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Abstract—Master-slave control is a common form of human-
robot interaction for robotic surgery. To ensure seamless and
intuitive control, a mechanism of self-adaptive motion scaling
during teleoperaton is proposed in this paper. The operator
can retain precise control when conducting delicate or complex
manipulation, while the movement to a remote target is accel-
erated via adaptive motion scaling. The proposed framework
consists of three components: 1) situation awareness, 2) skill
level awareness, and 3) task awareness. The self-adaptive motion
scaling ratio allows the operators to perform surgical tasks
with high efficiency, forgoing the need of frequent clutching
and instrument repositioning. The proposed framework has been
verified on a da Vinci Research Kit (dVRK) to assess its usability
and robustness. An in-house database is constructed for offline
model training and parameter estimation, including both the
kinematic data obtained from the robot and visual cues captured
through the endoscope. Detailed user studies indicate that a
suitable motion-scaling ratio can be obtained and adjusted online.
The overall performance of the operators in terms of control
efficiency and task completion is significantly improved with the
proposed framework.

Index Terms—Learning and adaptive systems, telerobotics and
teleoperation, medical robots and systems.

I. INTRODUCTION

ROBOT-ASSISTED Minimally Invasive Surgery

(RAMIS) has helped extend the clinical impact of

MIS in terms of consistency, accuracy, and safety of

procedures [1]. Currently, master-slave control is the primary

form of the surgical remote control to ensure that the

slave robot accurately executes an operator’s command.

In a master-slave control framework, the improvement of

human-robot interaction can simplify the performance of

surgical procedures, bringing improved clinical outcomes [2].

Motion scaling is an essential part of the master-slave

paradigm. For performing delicate tasks, measured hand mo-

tion of the master manipulators is scaled down and replicated

by the slave robots. The use of motion scaling enables the

users to conduct precise manipulation during teleoperation [3].

However, the small motion scaling ratio prevents the operator

from reaching distant targets without clutching. This is time-

consuming as the operator needs to reposition the master by
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disconnecting the master from the slave. There is therefore

the practical need for the robot to cater for different surgical

maneuverers and change adaptively the scaling ratio depending

on the task being performed [4]. A small ratio is required

for delicate motion involved in micro-surgical tasks and a

relatively large ratio can be used for gross positioning and

reaching to remote targets. In practice, an online adjustable

and context-aware motion scaling ratio is beneficial for optimal

master-slave mapping and task completion.

Another factor influencing the selection of motion scaling is

related to the skill level of the operator. Although the motion

scaling ratio can be modified manually by the surgeon, it is

difficult to determine an optimal value for a given task. A

method was explored in [5] to improve both the speed and

precision during the surgical operation, with the main focus

on optimizing a generic value without an adaptive mechanism.

However, a scaling ratio that is optimal for one user may be

unsuitable for another. Furthermore, given the same person, a

different scaling ratio may be used depending on the specific

task being performed and the cognitive load due to stress,

team cooperation and unexpected complications. Therefore, a

self-adaptive motion scaling mechanism is required, through

which the system can dynamically adjust the motion scaling

ratio based on the task requirements, operating condition and

the user preference.

In [4], the motion scaling ratio is automatically adjusted

to reduce the task completion time for a master-slave robotic

neurosurgical system. Comparisons are made among different

modes through a user study involving five subjects. How-

ever, each mode has its inherent limitations and the linear

assumption used for motion-scaling ratio modulation is not

appropriate for all surgical tasks.

A gaze-assisted intention recognition scheme has been pro-

posed [6] to achieve adaptive motion scaling. Eye-tracking

in conjunction with other sensing modalities is employed to

infer the intended position that the operator is trying to reach

so that the motion scaling ratio can be changed accordingly.

The information is then used to modulate the motion scaling

ratio, which enables the operator to reach distant targets more

quickly [6]. It is worth noting that adaptive motion scaling

with eye tracking is still difficult to be fully integrated to

general surgical systems and the effectiveness of gaze-assisted

intention recognition can be problematic when operators wear

glasses. Therefore, a more general solution is required to

combine the kinematic data with the vision data for the

construction of an adaptive mechanism.

In existing work, it was reported that the parameters could
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Fig. 1. Overview of the self-adaptive motion scaling framework and the flow charts of the offline analysis and the online calculation.

be automatically tuned by using Bayesian inference to opti-

mize a human-robot interface in a user-specific manner [7],

the subjects were required to perform the same tasks for

multiple trials to grade the robot’s behavior or select preferred

parameters, which is not realistic in clinical settings.

In order to address the aforementioned limitations, a novel

self-adaptive motion scaling framework is proposed in this pa-

per. The framework utilizes both vision and kinematic data to

provide complementary information. Real-time vision contains

semantic information (e.g., instrument motion characteristics

and tool-tissue interaction), which is equally or more infor-

mative than kinematics data for determining surgical situation

awareness [8]. The kinematic data, on the other hand, contains

the detailed trajectories and poses of the end-effectors, as well

as the status of the end-effectors of the instruments.

Probabilistic modeling can be employed to recognize the

advent of specific surgical procedures that require the precise

operation, which represents situation awareness of the system.

Skill level assessment is incorporated to realize user-specific

parameter estimation. Surgical episode identification is neces-

sary to take task-driven factors into consideration and ensure

flexible adaption to different surgical scenarios.

The overall structure of the rest of the paper is organized

as follows. Firstly, the methodology is introduced in Section

II. Secondly, detailed user studies are described in Section

III. The results are presented and analyzed in Section IV and

finally, conclusions are drawn in Section V.

II. METHODOLOGY

In this section, the architecture and technical details of the

construction of the self-adaptive motion scaling framework are

illustrated, which dictates the final adaptive ratio.

A. System Overview

The overall framework is illustrated in Fig. 1. The adaptive

ratio is determined by three components, including 1) situation

awareness, 2) skill level awareness, and 3) task awareness.

Situation awareness can be regarded as an online pattern

recognition of different operational situations (e.g., tool-tissue

interaction, dexterous and bimanual operation). User-specific

factors can be addressed by skill level assessment, while task-

specific factors are incorporated into the framework to ensure

generalizability of the system.

1) Situation Awareness (α):

• Safety Factor (αs): When the end-effectors of the slave

robot are operating within a short distance to the tissue,

the scaling ratio should be small to ensure safety. The

value of αs is assigned as the probability of tool-tissue

interaction.

• Motion Factor (αm): When the motion of the robot

varies extensively, the operator is assumed to conduct a

dexterous operation, like positioning and targeting. The

value of αm is assigned as the probability of dexterous

operation.

• Interaction Factor (αi): When the distance between a

pair of instruments of the slave robot is small, it is

assumed that the slave robots are involved in the bimanual

operation. The value of αi is assigned as the probability

of bimanual operation.

2) Skill Level Awareness (β):

• Baseline Skill Level (βb): Baseline skill level βb is

adopted as a constraint to limit the adaptive ratio within

a reasonable range. The value of βb depends on the skill

level of the operators given by their previous operation

performance.

• Real-time Skill Level (βr): Real-time skill level βr is

introduced to adjust the skill level of the operator online

during the teleoperation process. The skill level of the

operator is not fixed, because the operators may encounter

various situations when performing different procedures.

3) Task Awareness (γ):

• Pre-trained Model (γm): Different surgical tasks may

have different inherent characteristics. A pre-trained

model for surgical gesture recognition through offline

training is useful to incorporate the task-specific features.

γm is determined by the online surgical gesture classifi-

cation results as the real-time precise degree evaluation.
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• Pre-operative Data (γd): Pre-operative data can be used

to predict the complexity of procedures at different

phases of the operation. Therefore, the framework can

combine the information from the pre-operative data as

the conservative degree of surgical skill assessment when

conducting the operation in critical areas.

B. Situation Awareness

Bayesian networks can capture the relationship of causality

by incorporating prior knowledge in a parameter estimation

process. In a Bayesian network, suppose that there are n child

nodes in total and each child node has only one corresponding

parent node. P (Ci|F (Ci)) (i = 1, 2, . . . , n) refers to the

conditional occurrence probability of Ci (child node) given

that F (Ci) (parent node) occurs.

Fuzzy Bayesian Network (FBN) utilizes fuzzy logic [9]

to simplify continuous data and generate soft evidence with

uncertainty in the Bayesian network. Suppose that C̃i ={
C̃i1, C̃i2 . . . , C̃ir

}
represents the fuzzy set for variable Ci

generated by the corresponding membership function µij(j =

1, 2 . . . r), where C̃ij = µij (x) is the j-th fuzzy state of

∀x ∈ Ci. r denotes the total number of fuzzy states, which

can be determined the specific application scenarios. The grade

of the membership function is used as the probability value.

Considering the fuzzy state mapping, P̂ = P
(
Fl(Ci)|C̃i

)
can

be obtained by (1):

P̂ =

r∑

j=1

P
(
C̃ij |Fl(Ci)

)
× P (Fl(Ci))

∑m
k=1

P
(
C̃ij |Fk(Ci)

)
× P (Fk(Ci))

× C̃ij (1)

where Fl(Ci)(l = 1, 2, . . . ,m) represents the parent node at

state l.
In the proposed framework, tool-tissue interaction indicates

that the surgical tools approach a critical area of the anatomy.

Dexterous operation represents the situation that the surgical

tools are involved in relatively big movements, while biman-

ual operation represents the tool-tool interaction. Tool-tissue

interaction, dexterous operation and bimanual operation are the

child nodes of precise operation, while object distance, linear

velocity, rotational velocity and tool distance are evidence at

the fuzzy mapping level. True and false represent the two

states for nodes (tool-tissue interaction, dexterous operation

and bimanual operation), the probability of which can be

regarded as fuzzy values. Small and big are two fuzzy states

for the evaluation of the nodes at the fuzzy mapping level. The

structure of the FBN used in this paper for situation awareness

is shown in Fig. 2.

As for online data acquisition, object distance (OD) is

the characteristic distance between the end-effectors and the

nearest critical area for surgical operation, which is estimated

by visual cues from the endoscope. Linear velocity (LV) and

rotational velocity (RV) can be acquired by differentiating the

real-time pose of the end-effectors of the slave robot. Tool

distance (TD) is the Euclidean distance between the trajectory

generated by the two end-effectors of the slave robot. The

value of OD, LV, RV and TD are calculated by (2).
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Fig. 2. The Fuzzy Bayesian Network (FBN) for the situation awareness.



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OD = max(min(Pli), min(P ri))(i = 1, 2, . . . , s)

LV = ||λ∗(t)− λ∗(t−∆t)||/∆t(∗ = l, r)

RV = ||Ω∗(t)−Ω∗(t−∆t)||/∆t(∗ = l, r)

TD = ||λl(t)− λr(t)||

(2)

where Pli and Pri (i = 1, 2, . . . , s) are the distance between

the end-effectors of the surgical tools to the features on the left

image and that on the right image respectively. In the above

equation, s indicates the number of clustering centers of the

feature points acquired by raw images. λr(t) and λl(t) are

the 3D trajectory profile, while Ωr(t) and Ωl(t) are the 3D

orientation profile of the tooltips of the right and left surgical

tools at time step t respectively. ∆t is the time interval which

depends on the the kinematic data acquisition rate.

After acquiring all the required continuous data, the fuzzy

values are estimated, and are used as evidences for the FBN.

αs, αm, and αi represent the probability of tool-tissue interac-

tion, dexterous operation and bimanual operation respectively.

With these obtained values and other prior information, the

posterior probability of precise operation P (αs, αm, αi) can

be estimated based on (1), which is assigned to α and can be

adjusted online.

C. Skill Level Awareness

The skill level can be determined by both baseline and real-

time skill levels.

1) Baseline Skill Level: Baseline skill level βb is a fixed

parameter that can be estimated by the previous performance

of the operators. To this end, the operators historical data for

task execution is utilized for analysis.

For MIS, Objective Structured Assessment of Technical

Skills (OSATS) is normally used [10]. However, the grading

process is time-consuming. To simplify this process, three

metrics are selected to form the baseline skill assessment

in this paper. These include the time-normalized instrument

path length v̄ of the slave robot end-effectors, the number of

clutching nc on the master side and the number of failure nf

(e.g., the number of dropping the peg or rubber ring during

transfer process), which have been reported to demonstrate

some aspects of the surgeon’s expertise in [11].
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Suppose that Ru and Rd are the upper and lower limit of

skill assessment range respectively. Baseline skill level βb can

be determined by (3).

βb = Rd + (Ru −Rd)×min(
v̄

max(v̄)
,

nc + nf

max(nc + nf )
) (3)

where max(v̄) is the maximum average control speed among

all the trials in the database, max(nc + nf ) is the maximum

number of the sum of nc and nf during one trial based on the

previously recorded data.

2) Real-time Skill Level: The real-time skill level can be

adjusted at the end of a time segment Ti(i = 1, 2, . . . , n),
where Tn is the current time segment, t represents the current

time point. By monitoring the motion quality, real-time skill

level adjustment can be realized.

Gracefulness (G) is quantified based on the curvature (κ) of

a trajectory, which indicates the straightness of the path [12],

[13]. Median curvature along the trajectory generated during

time segment Ti is used to determine gracefulness. It is defined

as follows:

G = Median(logκ
10
(Ti)) (4)

where κ is calculated based on (5).

κ =
||λ̇(t)× λ̈(t)||

||λ̇(t)||
3

(5)

where λ(t) represents the points in 3D space in the form

of vector. λ̇(t) and λ̈(t) are instantaneous velocity and ac-

celeration of the surgical tooltips respectively, which can

be calculated directly by computing the first and second

derivatives of the positions of the tooltips.

Smoothness (S) is quantified based on the rate of changes

in acceleration [14], which can reflect the continuity or non-

intermittency of a movement.

A valid, sensitive, practical and reliable measure should

be considered for smoothness estimation [15]. Compared to

root mean square jerk, normalized mean absolute jerk and

spectral arc length, the number of peaks and dimensionless

jerk have the advantage of being independent of its amplitude

and duration. Log dimensionless jerk is able to eliminate

the inherent lack of sensitivity in the physiological range

brought by the dimensionless jerk and the number of peaks

during measurement [15]. Therefore, Smoothness is defined

as follows.

S = Median(log
φ
10
(Ti)) (6)

where φ is calculated based on (7).

φ =
σ5

v2p

∫ t

t−σ

∣∣∣∣
d3λ(t)

dt3

∣∣∣∣
2

dt (7)

where σ is the duration of the time segment which can be

determined by the real-time skill level updating rate, vp is the

peak value of velocity within the time segment.

As the log dimensionless jerk is sensitive to measurement

noise, the kinematic data are filtered at first before being used

for the real-time skill level assessment to ensure reliability.

This can reduce the influence from the noisy data. The real-

time skill level βr can therefore be determined as follows:

βr = max{
1

1 + eS−ε1
,

1

1 + eG−ε2
} (8)

where parameter ε1 and ε2 can be tuned based on the appli-

cation scenarios.

Frequency-based features and entropy-based features were

used in some literature for skill assessment. While end-to-end

learning methods without feature extraction were employed in

[11] [16]. However, this paper is mainly focused on the self-

adaptive motion scaling framework construction. Details of

the evaluation metric and parameter estimation can be readily

extended to other situations.

D. Task Awareness

1) Pre-operative Data: Current imaging modalities such as

Magnetic Resonance Imaging (MRI), Computed Tomography

(CT), X-ray, fluoroscopy and ultrasound are widely used

for pre-operative imaging and reconstruction [17]. Therefore,

pre-operative data can be collected beforehand to define the

targeted area for operation. Critical areas are pre-defined, and

the minimal distance between the surgical tooltips and the

centers of the critical areas can be monitored online.

γd can be calculated as follows:

γd = (1− γdo) + γdo ×
2

1 + eδd−θ
(9)

where γd∈(1− γdo, 1 + γdo). γdo and δd are parameters that

control the adaptive range and distribution of γd respectively.

θ = minDj(j = 1, . . . q) is a variable. Dj is the distance

(unit:mm) between the surgical tooltip to the jth critical areas.

q is the total number of pre-defined critical areas, which

depends on the complexity of the surgical tasks and the

targeted anatomy.

2) Pre-trained Model: For adaptive motion scaling, the

surgical gestures are classified based on the level of preci-

sion. Hidden Markov Model (HMM) [18], Long Short Term

Memory (LSTM) based Recurrent Neural Networks (RNNs)

[19] or other time sequence processing technologies [20] can

be employed to assist surgical episode identification and to

incorporate characteristics of different tasks in the proposed

framework. The relationship between the precise degree and

the surgemes are pre-defined and can be modified by dif-

ferent surgical tasks. A classification model can be trained

by utilizing the existing database. Considering its favorable

performance of end-to-end learning in many situations, LSTM

is utilized for classification in this paper.

ξ(ξ = 0, 1, . . . (N − 1)) represents the precise degree that

determines the value of γm, which depends on the LSTM

classification results. γm(ξ) can be calculated as follows:

γm(ξ) = (1− γmo) + γmo ×
2ξ

N − 1
(10)

where γm(ξ)∈[1 − γmo, 1 + γmo]. γmo is a parameter that

control the adaptive range of γm, N is the total number of

levels for precise degree. The higher the ξ value, the more

precise requirement the surgeme needs.
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E. Real-time Motion Scaling Ratio

Thus far, the methods for constructing the major compo-

nents of the self-adaptive motion scaling framework have been

illustrated. The final adaptive ratio R(t) can be determined as

the function of all the adjustable factors as shown in (11).

R(t) = f1(βb, βr, γd)− f2(αs, αm, αi, γm) (11)

where f1(.) is the function for the scaling ratio increasing

degree estimation, f2(.) is the function for the scaling ratio

decreasing degree estimation (see (12)).
{
f1 (βb , βr, γd) = βb + βr × γd

f2 (αs, αm, αi, γm) = γm × P (αs, αm, αi)
(12)

f1(.) is calculated based on real-time motion analysis,

performance evaluation of the operator, as well as the pre-

operative data. It is affected by the skill level of the operator,

and the distance of the surgical tools to the operational targets.

f2(.) is determined by probabilistically based situation

awareness and surgical gesture recognition. It is influenced

by the inherent characteristics of the surgical procedures and

online surgemes precise degree estimation during operation.

III. USER STUDIES

In this section, detailed illustrations of user studies for

validating the proposed framework are presented.

A. Experimental Setup

(Master Side) (Slave Side)

Fig. 3. The experimental platform for user studies.

In order to verify the effectiveness of the proposed motion

scaling framework, detailed user studies are conducted on a

dVRK [21], which includes the Patient Side Manipulators

(PSMs), the Endoscopic Camera Manipulator (ECM) and the

Master Tool Manipulators (MTMs). This research platform

has similar hardware components as the da Vinci Surgical

System (Intuitive Surgical Inc., CA, United States) has. Fig.

3 illustrates the master-slave system used in the user studies.

Thanks to the dVRK-ROS Bridge, both kinematics and

vision data can be captured for offline analysis and online

calculation. The end-effectors’ pose of the PSMs and MTMs

can be subscribed from a ROS based topic (collected at 100

frames per second). The stereo stream from the endoscopic

system is captured by a Kona 4 PCIe frame grabber (AJA

Video System, CA, United States). The stereo vision data

TABLE I
SURGICAL GESTURE VOCABULARY AND PRECISE DEGREE

Index Surgemes Description
Precise Degree ξ

N=2 N=3 N=4

S1 Transfer Object Operation 1 1 2

S2 Grasp Object with Right Hand 1 2 3

S3 Move to Next Target with Right Hand 0 0 0

S4 Locate Object with Right Hand 1 1 1

S5 Grasp Object with Left Hand 1 2 3

S6 Move to Next Target with Left Hand 0 0 0

S7 Locate Object with Left Hand 1 1 1

is recorded at 25 frames per second with a resolution of

720× 576. Chessboard calibration [22] is utilized to estimate

the rigid transform relationship between the frames of the

PSMs’ end-effectors and the coordinate frames of the stereo

images.

A peg board for standard FLS (Fundamentals of Laparo-

scopic Surgery) training, along with a rubber ring, was em-

ployed for the ring transfer task in the user studies. The rigs

on the peg board were defined as the potential tool-tissue

interaction areas, the features of which were extracted by the

ORB (Oriented Fast and Rotated Brief) algorithm as raw data.

GMM (Gaussian Mixture Model) was employed to cluster the

raw data to obtain 12 central points, which were regarded as

the centers of tool-tissue interaction areas.

B. Database and Procedures

A database for ring transfer task was collected in-house

beforehand for parameter estimation and model training. In

the database, a trial is a sequence of data performed by one

subject during a specific task. Data for each trial includes both

kinematics and stereo vision data.

Surgical tasks can be decomposed into basic rudimentary

gestures that represent well-defined surgical motion unit,

named surgemes [23]. Seven types of surgemes are defined

for the ring transfer task (see Table I) in this paper. The

database was manually annotated with the surgemes defined

at the frame level. The kinematics data was labeled after the

registration with the video data.

Suppose that there are K types of surgemes for a surgical

task (e.g. K = 7 for ring transfer task). A N -class classifica-

tion model can be trained with the labeled data based on LSTM

method (2 ≤ N ≤ K). As shown in Table I, the precise degree

ξ is defined under the condition of N = 2, 3, 4 respectively.

Considering that the task requirements for the ring transfer

task is relatively simple, the total number of precise degree

N = 2 was used in this paper, with surgemes S3 and S6
defined as coarse surgemes (ξ = 0) and the remaining ones

defined as precise surgemes (ξ = 1). A 2-class classification

model for precise surgemes and coarse surgemes can therefore

be trained with the labeled data, which can be loaded for online

classification. Six critical areas (q = 6) are pre-defined (see

Fig. 4). Other task-specific parameters γmo = 0.1, γdo = 0.1
and δd = 10 are chosen for the user studies. In this way,

pre-operative data and the pre-trained model can be obtained

beforehand. It is worth noting that the total level of precise
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degree, the number of critical areas and other parameters can

be customized when transferred to other application scenarios.

For offline analysis, all the user-specific and task-specific

parameters, as well as the prior probability of the FBN can

be estimated through the database and fitted into the scaling

ratio adjusting functions. For online calculation, the duration

of the time segment σ = 1s was used to update the operator’

skill level, while task awareness can be achieved by estimating

the real-time precise degree and monitoring the distance to

the targeted area. All the variables required for FBN inference

can be obtained to realize situation awareness when combining

real-time visual cues with kinematic data of the robot. Flow

charts of the detailed procedures of the offline analysis and

the online calculation are shown in Fig. 1. Thus far, the self-

adaptive motion scaling framework can be set up when all the

information is fused together.

C. Participants and Tasks

Seven non-clinical participants (1 female and 6 males;

aged 26.6±2.7) were recruited in the user studies. Six of the

participants are right-handed, while one of them is left-handed.

Three of the subjects have teleoperation experience, and two

of them are familiar with the dVRK. One of the participants

has been using the dVRK system for four years, while the

other one has six-month experience.

Trajectory of PSM2

Trajectory of PSM1

PSM1 Initial Point

PSM2 Initial Point

Fig. 4. Illustration of the ring transfer task.

The ring transfer task was simplified so that all the subjects

could finish the whole procedures with ease. PSM1 and PSM2

represent the right arm and the left arm of the slave robot, the

initial positions of which are located at around at around Or

and Ol (see Fig. 4). As shown in Fig. 4, the whole procedures

for the ring transfer task are described as follows:

1) Right Arm Movements: Control PSM1 to grasp the ring

from A, then transfer and place it on B. Similarly, grasp

the ring from B, then transfer and place it on C.

2) Bimanual Operation: Control PSM1 to grasp the ring

from C, then pass the ring to PSM2, then control PSM2

to place the ring on D.

3) Left Arm Movements: Control PSM2 to grasp the ring

from D, then transfer and place it on E. Finally, grasp

the ring from E, transfer and place it on F.

All subjects had a practice session for basic skills acqui-

sition. Those who had no experience on teleoperation were

required to get familiar with all the surgemes of the ring

transfer task by executing each gesture at least three times

until they met the baseline proficiency to be included in the

user studies. Then, all the qualified subjects were asked to go

through the whole procedure twice to get accustomed to the

experimental protocols.

During the formal user studies, the subjects were asked to

perform the same task for three to five times by transferring

the ring as quickly as possible with each of the two control

modes, namely, via i) fixed mode, ii) adaptive mode. Thus,

overall each participant performed the task for six to ten

times in total. In order to remove outliers, the best trial and

worst trial in terms of task completion time for each subject

were abandoned. A total of 24 trials were collected. In order

to mitigate the learning effects, the sequence in which the

subjects performed the tasks via i) fixed mode, ii) adaptive

mode was randomized. The participants were informed of the

sequence after they finished all the trials.

IV. RESULTS AND ANALYSIS

In this section, behavioral analysis is presented at first.

Result analysis is conducted based on the operational perfor-

mance and cognitive workload of the participants in the user

studies.

A. Behavioral Analysis

A survey was conducted after the user studies to collect

subjective feedback from the subjects. All the subjects agreed

that they feel significantly more natural and comfortable when

using the adaptive mode.
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Fig. 5. An example of the evolution of the adaptive scaling motion ratio with
typical surgemes during a trial. (a) S3: Move to Next Target with Right Hand
(approach critical areas); (b) S2: Grasp Object with Right Hand (tool-tissue
interaction); (c) S1: Transfer Object Operation (bimanual operation); (d) S6:
Move to Next Target with Left Hand (far from critical areas).

A typical example of the adjustment of the motion scaling

ratio during an operation is shown in Fig. 5, the data of

which lasted for one minute approximately, with 0.5hz online

acquisition rate. The range of the overall scaling ratio is 0.1-

0.6. Compared to the period when a tool was far from critical

areas, the range of the adaptive ratio was significant reduced

when the tool approached critical area (Fig. 5(a) vs. Fig. 5(d)).

It is evident that the range of the adaptive range of the scaling

ratio of precise surgeme is much smaller than that of the coarse

surgeme (Fig. 5(b) vs. Fig. 5(d)). The range of the scaling ratio

of the bimanual operation motion is less than that of the single

hand motion without tool-tool interaction (Fig. 5(c) vs. Fig.

5(d)).

Fig. 6 shows the trajectories of the master manipulators

during operation with and without using the self-adaptive

motion scaling framework. MTMR and MTML represent the

right and left arm of the master manipulators respectively. It

can be seen that with the adaptive mode, the trajectories are

more consistent, which demonstrates clear motion primitives
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during the operation. The trajectories are much more chaotic

with the fixed mode, which indicates poor ergonomics for the

teleoperation.

Fixed Mode Adaptive Mode

Trajectory of MTML

Trajectory of MTMR

(a) (b)

Fig. 6. Trajectories of the end-effectors of master manipulators (MTMR and
MTML respectively) with (a) fixed mode, (b) adaptive mode.

B. Quantitative Evaluation Metrics

The usability of the proposed framework is analyzed quan-

titatively through the following metrics:

1) Completion Time: Completion time measured in seconds

(s) represents the length of the time for a subject to finish a

single trial of the ring transfer task.

2) Master Robot Trajectory: The total path length of master

robot end-effectors is measured over a single trial in meters

(m).

3) Slave Robot Trajectory: The total path length of slave

robot end-effectors is measured over a single trial in metres

(m).

4) Control Efficiency: The ratio between the total path

length of the slave robot end-effectors and that of the master

robot. This metric can reveal how efficiently the operation’s

movements were mapped to the slave robot to fulfill the

surgical procedures. The higher the control efficiency, the less

the physical demand is required by an operator to manipulate

the slave robot.

5) Clutching Number: The times of the user using the

clutching mechanism to reposition the master manipulators.

6) Average Velocity: Average velocity measured in millime-

ter per seconds (mm/s) can be regarded as time-normalized

instrument path length. It is obtained by dividing the slave

robot end-effectors total path length measured over a single

trial by the respective task completion time.

7) Cognitive Workload: National Aeronautical Space

Agency-Task Load Index (NASA-TLX) questionnaire can be

used to measure the subjects’ cognitive workload for different

mapping strategies by scoring six subjective subscales [24].

This subjective questionnaire is validated through the weighted

score method. The average scores for the fixed mode and the

adaptive mode for each subject are provided as the final results

of cognitive workload comparison.

C. Performance Analysis

Normality tests (Shapiro-Wilk test) at 0.05 significance level

were performed before subsequent statistical analysis. The

obtained experimental data of evaluation metrics (completion

time and master robot trajectory) reveal non-parametric nature,

while the data of other metrics satisfy the normal distribution

assumption.

The user study was a within-subject design, with all the sub-

jects completing repetitions of two control modes. Therefore,

Wilcoxon signed-rank tests were conducted for non-parametric

statistical comparison between variables (completion time and

master robot trajectory), while T-tests were conducted for the

other metrics to justify the statistical differences between the

two control modes. A p-value<0.05 is considered significant.

The total path length of the slave robot trajectory of all the

subjects was calculated for the fixed mode and the adaptive

mode, the average value of which was 0.851m and 0.923m

respectively. One potential reason for the increased path length

is that the users can operate with higher speed when perform-

ing coarse motions with the adaptive mode, which results in

moving towards the next target without carefully selecting an

optimal trajectory. However, the results are not statistically

significant (p = 0.425).

Fig. 7 shows the results of comparison presented in the

form of the box plot with evaluation metrics that have statistic

differences (p < 0.05). Respective average values and standard

deviation values are also included.
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Fig. 7. Box plot results, including the comparisons in terms of (a) Completion
Time; (b) Master Robot Trajectory; (c) Control Efficiency; (d) Clutching
Number; (e) Average Velocity; (f) Cognitive Workload.

The completion time over the trials was significantly shorter

for the adaptive mode compared to the fixed mode (44.5s

vs. 64.3s, p = 0.0022). In terms of the average speed, the

subjects could complete the same procedures much faster with

the adaptive mode than with the fixed mode (22.85mm/s vs.

14.51mm/s, p = 0.0013). Using the adaptive mode, reduced

clutching was observed (1.6 vs. 4.8, p=0.0001), which con-
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tributed to the smooth operational workflow. This makes a

significance, as the subjects can improve the control efficiency

(0.37 vs. 0.20, p = 0.0022), by reducing the total path length

of the master robot (2.67m vs. 4.63m, p = 0.0047), due

to the reduced requirement of repositioning. Moreover, the

subjects’ cognitive workload could be significantly reduced

when using the adaptive framework (p = 0.0081), since the

average weighted score values for the adaptive mode and the

fixed mode are 42.8 and 57.4 respectively.

From the comparison of results between two different

modes, it can be concluded that with the proposed self-

adaptive motion scaling framework, the teleoperation effi-

ciency and the overall operators’ performance can be signifi-

cantly improved.

V. CONCLUSIONS AND FUTURE WORKS

This paper introduces a novel approach to dynamically

adjust the motion scaling ratio. By combining the visual cues

and the motion data obtained from the slave robot, along

with prior knowledge, operator skill assessment and task

information, the system is capable of modifying the motion

scaling accordingly.

Based on the results of user studies, the self-adaptive motion

scaling framework is proved to have the ability to seamlessly

adjust the scaling ratio, which results in improved efficiency of

teleoperation. The effects of the adaptive scaling are noticeable

by the subjects, because of the significantly reduced clutching,

task completion time and total path length of the master robot.

The improvements of the average control speed and the control

efficiency are also evident.

The self-adaptive motion scaling framework can be readily

adapted to other surgical tasks, provided that the surgemes and

the corresponding precise degree are well-defined. Future work

will include testing the self-adaptive motion scaling framework

on different master-slave systems via different surgical tasks

(e.g. knot-tying, needle passing and suturing). More objective

evaluation metrics can be explored to improve the reliability

of baseline skill assessment in more complicated surgical

scenarios. Moreover, the effect of situation awareness can be

significantly improved when the database is enlarged.
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