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1. INTRODUCTION

The problem of scattering from large open-ended waveguide cavities
has great importance in radar cross section (RCS) prediction of com-
plex targets. This importance is owing to the significant contribution
from the interior of jet engine inlets or exhaust ducts to the over-all
RCS of real targets like modern aerospace vehicles.

Several approaches have been developed for analyzing large cavities.
The first one was modal analysis [1] which still is used as a reference
solution to validate other subsequent methods in simple cavities where
is possible to find closed-form expressions for waveguide eigenmodes.
Some improvements have been proposed in order to increase the ef-
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ficiency and accuracy of this method; it is worth mentioning among
others [2] and [3].

For arbitrarily shaped cavities, where conventional waveguide modes
cannot be defined, the ray and beam techniques [3–5] must be used.
However, these methods are restricted to relatively shallow cavities,
due to the computational cost and the ray and beam distortion prob-
lems associated with deep cavities, in which a high number of internal
reflections must be considered. A more efficient approach, the Gener-
alized Ray Expansion (GRE) method, was presented in [3, 5, 6]. This
approach improves the accuracy of the previous ray-based methods,
although it still suffers from ray tracing drawbacks.

In previous papers [7–9], two efficient solutions have been presented,
the Iterative Physical Optics (IPO) and the Progressive Physical Optics
(PPO) methods. In these works, the magnetic field integral equation
(MFIE) is obtained for the equivalent currents in the interior cavity
walls, and is solved by using two different algorithms. In the IPO
method, the solution is obtained after a number of iterations which is
closely related with the number of internal expected reflections; while
PPO reaches the solution in a single iteration, by progressive applica-
tion of Physical Optics (PO) according to the wave propagation sense
inside the cavity. Thus, PPO is better from the computational point
of view, although IPO is applicable to more general shaped cavities [9].
Once the currents are know, the scattered fields can be found using ei-
ther aperture integration (AI) [3] or the generalized reciprocity integral
(RI) proposed in [10].

In recent works [11–13], some hybrid methods have been presented
to analyze cavities containing complex terminations. In all of them, the
cavity is divided into two different parts: the front section (typically
smooth) which is analyzed by any of the preceding approaches; and
the complex termination where more accurate methods, such as the
Method of Moments (MoM), the Finite Element Method (FEM) or the
Finite-Difference Time-Domain method (FDTD), must be used.

In this paper, we present a sectioning algorithm which extents the
scope of application of IPO and PPO methods to very deep cavities.
Our solution leads to two different alternatives: namely the segmented
version of IPO (S-IPO) and the corresponding of PPO (S-PPO). In
both methods, the cavity is subdivided into several sections, and each
of them is analyzed independently from the rest of the cavity. The
scattering matrices of each section are calculated using either the IPO
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or the PPO methods. Finally, a simplified connection scheme based
on the Kirchhoff approximation [10] and the generalized reciprocity in-
tegral [14] is used to obtain the global response of the whole cavity.
Both S-IPO and S-PPO methods provide a considerable reduction of
the computational cost with respect to the direct solution while main-
taining a good grade of accuracy.

2. FORMULATION

2.1 The Original Problem

First, consider the problem depicted in Fig. 1a, in which an open-
ended cavity is illuminated by an incident plane-wave. Although the
incident field illuminates both interior and exterior cavity walls, we are
only concerned with the interior problem, without considering the scat-
tering due to external cavity surfaces. The cavity walls are considered
to be made of perfect electric conductor (PEC) and the surrounding
medium is characterized as free space. In the next sections, an ejωt

time dependence is assumed and suppressed for the field expressions,
k refers to the wave-number, and η0 is the intrinsic impedance of the
free space.

2.2 The Equivalent Problem

In order to evaluate the scattered fields from the interior of the
cavity, the original problem of Fig. 1a is replaced by the equivalent
problem depicted in Fig. 1b [7–9] based on surface equivalent princi-
ples [15]. In this equivalent problem, the cavity walls and the plane
wave excitation are replaced by electric surface currents Jw over the
cavity walls Sw , and electric and magnetic surface currents {Ja , Ma}
over the aperture Sa . These currents radiate in free space and repro-
duce exactly the fields {E,H} within the cavity (volume enclosed by
surfaces Sa and Sw ). The coupling between the excitation plane wave
and the cavity is performed through the surface currents {Ja,Ma} in
the aperture Sa . By using the Kirchhoff approximation [3,14], these
currents are obtained directly from the incident wave:

Ja = n̂a ×Hi (1.a)

Ma = −n̂a ×Ei (1.b)
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Figure 1. The cavity model. (a) Original problem; (b) Equivalent
problem; (c) Segmented problem.

Once the equivalent problem is solved, the external scattered fields
are obtained by evaluating a generalized reciprocity integral [10–12]
over a surface St located close to the cavity termination:

p ·Es(r) ≈
∫
St

(E−t ×H+
t −E+

t ×H−t ) · n̂t ds (2)

where Es is the scattered field at the observation point r , p is the
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strength of an electric current point (test) source also located in r ,
{E−t ,H−t } are the fields scattered by the termination in the cavity,
while {E+

t ,H
+
t } are the fields radiated by the test source in the pres-

ence of the cavity structure without the termination. The application
of the RI involves two advantages. First, the fields coupled into the
cavity only need to be tracked one-way down the duct to the surface
St , and not back. On the other hand, the analysis of the entire cavity
can be separated into two independent parts: one deals with the cavity
duct alone and the other with the termination. So, the termination,
which usually contains complex obstacles, can be analyzed by using
more rigorous numerical methods [11–13].

Another possibility is the aperture integration technique in which
Kirchhoff approximation is used again and the outgoing fields in the
aperture {E−a ,H−a } are integrated over Sa to obtain the external
scattered fields. This technique has been used in most works about
cavities although we have chosen the RI because of the previously
commented advantages.

2.3 Segmentation Algorithm

Let us consider the network model shown in Fig. 1c where the cavity
is divided into N sections. The last section contains the complex
termination, and whose aperture corresponds with St .

First, an appropriate model for the front section of the cavity –
Fig. 2a – has to be found. The tangential components of the fields
{Ea, Ha} over Sa must be related with the fields {Et , Ht} over
St .

These fields can be broken down into a sum of a (+ẑ) travelling and
a (−ẑ) travelling components in each extreme of the duct as follows:

Ea = E+
a + E−a (3.a)

Ha = H+
a + H−a (3.b)

Et = E+
t + E−t (3.c)

Ht = H+
t + H−t (3.d)

where superindex (+) notes propagation in (+ẑ) direction, while (−)
notes propagation in (−ẑ) direction.

For our convenience, let us define the vectors:

W +
a =

(
E+
a

H+
a

)
(4.a)
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W −
a =

(
E−a
H−a

)
(4.b)

W +
t =

(
E+
t

H+
t

)
(4.c)

W −
t =

(
E−t
H−t

)
(4.d)

containing both electric and magnetic tangential components over sur-
faces Sa and St .

Thus, the front section may be characterized by the following matrix
equation

(
W −

a

W +
t

)
=

[
S

11
S

12
S

21
S

22

]
·
(
W +

a

W −
t

)
= S ·

(
W +

a

W −
t

)
(5)

where S is a scattering matrix.
This model can be generalized to any of the N subsections in which

the cavity is split, see Fig. 2b. Accordingly, the k-th subsection will be
characterized by:

(
W −

k
W +

k+1

)
=

[
S

(k)
11 S

(k)
12

S
(k)
21 S

(k)
22

]
·
(

W +
k

W −
k+1

)
= S (k) ·

(
W +

k
W −

k+1

)
(6)

where subindex k and k + 1 are used to note the tangential compo-
nents of the fields over surfaces Sk and Sk+1 .

So, the global scattering matrix of the front section may be ob-
tained by cascading the scattering matrices of the N − 1 individual
subsections. Thus far, we have not done any approximation in the
formulation, therefore its accuracy will be only influenced by the own
limitations of the numerical method used to determine the scattering
matrices S (k) , which will be detailed in the following section. By
taking into account the characteristics of the usual cavities into study
(geometrically smooth and electrically large), the Kirchhoff approxi-
mation [14] can be used to ignore any reflections caused by the front
section waveguide duct. Which entails considering

S
(k)
11 = S

(k)
22 = 0 ∀ k (7)
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so equation (6) becomes:

W −
k = S

(k)
12 ·W −

k+1 (8)

W +
k+1 = S

(k)
21 ·W +

k (9)

The coupling of the incident wave from the aperture Sa (or S1 ) to
the termination St (or SN ) is obtained as:

W +
N = S

(N−1)
21 · · · S (1)

21 ·W +
1 (10)

taking into account that W +
1 = W +

a and W +
N = W +

t the last ex-
pression may be expressed as

W +
t = S

(N−1)
21 · · · S (1)

21 ·W +
a (11)

where W +
a and W +

t are related throughout the multiplication of the
transmission sub-blocks S

(k)
21 of the generalized scattering matrices

S (k) .
This approach is computationally much more efficient than other

methods such as [16], where the scattering matrix was obtained by
standard Method of Moments (MoM). In this previous work, the whole
scattering matrix was obtained without doing any simplification, thus
it was restricted to very small cavities due to computational and stor-
age requirements.

On the other hand, the final section may be characterized as a one-
port load with its proper generalized reflection coefficient Γ (Fig. 2b).

W −
t = Γ ·W +

t (12)

It must be pointed that equations (11) and (12) allow to obtain
both incident and reflected fields (W +

t and W −
t ) over St , due to

the excitation W +
a over the cavity mouth Sa . These are the fields

involved in the RI expression (2), which must be evaluated to calculate
the response of the entire cavity. The fields W +

a are obtained as the
tangential components of the incident fields over the aperture Sa ,
closely related to the equivalent currents Ja and Ma.

Otherwise, when the AI is used instead of RI, the fields need to be
tracked back from the termination St to the aperture Sa ; this may
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be easily done employing the previous model, by simply multiplying
the transmission sub-blocks S

(k)
12 :

W −
a = S

(1)
12 · · · · S

(N−1)
12 ·W −

t (13)

Nevertheless, this approach duplicates the computational cost with
respect to RI, so in the rest of the paper will be only concerned with
the RI solution.

2.4 Scattering Matrices

The generalized scattering matrix of each section – Fig. 2(b) – can
be calculated by using any method that allows a good grade of accu-
racy with moderate computational complexity. Both IPO and PPO
methods have been shown to be two efficient HF alternatives for ana-
lyzing shallow and moderately large cavities. So that they are suitable
to be implemented for the smooth duct sections where the Kirchhoff
approximation (and consequently the segmented algorithm) is appli-
cable. The formulation of both IPO and PPO methods is common
in the task of calculating the S

(k)
21 transmission sub-blocks, that are

obtained by solving the magnetic field integral equation (MFIE) for the
equivalent currents in the interior section walls:

Jw,k(r) = 2 · n̂w,k ×Hinc
k (r)

+ 2 · n̂w,k × PV

∫
Sw,k

Jw,k(r′)×∇G0(r−r′) ds′ (14)

where Hinc
k (r) is the incident field over the k-th section walls Sw,k ,

which is calculated using the Kirchhoff approximation as:

Hinc
k (r)=

∫
Sk

n̂k ×H+
k (r′)×∇Go(r−r′) ds′

+
1

jkηo
∇×

∫
Sk

E+
k (r′)× n̂k ×∇Go(r−r′) ds′ (15)

The symbol PV
∫

stands for the principal value of the integral and
∇G0 is the gradient of the free space Green’s function given by

∇G0(R̄) = R̂

(
jk +

1
R

)
e−jkR

4πR
(16)
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(a) Front part

(b) Front part split into several sections

(c) Termination section

Figure 2. Cavity geometry.
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where R = |R̄| and R̂ = R̄/R
Equations (14) and (15) are implemented for each section by mod-

eling its aperture, walls and termination with flat facets [7–9]. The
integrals are evaluated numerically via summations by assuming the
fields and currents are constant over each facet. These currents are
found via an iterative process, which may be IPO or PPO.

The practical approach for the PPO method [8, 9] is based on tak-
ing into account that smooth sections are being considered, in which it
could be expected that most of the energy flows towards the end of the
section and not in the backwards direction. The PPO implementation
of (14) consists of integrating the currents progressively, according to
the propagation process inside a smooth waveguide, so each facet ra-
diates only over those facets that are closer to the termination. This
process is equivalent in such a way to analyze each facet considering a
variable number of iterations, which becomes higher as the facets are
closer to the termination.

On the other hand, the IPO method [7, 9] does not take into consid-
eration the one-way propagation of energy so it will be valid for more
arbitrary structures. The IPO method solves the MFIE in a number
of iterations related to the number of expected internal reflections of
importance, in this case one iteration entails the full radiation of each
facet over the rest of the facets in the section wall. By using IPO so-
lution for complex geometries, shadowing effects can be included into
the integrations, improving greatly the convergence.

Once the wall currents Jw,k are known, the outgoing tangential
fields ( E+

k+1 and H+
k+1 ) over the section end (Sk+1 ), are obtained by

integrating Jw,k over the section walls Sw,k

E+
k+1(r) = n̂k+1 ×


 η0

jk
∇×

∫
Sw,k

Jw,k(r′)×∇G0(r− r′) ds′


× n̂k+1

(17)

H+
k+1(r) = n̂k+1 ×


 ∫
Sw,k

Jw,k(r′)×∇G0(r− r′) ds′


× n̂k+1 (18)

With respect to the final section (containing the cavity termination),
its analysis must be usually carried out via more accurate methods
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than the rest of the structure, in order to model properly the special
characteristics of this typically complex part of the cavity [11–13].

3. COMPUTATIONAL ASPECTS

One of the most interesting aspects of this segmented technique is the
considerable reduction of the computational cost in with respect to the
previous methods (IPO and PPO), together with the accuracy of the
obtained results.

To account for the computational cost, it is useful to define an ele-
mental operation as the radiation from one facet to another – remember
that integrals in (14), (15), (17) and (18) are implemented by modeling
the surfaces by flat facets –. Table 1 shows the computational com-
plexity of the two approaches, comparing their results when the front
section is in a whole piece and when it is split into N subsections.
In this table, I and M represent the number of iterations and facets
needed to analyze the whole front section; while i and m are the
same matters but related to one sub-section. All the subsections are
assumed to be equal, so i and m are considered to be the same in all
of them. In order to be able to compare the computational costs, we
can further take i ≈ I/N and m ≈ M/N which happens certainly
in most practical cases. It can be seen that the segmented versions
provide a great reduction in the computational cost with respect the
one-section case (a reduction of N2 for the S-IPO and N for the S-
PPO). It must be noticed that the computational cost of the S-PPO is
lower than the one of the S-IPO because of the number of iterations re-
quired to analyze an individual section will be always greater or equal
than unity ( i ≥ 1 ).

Further advantage is obtained when the cavity is split into equal
sections, in this case only one of them must be analyzed, thus the
computational cost is reduced by a factor of N3 for the S-IPO and
N2 for the S-PPO.

One section N sections

S-IPO I ·M2 N · i ·m2 ≈ I ·M2/N2

S-IPO M2/2 N ·m2/2 ≈M2/2N

Table 1. Computational complexity of both approaches.
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4. RESULTS

The method described above has been applied to several examples
in order to demonstrate its efficiency and accuracy. The results are
monostatic copolarized RCS which is plotted as a function of aspect
angle for planewave incidence. The RCS ( σ ) is given by

σ = lim
r→∞

4πr2 |Ēs(r̄)|2
|Ēi|2 (19)

where Es(r̄) is the scattered field obtained by using the RI (2) over
St and |Ēi| is the magnitude of the incident plane wave. Both θ̂ and
φ̂ polarizations are taken into account and compared with a reference
solution calculated using modal analysis [1].

A cylindrical cavity of radius a = 3.5λ and depth L = 21λ is
considered with a discretization of 9 facets / λ2 . This cavity is split
into a variable number of identical sections and the scattering matrices
are obtained by using IPO (with an appropriate number of iterations)
or PPO. The last section is considered to be only a PEC circular plate
(short circuit) which corresponds with the cavity termination; so, the
surface St is placed just in the cavity end. This kind of termination
is used because its generalized reflection coefficient Γ can be easily
calculated by invoking the image theory approach [15]. The rest of
the sub-sections in which the cavity is split are identical; thus we only
need to calculate one scattering matrix in each RCS computation.

Figure 3 shows a comparison between the results generated by the S-
IPO with different number of sections and a reference modal solution.
The cavity has been analyzed connecting: 1 section (3 iterations were
needed), 2 sections (2 iterations) and 3 sections (1 iteration). From
this figure we see that the S-IPO method performs very well the RCS
pattern in all the cases.

Fig. 4 shows the RCS results obtained by the S-PPO method for
the same cavity and with the same number of sections (1, 2 and 3). It
can be seen that a good grade of accuracy is also achieved in this case,
although worse than that obtained by S-IPO. However, the S-PPO has
the advantage that its computational cost is lower, as can be seen in
Table 2.
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1 sections 2 sections 3 sections

S-IPO 100 % 16 % 3.7 %

S-IPO 16 % 4 % 1.8 %

Table 2. Relative computational cost, (%)

It must be noticed that Table 2 was obtained taking into account
that the sections are identical, so only one section has been analyzed.
It can be seen that the computational cost decreases as the number of
sections increases. Nevertheless, there is a limit in the number of sec-
tions, because too many sections produce significant numerical errors
due to the discretization process involved in the cross section of each
junction. It has been found that a section whose depth is similar to
the cross section diameter uses to be a good choice.

5. CONCLUSIONS AND DISCUSSION

A segmented approach for both IPO and PPO methods has been de-
scribed in this paper for analyzing the electromagnetic scattering from
electrically large and deep cavities. The response of the whole cavity
is obtained by splitting the cavity into sections, analyzing this sections
separately and finally connecting them to evaluate a generalized reci-
procity integral in a surface close to the termination. This connection
algorithm is similar to the one described in [16], where the scattering
matrix was obtained by standard Method of Moments (MoM). In this
previous work, the whole scattering matrix was obtained without do-
ing any simplification, thus the method was restricted to very small
cavities due to the high computational cost and storage requirements.
Both S-IPO and S-PPO use the Kirchhoff approximation and the gen-
eralized reciprocity integral to greatly simplify the connecting scheme,
which allows both methods to be used for very large and deep cavities.
Otherwise, both methods are suitable to be implemented in parallel
processors which implies additional computational advantages.
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Figure 4. RCS of a cylindrical cavity of radius a = 3.5λ and depth
L = 21λ using S-PPO with a variable number sections.
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Figure 3. RCS of a cylindrical cavity of radius a = 3.5λ and depth
L = 21λ using S-IPO with a variable number sections.
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The computational cost of the S-IPO is reduced by a factor of N2

(or even N3 when the sections are identical) with respect to conven-
tional IPO; while in the case of S-PPO it is reduced by a factor of N
(or even N2 ), where N is the number of sections. It is clear that
both methods entail a drastic improvement in the efficiency of the pre-
vious methods based on iterative solutions of the MFIE, enhancing
its scope of application to deeper cavities. Nevertheless, it must be
pointed out that when the number of sections increases, the results be-
come highly dependent on the accuracy obtained in the transmission
matrix calculations; so in these cases the S-IPO is preferable than the
S-PPO because it provides more accurate results, although it needs
more computational cost.
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