higher than 0.95. Nevertheless, when parame-
ter α equals 0.5, the distribution of the data is far from Gaus-
sian. Consequently this result shows that the performance of
SegClust are not sensitive to the normality assumption.

Finally, from the practical point of view, we notice that
HMM and SegClust require more computational time than
CBS and CGHSeg, because models with hidden variables re-
quire the use of iterative algorithms such as the EM algorithm.
Moreover, HMMs and SegClust both need to estimate the pa-
rameters for different model dimensions in order to perform
a downstream model selection procedure, which increases the
computational time of both methods. However, the computa-

tional complexity of DP in O(n2) is not problematic, because
it has recently been applied to tiling arrays (Huber, Toedling,
and Steinmetz, 2006).

5.2 Glioblastoma Multiform Data
In order to compare the performance of different methods
on real CGH data sets, we use the Glioblastoma Multiform
(GBM) data that are described in Bredel et al. (2005) and
were used by Lai et al. (2005). They consist of 26 samples co-
hybridized with pooled human controls onto cDNA microar-
rays. We focus on the GBM29 sample, chromosome 7 that
is known to show at least three high amplifications around
EGFR. This means that an appropriate method should de-
tect six breakpoints and two clusters. Lai et al. (2005) com-
pared the performance of CGHSeg, CBS, and HMMs on this
example. They show that HMMs do not detect any amplifica-
tion, whereas SegClust detects two clusters as shown in Fig-
ure 6. This result is in accordance with the simulation results,
and shows that segmentation/clustering is more powerful than
HMMs for the detection of aberrations. From the segmenta-
tion point of view, CBS does not detect the third segment that
is only constituted of four clones. On the contrary, CGHSeg
detects six breakpoints which correspond to biologically rel-
evant events. Figure 6 (top) shows that SegClust detects an
additional breakpoint because this probe shows a signal that
is close to the mean signal of the unaltered group. We use
this example to give some guidance for the choice of parame-
ter s used to select the number of clusters. When this tuning
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Figure 4. Robustness to the normality assumption. Estimated number of segments, sensitivity, and specificity for break-
points positioning with different aberration widths and SNR. Top: average over width aberration, bottom: average over SNR.
Bars correspond to 95% empirical confidence intervals. −◦ − α = 0, −� − α = 0.25, and −� − α = 0.5.
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with different aberration widths and SNR. Top: average over width aberration, bottom: average over SNR. Bars correspond
to 95% empirical confidence intervals. −◦ − α = 0, −� − α = 0.25, and −� − α = 0.5.
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Figure 6. Array CGH profile of chromosome 7 in a
Blioblastoma Multiform sample (GBM29). Comparison be-
tween CGHSeg and SegClust results. Solid vertical lines: com-
mon breakpoints, dashed vertical lines: additional breakpoints
identified by SegClust. Top: P = 2 clusters (s = 0.75), bot-
tom: P = 4 clusters (s = 0.5). • unaltered regions, � high
amplification, ◦ low amplification, and � deletion.

parameter is set to a lower value (s = 0.5, Figure 6, bottom),
the selection procedure is less conservative, which leads to the
selection of four clusters instead of two. In this case, a distinc-
tion is made between high- and low-level amplifications and
a new cluster of one deleted clone is detected. This example
shows the interest of a data-driven selection procedure which
is flexible. In practice, this parameter is set to s = 0.75, which
establishes a good trade-off between sensitivity and specificity.
The simulation study was conducted with this value.

6. Conclusion
Microarray CGH currently constitutes the most powerful
method to detect gain or loss of genetic material on a ge-
nomic scale. We introduced a statistical methodology for the
analysis of CGH microarray data, that combines segmenta-
tion methods and clustering techniques. Because Lai et al.
(2005) showed the efficiency of segmentation methods based
on maximum likelihood and DP, we propose to refine this
model with the addition of a hidden structure that corre-

sponds to the biological status of genomic regions. In this
article we show that the consideration of clusters could lead
to segmentation results that are more precise compared with
pure segmentation methods. We also show that our model
handles the spatial structure of the data whereas HMMs can
lead to unstable results when the level of noise is high. Conse-
quently the new SegClust model we propose appears to be a
promising alternative to HMMs. Moreover, this model can be
applied to a wide variety of signals that are affected by abrupt
changes and which show similar characteristics on different
segments.

The definition of this new model leads to unusual statistical
considerations: it appears that the statistical units of the mix-
ture model (when the segmentation is known) are segments of
different size. Because the partition of the data is random, the
statistical units of the mixture model themselves are random.
This explains the difficulty of the joint estimation of K the
number of segments, and P the number of clusters, because
classical model selection procedures are based on a trade-off
between a reasonable number of parameters to estimate given
a fixed number of statistical units. In this article we propose
a model selection heuristic for this choice, whose performance
has been validated on simulated and real data sets. Neverthe-
less, further theoretical developments would be valuable to
handle this new model selection problem.

7. Supplementary Material
Appendix referenced in Section 4.2 is available under the Pa-
per Information link at the Biometrics web site http://www.

tibs.org/biometrics.
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