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ABSTRACT Wind power has contributed significantly to the increase in electricity generation, but a
decision-making tool capable of dealing with its variability and limited predictability is necessary. For
this purpose, a novel self-adaptive approach for kernel recursive least-squares machines named multiple
challengers is introduced in this work, which is successfully used to produce very short-term wind power
forecasts at eight wind farms in Australia. The proposed method is based on a competitive tracking method,
and the algorithm deals with some common difficulties of kernel methods, e.g., the increasing kernel
matrix size associated with time and memory complexities and the overfitting problem. The proposed
method always considers the new information received by the model, thus identifying changes in the time
series, avoiding abrupt loss of information and maintaining a controlled number of examples since there
is an adaptive selection of the active kernel. It works with the smallest dictionary possible, reducing the
probability of overfitting. Five minute-ahead wind power forecasts are produced and evaluated in terms of
point forecast skill scores and calibration. The results of the proposed method are compared with those
provided by other kernel-based versions of the recursive least-squares algorithm, an online version of the
extreme learning machine method, and the persistence time series model. An increase in the number of
kernels used in the ensemble system can lead to better results when compared with those of single-kernel
models.

INDEX TERMS Multiple kernel learning, online training, renewable energy, wind power forecasting.

I. INTRODUCTION

W IND power continues to receive significant attention
throughout the world [1]. In this context, the variabil-

ity of power production and the restricted control of wind
turbines justify the development of wind power forecasting
models [2]. This is a key factor in ensuring the successful
integration of wind farms into the AC power grid [3]. Thus,
the reliable and economical operation of power systems
with high wind power penetration demands the utilization of
accurate models for this purpose [4].

Wind power forecasting has different time horizons ac-
cording to its application [5]. The time-scale classification is
not strictly defined, but it can be classified into very short-
term (few seconds to 30 minutes ahead), short-term (30
minutes to 24 hours ahead), medium-term (24 hours to one

week ahead), and long-term (one week to years ahead) [5]–
[8].

Wind speed and/or power forecasting methods are broadly
classified into three categories: (i) physical models use de-
scriptions of the lower atmosphere, geographical features,
and obstacles to predict the flow of wind. Physical models
are usually based on numerical weather prediction (NWP)
models which predict meteorological variables like wind
speed, wind direction, pressure, and other variables, using 3-
D spatial and temporal information based on computational
fluid dynamic (CFD) models. Wind power forecasts can be
obtained based on the performance of a wind turbine or a
wind farm using NWP results [9], [10] but require extensive
calculations and considerable time [11]. Physical models are
of limited practical use in very short-term forecasting due
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to latency issues, and need accurate initial conditions of
wind farms that cannot be always guaranteed [12]. However,
physical models can represent weather phenomena, such
as forward edge of an advancing mass of air (front) and
thunderstorm. (ii) Statistical and machine learning models
represent the behavior of wind speed and/or power time
series based on the wind or power historical data. NWP
input is optional for these models. They are faster during
the development period and processing results than physi-
cal models, and many have been studied for this purpose,
such as autoregressive moving average with exogenous input
(ARMAX) [13], autoregressive integrated moving average
(ARIMA) [14], neural networks (NNs) [15], support vector
machines (SVMs) [16], fuzzy logic [17], [18], and extreme
learning machines (ELM) [19], [20]. (iii) Hybrid models,
in order to improve forecasting performance, combine dif-
ferent methodologies to take advantage of each method
[21], such as weighting-based models, hybrid models with
data preprocessing techniques, hybrid models with parameter
selection, and optimization techniques and hybrid models
with error processing techniques [22]–[26]. Among them,
decomposition-based approaches taking advantage of time
series decomposition methods have been frequently reported,
and the original time series can be decomposed into different
subseries and modeled more effectively than the original time
series [27].

Reviews related to wind power forecasting are available in
[21], [28]–[30]. Giebel et al. [28] concluded that for forecast
horizons of less than approximately six hours, statistical
methods using local information are superior to physical
models.

Statistical methods used for wind speed and power pre-
diction are usually linear despite the nonlinear nature of the
wind and are typically employed in single sites. Considering
this key aspect, the present study aims to investigate a class
of learning algorithms named kernel methods, which can
provide linear processing of nonlinear features for one and
multiple sites. This technique retains the properties of linear
processing, such as fast learning algorithms and a unique
optimal solution, while making it possible to capture some
nonlinearities. Kernel machines combine statistical learning
theory to optimize generalization [31], with mathematical
programming to find solutions efficiently as well as to im-
prove the similarity measure between points to handle nonlin-
earity issues [32]. This work addresses a regression problem,
where kernel machines consider the fact that observational
data can be represented by a linear combination of kernel
functions [33]. Kernel methods have been successfully ap-
plied in time series prediction [34], wind speed forecasting
[35], [36], wind power forecasting [37], electric load fore-
casting [38], [39], and many other applications.

The main goal of this study is to present a multikernel
learning machine model that can deal with regression prob-
lems with a smaller and nonstatic dictionary, and achieve
better or similar results when compared with their respective
single-kernel counterparts. The model fitting procedure is

fully data driven, making it ideal for smart grid applications
where many generators share a highly interconnected power
system and the use of spatial dependence is desirable. The
results obtained with different kernel machines are compared
in two scenarios, first considering only the temporal aspect
of the dataset, while the spatial dependence is analyzed later.
The contributions of the proposed study can be regarded as
follows: (i) the proposal of a novel multiple kernel learning
scheme based on multiple challengers (MC) with adaptive
control of the number of kernels used by the predictor;
(ii) evaluation of the lifespan controller proposed in [40] is
adapted and applied to the proposed multiple kernel learning
scheme; and (iii) investigation of the search behavior of
the proposed algorithm as a method for solving regression
problems.

The remainder of this work is organized as follows. Sec-
tion II describes the problem followed by a theoretical back-
ground. Section III provides a detailed description of the
proposed technique. Section IV presents some case studies
to validate the proposed model in terms of a thorough dis-
cussion of the results and analysis of the MC-based kernel
recursive least-squares algorithms. Finally, conclusions are
presented in Section V.

II. KERNEL MACHINES AND NONLINEAR REGRESSION
High-dimensional feature spaces have drawn significant at-
tention to the estimation of nonlinear functions. A direct
application of this approach lies in regression, where some
nonlinear mapping is followed by linear processing in a high-
dimensional feature space.

A. PROBLEM DESCRIPTION
This is a problem regarding online multiple kernel-based
learning that deals with nonlinear regression. By considering
a wind farm, let (xi, yi) be an input-output stream of data
pairs, where xi is the historical data of wind power at time
t, and yi is the target power value at time t+horizon (∆).
The task consists of estimating a nonlinear function f (·)
that describes the relationship between the input and output,
denoted as f̂ (·). It computes the prediction of a wind farm (ŷ),
or even a vector with the prediction of n wind farms (Ŷ). The
unknown function f (·) may change over time, as opposed to
standard regression settings that assume static models. The
aim is to find an estimate f̂ (·) of f (·) in a prediction context
to minimize the mean squared error (MSE) given by:

MS E =
1
N

N∑
i=1

e2
i , (1)

where ei = yi − ŷi and N is the number of observed data. The
linear approximation of this problem is given by f̂ (xi) = Axi,
where A ∈ �n×m is a coefficient matrix whose entries are
to be determined. Many estimation schemes based on this
approximation have been studied, as reported in [41]–[43].

An approximation can be obtained in terms of the mapping
φ(·) to place it in a nonlinear setting simply writing f̂ (xi) =
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Aφ(xi) with A ∈ �n×d. Based on the properties of the Mercer
kernel [32], it is possible to derive estimation schemes for f (·)
in a high d-dimensional feature space without performing
calculations in such space. This combines the simple imple-
mentation of linear methods with the advantageous properties
of working with nonlinear mapping.

Kernel methods are based on a nonlinear transformation
(kernel trick) of the input data into a high-dimensional
Hilbert space (H). Inner products can then be calculated by
using a positive-definite kernel function satisfying Mercer’s
condition [32] to produce nonlinear versions of conventional
linear learning algorithms.

The Mercer kernel is a continuous, symmetric, and
positive-definite function k(xi, x j) : X × X → �, X ∈ �n or
�n, where X is a nonempty set. Mercer’s theorem states that
any Mercer kernel k(·, ·) can be expressed as the inner product
of some fixed nonlinear function φ(x) : X → H1, x ∈ X,

k(xi, x j) =
〈
φ(xi), φ(x j)

〉
H1
, (2)

where H1 is a real- or complex-valued reproducing kernel
in Hilbert space, for which k(·, ·) is a reproducing kernel and
〈·, ·〉H1

is the corresponding inner product inH1.
Equation (2) represents a Mercer kernel and states that if xi

and x j are mapped onto H1 by φ(xi) and φ(x j), respectively,
then the inner product of these functions can be calculated
by evaluating the kernel k(xi, x j) even if the mapping φ(·) is
unknown. This result is known as the kernel trick.

Many kernel functions exist, but the most common func-
tion is the Gaussian kernel. It is frequently used in real-world
applications with particular success in time series prediction
problems. It consists of the expansion function for an infinite-
dimensional feature space given by

k(xi, x j) = exp(−||xi − x j||
2/2σ2) (3)

This kernel has been adopted in this study. Even though
there are other possible options, the Gaussian kernel has a
physical interpretation as a measure of similarity that per-
fectly fits this particular application. It is also worth men-
tioning that it has outperformed other kernel candidates, e.g.,
triangular and polynomial, as reported in other similar works
[44], [45]. In addition, the choice or construction of kernels
is very much an open problem, being the subject of ongoing
research.

Three kernel recursive least-squares (KRLS) machines
are used as benchmarks: the approximate linear depen-
dency KRLS (ALD-KRLS), the sliding-window KRLS (SW-
KRLS), and the KRLS tracker (KRLS-T). They were chosen
because the ALD-KRLS machine was the first proposed and
most popular kernel machine. Even though ALD-KRLS has
no tracking system, the remaining algorithm aggregates such
characteristics, albeit with different degrees of complexity.
The complete derivation of such benchmark machines can be
found in [44], [46], [47].

Kernel methods have proven to be successful in applica-
tions where data are entirely considered in an instance, i.e.,

batch applications. However, the extension of kernel methods
to online settings where data arrive sequentially provides
some minimized but unsolved challenges. The first is the
overfitting risk when using a Hilbert space method because
of the high dimension of the weight vectors. This has been
handled by the use of regularization. Another problem is
that the increasing complexity of the estimator representation
becomes higher as the number of observations increases.

KRLS algorithms compute coefficients αi, which consist
of a minimizer used to compute the optimal weight vector,
by solving a least-squares problem involving the inversion of
a kernel matrix (K) whose dimension depends on the number
of stored examples (M). The second challenge is that the
amount of processed data M increases over time in online
scenarios. Thus, practical algorithms must restrict the amount
of data that will be stored. As a result, the third challenge is
the training time of batch and/or the incremental update of
algorithms, which typically increase linearly with the number
of observations.

B. BACKGROUND REVIEW
Reviews of multiple kernel learning (MKL) algorithms are
available in [48], [49]. Gonen and Alpaydın [48] concluded
that overall, using multiple kernels instead of a single kernel
achieves better results. MKL combines a set of kernels (basis
kernels) in a linear, nonlinear or data-dependent way into a
composite kernel, where the basis kernels can use different
kernel functions or different values for the hyperparameters
of a single kernel function [48]. Numerous studies have
continuously improved the development of MKL applied in
many subjects: classification of hyperspectral images [49],
binary classification problems [50], air quality prediction
[51], anomaly detection [52], object categorization [53],
Alzheimer’s disease diagnosis [54], oil painter recognition
[55], multiclass classification [56], discriminating early- and
late-stage cancers [57], subspace clustering [58], and many
others.

In recent years, several methods combining multiple ker-
nels have been proposed. Kannao and Guba [50] identified
and modeled distinct local regions of input space, as each
kernel has varying discriminative capabilities in distinct re-
gions, naming them as ’regions of success’, through a set
of instance-dependent success prediction functions having
high values in ’regions of success’ and low ones otherwise.
The use of these success prediction functions as instance-
dependent weighing functions promotes locally discrimina-
tive base kernels while suppressing others. Zheng et al. [51]
introduced the multiple kernel support vector classifier, an
MKL model, which embodies the characteristics of ensemble
learning, kernel learning, and representative learning. The
centered alignment approach is used to obtain the weight of
each kernel, and a boosting approach is used to determine
the proper number of kernels. The kernels are combined by
the weighted sum (conic sum restriction). The support vector
classifier is used as the base learner and optimized with a
general optimizing algorithm.
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An MKL approach for one-class classification was pro-
posed by Gautam et al. [52]. The classifier used is
Scholkopf’s one-class SVM. The weight for each kernel is
defined by a gating function. The weight for each kernel is
assigned locally. The parameters of the gating function and
one-class classifier are optimized simultaneously through a
two-step optimization process. First, the optimization prob-
lem is solved to find the parameters; later, with the gating
function parameters updated, the new weight is computed.
Wang et al. [53] proposed a data-dependent MKL algo-
rithm based on soft grouping. There are two steps in the
training stage: (i) the samples are divided into groups with
a soft-grouping algorithm to accommodate the correlation
and diversity of the samples; (ii) an alternative optimization
method is used to learn the kernel weights and support vector
coefficient (classifier). The composite kernel is determined
by the kernel weights of groups and the probability of this
sample falling to the groups.

A novel structured sparsity, defined by l1,p-norm (p > 1),
regularized MKL method was designed by Peng et al. [54].
It represents each feature with a distinct kernel as a basis
and captures featurewise importance by learning the weight
for each kernel, followed by grouping the kernels according
to task-specific criteria (feature modalities). Then, an opti-
mally combined kernel presentation of multimodal features is
learned in a data-driven approach. The proposed regularizer
enforced on kernel weights is to sparsely (l1) select a concise
feature set within each homogeneous group and fuse the
heterogeneous feature groups by taking advantage of dense
norms (lp). Liao et al. [55] proposed an MKL algorithm
divided into three phases: first, before MKL is carried out,
a prelearning process (K-medoids) is used to cluster similar
candidate subkernels and select some subkernels with better
classification ability in each category, which decreases the
size of candidate subkernels; the second step computes the
classification ability of each kernel, in each category, to select
the subkernel with the best classification performance; the
final phase uses the selected subkernel to carry out MKL
under lp-norm (p > 1) constraints.

A collaborative and geometric MKL algorithm presented
by Wang et al. [56], directly classifies multiclass data into
corresponding classes. It uses multiple empirical kernel
learning to map the sample into multiple kernel spaces and
then trains the softmax function in each kernel space. The
softmax function can utilize the explicit features in the ker-
nel space efficiently. To improve the collaboration between
different kernel spaces, one regularization term (RU) was
designed to require the consistent outputs of samples in
different kernel spaces. Moreover, to make the outputs of
samples have geometric classification features, a geometric
projection regularization term (RGl ) was designed to reduce
the within-class distance of the outputs of samples in each
kernel space. The two regularization terms were introduced
to improve the classification ability further. Rahimi and Gö-
nen [57] formulated a multitask MKL method with a coclus-
tering model on gene sets to identify biological processes

and learn task-specific classification models simultaneously.
Multitask learning, where different tasks are learned simul-
taneously, allows cohorts (i.e., tasks) with limited data to
benefit from other tasks. Coclustering builds a predefined
number of clusters of cohorts and pathways (i.e., tasks and
kernels).

Ren et al. [58] proposed a novel MKL method that jointly
learns an optimal affinity graph and a suitable consensus ker-
nel for clustering purposes. The nonlinear data are mapped
into a high-dimensional reproducing kernel Hilbert space
where a linear pattern analysis is performed. The kernel ma-
trix H (kernel Gram matrix) is symmetric positive semidef-
inite and is decomposed via an auxiliary square matrix B.
This matrix is used to compose the matrix H with a sparse
noise component (E) to deal with noisy data. A weighting
strategy is used as the multiple kernel learning process. Note
that the proposed algorithm integrates the MKL with local
and global structure learning and the Hilbert space self-
expressiveness property in a unified optimization problem.
A denoising MKL method was presented by Zhou et al. [59].
It considers two kinds of noise: local noise, which appears
in a small number of elements of the kernel matrix and is
often induced by outliers or corrupted instances, and global
noise, which appears in most of the elements of the kernel
matrix and is often induced by inappropriate kernels. Noise
matrices and noise tensors are introduced to capture local and
global noise. The cleaned kernels are obtained by subtracting
the noise from the candidate kernels. To learn the consensus
kernel, the disagreement between the consensus kernel and
all the cleaned kernels is minimized.

These different kernels may correspond to using different
concepts of similarity or involve information coming from
multiple sources, i.e., different representations or feature
subsets. The reasoning is similar to combining different
classifiers. Different kernels correspond to different concepts
of similarity, and instead of attempting to find which kernel
works best manually, a learning algorithm is responsible
for selecting it, or a combination of both features can be
employed. Using a specific kernel may be a source of bias,
and by allowing a learner to choose among a set of kernels, an
improved solution can be found. The combination function
of multiple kernels and its corresponding parameters can be
represented as:

kη(xi, x j) = fη({km(xm
i , x

m
j )}Pm=1|η), (4)

where the combination function fη : �P → � can be
a linear or a nonlinear function. Kernel functions {km :
�Dm × �Dm → �}Pm=1 adopt (not necessarily different) P
feature representations of data instances xi = {xm

i }
P
m=1 where

xm
i ∈ �

Dm , and Dm is the dimensionality of the correspond-
ing feature representation. η parameterizes the combination
function [48].

One of the simplest methods for determining the kernel
combination function is the fixed rule. This strategy uses
functions without any parameters, e.g., summation or mul-
tiplication of the kernels, and does not require any training.
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Pavlidis et al. [60] reported that, on a gene functional classi-
fication task, training a support vector machine (SVM) [61]
with an unweighted sum of heterogeneous kernels achieves
better results than the combination of multiple SVMs, each
trained with one kernel. The heuristic approach uses a pa-
rameterized combination function and finds the parameters
of this function usually by looking at some measure sepa-
rately obtained from each kernel function. These measures
can be calculated from the kernel matrices or taken as the
performance values of the single-kernel-based learners that
are trained separately using each kernel. Moguerza [62] and
de Diego [63] proposed a matrix functional form of combined
kernels:

kη(xi, x j) =

P∑
m=1

ηm(xi, x j)km(xm
i , x

m
j ), (5)

where ηm(·, ·) assigns a weight to km(·, ·) according to xi and
x j. The aforementioned works propose different heuristics
to estimate the weighting function values using conditional
class probabilities Pr(yi = y j|xi) and Pr(y j = yi|x j) calcu-
lated with a nearest-neighbor approach. However, each kernel
function corresponds to a different neighborhood, and ηm(·, ·)
is calculated on the neighborhood induced by km(·, ·).

It is also possible to use a linear combination instead of
a data-dependent combination to formulate the combined
kernel function as follows:

kη(xi, x j) =

P∑
m=1

ηmkm(xm
i , x

m
j ), (6)

where the kernel weights are selected by looking at the
performance values obtained by each kernel separately. For
instance, Qiu and Lane [64] proposed two simple rules for
selecting the kernel weights for regression problems:

ηm =
Rm∑P

h=1 Rh
(7)

and

ηm =

∑P
h=1 Mh − Mm

(P − 1)
∑P

h=1 Mh
, (8)

where Rm is the Pearson’s correlation coefficient between
the true outputs and the predicted labels generated by the
regressor using the kernel matrix Km, and Mm is the mean
squared error generated by the regressor using the kernel
matrix Km. These heuristics find a convex combination of the
input kernels as the combined kernel.

Pearson’s correlation coefficient is a common measure of
association between two continuous variables. It is defined as
the ratio of the covariance of the two variables to the product
of their standard deviations, commonly denoted by the Greek
letter ρ:

ρ =
Cov(X,Y)
σXσY

(9)

The sample correlation coefficient, R, can be obtained by
plugging the sample covariance and the sample standard
deviations into the previous formula, i.e,.

R =

∑n
i=1((xi − x)(yi − y))√∑n

i=1(xi − x)2∑n
i=1(yi − y)2

(10)

The Pearson’s correlation coefficient ranges from -1 to +1.
When ρ > 0, two variables tend to increase or decrease
simultaneously; for ρ < 0, one variable tends to increase
when the other decreases; finally, in ρ = 0 corresponds to
the absence of association [65].

There are two main differences between the models de-
scribed previously and the one introduced in this work.
First, the base learner of the previous models majority is an
SVM, while the proposed one uses KRLS algorithms, which
produce much sparser solutions with higher robustness to
noise. Moreover, KRLS machines are fully online algorithms
designed to operate in real-time environments where data
become available one sample at a time. Second, almost all
of the previous models use a linear combination, which
is the most popular approach with two basic categories:
unweighted sum, i.e., using the sum or mean of the kernels
as the combined kernel; and weighted sum. In the weighted
sum case, the following combination function can be linearly
parameterized:

kη(xi, x j) = fη({km(xm
i , x

m
j )}Pm=1|η) =

P∑
m=1

ηmkm(xm
i , x

m
j ), (11)

where η denotes the kernel weights. Other versions of this
approach differ in the constraints: the linear sum, i.e., η ∈ �P;
the conic sum, i.e., η ∈ �P

+; or the convex sum, i.e., η ∈ �P
+

and
∑P

m=1 ηm = 1. The author in [63] applied a nonlinear
combination that uses nonlinear functions of kernels, e.g.,
multiplication, power, and exponentiation. The introduced
model uses data-dependent combination methods that assign
specific kernel weights for each data instance. By doing so, it
is possible to identify local distributions in the data and learn
proper kernel combination rules for each region.

III. MULTIPLE CHALLENGERS KERNEL RECURSIVE
LEAST-SQUARES (MC-KRLS)
The ALD-KRLS can address both difficulties presented in
kernel machines, the growing kernel matrix, and the over-
fitting problem. By applying a sparsification procedure to
the kernel matrix, it can limit the size of the dictionary and
avoid overfitting, but eventually, the dictionary will reach its
maximum size and will not learn from the new information
received by the model.

The proposed method, named MC-KRLS, is a method
for using multiple ALD-KRLS algorithms or other kernel
machines by adopting the same input but with different
dictionaries that are related to each other through their size.
Thus, it is always possible to learn as new information is
received and to control the size of the dictionaries in the
kernel machines. To reach this result, research efforts have
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been focused on when to create a new kernel matrix, how to
compute the combined forecast, and when to delete the kernel
matrix.

A. WHEN TO CREATE A NEW KERNEL MATRIX
The adopted method establishes a dependency between the
kernel matrices, allowing a new matrix to be created when
the previous one reaches a predetermined dictionary size as
defined by the user. For instance, let us consider an MC-
KRLS with three kernels (M3C-KRLS).

The first kernel is created as in the ALD-KRLS algorithm,
but the second kernel is created only after the first kernel
reaches 25% of its dictionary size. The third kernel is created
when the second kernel reaches 15% or any other proportions
set by the user.

B. HOW TO COMPUTE THE COMBINED FORECAST (Ŷ)
The first method used is the arithmetic mean of each kernel
matrix output. This is considered a standard method, and no
acronym is assigned to it. The second method is a weighted
mean of each kernel matrix output as described in (12). The
weighted version is denoted by MC-KRLSW.

Ŷ =
wk1 Ŷk1 + wk2 Ŷk2 + ... + wkn Ŷkn

wk1 + wk2 + ... + wkn

, (12)

where wkn is the weight associated with the n output kernel,
which is computed as follows:

wki =
1
Ei
/

n∑
j=1

1
E j
, (13)

where Ei is the absolute error (AE) of the previous forecast
of the kernel matrix i.

Ei = |Y − Ŷki |. (14)

C. WHEN TO DELETE THE KERNEL MATRIX
An adaptive method for dealing with the kernel machines and
choosing the ‘best ones’ is described in this section. The first
approach assumes that when all kernel matrices reach their
maximum size, a counter will start, and when the counter
stops, the MSE is computed. The kernel matrix with the worst
MSE is then deleted. This is the standard method, and no
acronym is given to it.

The second method is similar to the first method, but
instead of computing the MSE when the counter ends, AE
is computed for every iteration. Then, the best kernel matrix,
i.e., with the kernel with the smallest AE, will not suffer any
changes, whereas the other matrices will have their ‘ages’
increased. The matrix that reaches its predefined maximum
age first is deleted.

Life expectancy (LE) is a statistical measure of how long
an organism may live, and at a given age, life is expected to
cease. LE is based on many features, such as the year of birth,
current age, and other demographic factors. A simplified
version of this concept is used here based on two constants
called the aging factor (AF) and weakening factor (WF) [40].

In nature, colony leaders are constantly challenged by
new individuals. Aging facilitates a leader to be replaced
by a younger individual, whereby it is likely to create more
opportunities for diversity and improvements. Inspired by
this phenomenon, this work adapts the aforementioned idea
from nature to the kernel machines and proposes the MC-
KRLS aggregating both AF and WF, resulting in the MC-
KRLSA algorithm.

Aging is not the only feature that composes the LE of an
individual. In this study, WF represents the other features
associated with LE. WF plays a role whenever the kernel (Ki)
cannot find a new result (ŷki (t)) better than the previous result
(ŷki (t − 1)). Thus, even kernels of the same age will have
different LEs and will cease to exist at different moments.
First, the kernel age KAi of Ki is set to zero, and then the
kernel machines follow the rules defined as:

if ŷki (t) is worse than ŷki (t − 1) then (15)
KAi(t) = KAi(t − 1) + AF + WF else (16)

KAi(t) = KAi(t − 1) + AF (17)
end if (18)

The proposed algorithm aims to overcome the main lim-
itations of similar approaches in tracking changes in the
underlying stochastic process, as discussed in Section II. In
addition to the number of used kernels (ηK), its remaining
parameters are as follows: the maximum value reached by the
counter (counter.max), which in this work is set to the same
value as the maximum dictionary size; and when to create a
new matrix, which is investigated for 25%, 50%, 75%, and
100% of the maximum dictionary size (M). For the sake of
reproducibility of this paper the source codes are available
for download at [66].

Table 1 shows the used acronyms, which comprise a com-
position of MC-KRLS, the number of used kernels, how the
forecast is combined, and the delete method.

TABLE 1. MULTIPLE KERNEL LEARNING METHODS USED IN THE STUDY

Kernels Combined Forecast Delete Method Acronym

2 Arithmetic Mean Counter M2C-KRLS
3 Arithmetic Mean Counter M3C-KRLS
2 Weighted Mean (W) Counter M2C-KRLSW
3 Weighted Mean (W) Counter M3C-KRLSW
2 Arithmetic Mean Aging (A) M2C-KRLSA
3 Arithmetic Mean Aging (A) M3C-KRLSA
2 Weighted Mean (W) Aging (A) M2C-KRLSAW
3 Weighted Mean (W) Aging (A) M3C-KRLSAW

IV. CASE STUDY AND APPLICATIONS RESULTS
In this section, the search behavior of MC-KRLS machines
in solving regression problems is evaluated. The case study
is applied to a wind power database and used to predict
(t + 5) minutes ahead. In particular, answers to the following
two questions are sought: (i) how do multiple challenger
kernel machines work on regression problems, and (ii) how
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do the parameters of the multiple challenger model lead to the
best set? All of the algorithms were developed in MATLAB
and executed at the Danmarks Tekniske Universitet (DTU)
High-Performance Computing (HPC) clusters: Central and
Compute.

A. THE DATASET
The dataset is composed of measurements of wind power
generation for every 5 minutes, from 01/01/2011 04:05 to
01/01/2013 04:00, of 23 onshore wind farms [67], resulting in
210,518 measurements for each farm as provided by the Aus-
tralian Energy Market Operator (AEMO). In this particular
study, eight wind farms are chosen. All negative values are set
to zero, and data are normalized within the range ]0,1[. The
complete dataset used in this work is available for download
at [68].

B. BENCHMARKS
To perform a comparative study and check the performance
of the proposed method, five models are used as benchmarks.
In addition to the three kernel machines mentioned in Section
II-A, the persistence and the online sequential extreme learn-
ing machine (OS-ELM) are briefly described.

The persistence forecast assumes that the future wind
speed is the same as the most recent measurement. The
persistence forecast for a time interval ∆ ahead is given by
Ŷi+∆ = Yi. Sequential implementation of the least-squares
solution of the output weight vector results in the OS-
ELM [69], which uses the recursive least-squares algorithm
[70].

C. DEFINITION OF PARAMETERS USED IN THE WIND
POWER FORECAST
The best parameter values are found by using a k-fold cross-
validation procedure with five blocks of 8,421 points, where
four (33,684 points) are used as training sets and one of them
(8,421 points) is always left out to serve as the validation set,
while the remaining data (168,413 points) are used as a test
set to obtain the final evaluation [71]. To make it fair, the
same partitions of the training, validation and testing data are
used when different comparison algorithms are trained on the
dataset. It is observed that there is no rule on data splitting,
just common practices. The minimum percent average root-
mean-square error (RMSE %) is used as the performance
index.

The parameter that controls the dictionary size for each
algorithm determines the computational and memory com-
plexities. For each experiment, this parameter is varied over a
wide range so that the RMSE can be measured. Performance
curves are used for comparison purposes. Section IV-D2
presents the curves of the benchmark provided by ALD-
KRLS and their respective MC-KRLS as part of the analysis
of parameters ALD threshold (ν) and the optimal LAG length
X = {X1, X2..., Xk}.

It is observed that the optimal selection of parameters is
an important open problem in the kernel machine literature,

but it falls outside the scope of this work. The remaining
parameters are chosen by an exhaustive search to optimize
the position of the performance curve, while the results are
listed in Table 2.

TABLE 2. PARAMETERS USED IN THE WIND POWER FORECAST

Method Parameters

ALD-KRLS M = 20, 30, 40, 50, 60, 70
SW-KRLS LAG = 1, 2, 3, 4, 5, 6, 7, 8
KRLS-T Gaussian Kernel

Kernel parameter (σ) = 32

ALD-KRLS ν = 2E-5, 1E-5, 2E-4, 1E-4, 1E-3, 0.05, 0.01, 0.1

SW-KRLS c = 2E-5, 1E-5, 2E-4, 1E-4, 1E-3, 0.05, 0.01, 0.1

KRLS-T λ = 0.9, 0.99, 0.999
jitter = 5E-6, 1E-6, 1E-5
sn2 = 5E-3, 5E-2, 1E-2

OS-ELM NOHN = 3, 5, 10, 20, 30, 50, 75, 100, 150, 200, 250
LAG = 1, 2, 3, 4, 5, 6, 7, 8

Radial Basis Function (RBF)
Number of training data = 33,684

According to Table 2, M is the dictionary size, σ is
the kernel width, c is a regularization parameter, λ is the
forgetting factor, jitter is noise used to avoid round-off error,
sn2 is a noise-to-signal ratio, and NOHN is the number of
hidden nodes assigned.

D. TEST RESULTS
Fig. 1 represents the two experiments in terms of time
series, namely, test case 1 (TC1), which is composed of
single-input and single-output (SISO) and multiple-input and
multiple-output (MIMO) techniques, and test case 2 (TC2),
represented by the MC-KRLS, where the proposed algorithm
with n MIMO kernel machines tracks the results to provide
forecasts for w wind power plants, while an ‘operator’ (OP)
is responsible for combining all of them.

K1

K2

K3

Kn

SISO

K

MIMO

K1

K2

K3

Kn

w1MC −KRLS

OP

xi1

xi2

xi3

xiw

ŷk1

ŷk2

ŷk3

ŷkn

xi1

xi2

xi3

xiw

Ŷ xi1

xi2

xi3

xiw

Ŷk1

Ŷk2

Ŷk3

Ŷkn

Ŷ

FIGURE 1. Block diagram of all the arrangements to which KRLS machines are
applied during the experiment.

1) Test Case 1
Table 3 presents the RMSE (%) of each wind farm. The last
row contains their respective averages. The differences be-
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tween SISO kernel machines are small. However, the kernel
machine that uses the SISO ALD threshold as a sparsity tool
is the best kernel machine.

The use of MIMO layouts improves the RMSE (%) when
compared with their SISO counterparts, except for the SW-
KRLS. The MIMO ALD-KRLS proves to be the best kernel
machine again. The use of MIMO for the SW-KRLS presents
slightly higher RMSE(%) when compared with the respective
SISO versions. The KRLS-T shows equal results due to
the round-off error, but the MIMO version presents better
performances in seven of the eight sites. The exception is
wind farm LKBONNY3, which causes the average to be
slightly higher than that of the SISO version.

The Pearson correlation coefficient (R) is used to show
why some MIMO models achieve better results than those
obtained with SISO models. If R is greater than 0.8, then
the system is described as strongly correlated, whereas it is
described as weakly correlated when R is less than 0.5. Table
4 presents the results for each coefficient. The last three rows
present a summary of the parameters classified as strongly,
correlated, and weakly correlated. Five of the eight farms
are strongly correlated or correlated with four or more wind
farms.

For all cases in which ν and c > 0.001, there is a significant
increase in the RMSE (%). Furthermore, in every case, the
smaller the dictionary size and the greater the LAG, the
higher the RMSE (%). Finally, when using the ALD-KRLS,
two time series are strongly affected by the dictionary size,
i.e., HALLWF1 and NBHWF1. The authors of KRLS-T state
that λ is usually sensitive within the range [0.95, 1] [47]. The
best RMSE (%) is often obtained for λ = 0.9, as the error
increases with λ.

2) Test Case 2
The differences between the ALD-KRLS benchmarks (SISO
and MIMO) and the proposed MC-KRLS models are small.
However, the results achieved with the introduced models
are, in general, better than those obtained with the MIMO
ALD-KRLS, as shown in Table 5. The SW-KRLS and KRLS-
T models now present the same previous behavior observed
in the SISO and MIMO models.

Analogous to what is observed with the ALD-KRLS SISO
and MIMO machines, there is a significant increase in the
RMSE (%) in all cases in which ν > 0.001, but different
behaviors are verified. First, the dictionary size or the number
of LAGs used does not significantly influence the RMSE (%),
thus allowing the use of the smallest dictionary size and the
shorter LAG length. Second, when using the ALD-KRLS,
two time series are significantly affected by the dictionary
size, i.e., HALLWF1 and NBHWF. However, this is not
observed in the case of multiple KRLS. Third, the use of any
of the multiple challenger models shows more stable results
compared with the ALD-KRLS.

Fig. 2 shows the results of MIMO and M3C-KRLSW
ALD-KRLS, which are the best results presented in Tables
3 and 5. It is observed that the use of multiple kernels

minimizes the importance of the number of LAGs for any
ν value.
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FIGURE 2. Comparison between the MIMO and M3C-KRLSW ALD-KRLS
forecasts for ν = 1.00E-05 and varying the number of LAGs.

The SW-KRLS MC-KRLS presents a significant increase
in the RMSE (%) in all cases in which c > 0.001. For all
conditions, the smaller the dictionary size and the greater the
LAG, the higher the RMSE (%). For the KRLS-T, the best
RMSE (%) is usually reached using λ = 0.9, while the error
increases with λ.

The first question raised in Section III can be answered
with the help of Fig. 3, which is used to analyze the behavior
of the RMSE(%) and the need to eventually start a new kernel
machine. The best results of the multiple kernel machines
using different dictionary sizes and triggers to start a new
kernel machine are presented in terms of distinct color scales
for each graph. It is a matrix plot that produces a filled net of
shaded rectangles, where each matrix position corresponds
to one rectangle. The ’Dictionary size’ axis represents the
maximum number of examples (20, 30, 40, 50, 60, 70) saved
in each kernel dictionary. The ’Start new kernel’ axis shows
the percentage of the maximum number of examples reached
by a kernel dictionary (25%, 50%, 75%, 100%) before a new
dictionary is created. Finally, the (RMSE(%)) column relates
the color scale with the error value.

The best results for the ALD-KRLS M2C-KRLS are found
to be 75% for dictionary sizes of 20, 30, and 40 as a trigger
to start the new kernel machine and 25% for 50, 60, and
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TABLE 3. FORECAST OF THE BENCHMARK MODELS - RMSE (%)

Wind Farm Persistence OS-ELM ALD-KRLS SW-KRLS KRLS-T
SISO MIMO SISO MIMO SISO MIMO SISO MIMO

WATERLWF 3.863 3.854 3.879 3.853 3.833 3.959 4.223 3.860 3.859
HALLWF2 3.846 3.837 3.821 3.836 3.767 3.999 4.171 3.852 3.851
SNOWTWN1 3.393 3.352 3.411 3.357 3.341 3.566 3.804 3.409 3.408
HALLWF1 3.450 3.431 3.388 3.433 3.342 3.577 3.727 3.461 3.461
LKBONNY2 3.760 3.678 3.712 3.679 3.614 3.817 4.077 3.777 3.776
NBHWF1 3.000 2.916 2.937 2.926 2.877 3.117 3.273 3.029 3.028
CLEMGPWF 1.893 1.884 1.915 1.888 1.876 2.064 2.220 1.895 1.894
LKBONNY3 5.639 5.552 5.573 5.545 5.514 5.745 6.039 5.618 5.622

AVERAGE 3.606 3.563 3.580 3.565 3.520 3.731 3.942 3.613 3.613

TABLE 4. PEARSON PRODUCT-MOMENT CORRELATION COEFFICIENTS

Wind Farm WATERLWF HALLWF2 SNOWTWN1 HALLWF1 LKBONNY2 NBHWF1 CLEMGPWF LKBONNY3

WATERLWF 1
HALLWF2 0.82 1
SNOWTWN1 0.41 0.53 1
HALLWF1 0.79 0.91 0.49 1
LKBONNY2 0.29 0.29 0.10 0.33 1
NBHWF1 0.79 0.87 0.54 0.90 0.26 1
CLEMGPWF 0.50 0.54 0.77 0.50 0.05 0.63 1
LKBONNY3 0.36 0.34 0.14 0.37 0.90 0.29 0.08 1

STRONGLY C. 1 3 0 2 1 2 0 1
CORRELATED 3 2 3 2 0 3 5 0
WEAKLY C. 3 2 4 3 6 2 2 6

TABLE 5. FORECAST OF THE MODELS - RMSE (%)

SISO MIMO

M2C M2C M2C M2C M3C M3C M3C M3C
KRLS KRLS KRLS KRLSW KRLSA KRLSAW KRLS KRLSW KRLSA KRLSAW

ALD-KRLS 3.565 3.520 3.522 3.520 3.522 3.520 3.519 3.517 3.520 3.519
SW-KRLS 3.731 3.942 3.953 3.920 3.948 3.928 3.921 3.925 3.909 3.914
KRLS-T 3.613 3.613 3.678 3.652 3.661 3.641 3.649 3.636 3.645 3.636

70. The same behavior is observed in all the other models
presented in this work, as denoted in Table 1. The multiple
kernel machines that use the SW-KRLS and KRLS-T always
create a new kernel machine when the previous dictionary
reaches 25% of its size, independent of the dictionary size.

To answer the second question raised in Section III, two
solutions are presented: the arithmetic and weighted mean.
The weighted version is the best one in 10 of the 12 proposed
models, as observed in Table 5. The only exceptions are SW-
KRLS M3C-KRLS compared with M3C-KRLSW and SW-
KRLS M3C-KRLSAW compared with M3C-KRLSA.

For the third question in Section III, two options are also
presented: one using the MSE and the other the AE. Table
5 shows that there is no difference between the results for
the ALD-KRLS using two kernel machines. When three
kernel machines are adopted, the use of MSE provides better
results. For the SW-KRLS using the arithmetic mean, the AE
also presents improved performance. Finally, the KRLS-T
presents better results using the MSE in all proposed models.

Fig. 4 shows the behavior of the RMSE(%) versus the

dictionary size used by the kernel machines. It shows the
best result of the multiple kernel machines using different
dictionary sizes and triggers to start a new kernel machine.
The color scales are different for each graph. Fig. 4 has the
same description as Fig.3. The best results for the ALD-
KRLS M2C-KRLS are found with smaller dictionary sizes.
According to values in the third column, the multiple kernel
machines that use the KRLS-T present similar behavior to
those obtained with ALD-KRLS. However, the best results
are always obtained with a larger dictionary size when using
SW-KRLS.

In Fig. 3 and 4, it can be noted that the ALD-KRLS M2C-
KRLS obtains the lowest RMSE (%), mainly when 75% of
the dictionary size is set to start a new kernel and it uses
dictionaries with 20 examples, the smallest one in the range
analyzed by this study (20, 30, 40, 50, 60, 70). For SW-KRLS
M2C-KRLS machines, the best results are usually 25% of the
dictionary size with the largest dictionary size (70). For the
KRLS-T M2C-KRLS, the best results are usually 25% of the
dictionary size with the smallest dictionary size (20). Similar
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FIGURE 3. Behavior of the RMSE(%) versus when to start a new kernel machine.
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FIGURE 4. Behavior of the RMSE(%) versus dictionary size.

TABLE 6. COMPUTATION TIME (s)

M2C M2C M2C M2C M3C M3C M3C M3C
KRLS KRLSW KRLSA KRLSAW KRLS KRLSW KRLSA KRLSAW

ALD-KRLS 205.1111 209.3029 206.0297 213.9421 301.7949 309.9622 307.4587 310.7236
SW-KRLS 139.3686 142.5556 139.9083 143.0825 245.3131 246.4561 242.0534 247.2417
KRLS-T 170.1855 172.3439 173.2392 177.2522 289.8388 294.6144 292.6144 297.4468

ALD-KRLS 100% 102.04% 100.45% 104.31% 147.14% 102.71% 101.88% 102.96%
SW-KRLS 100% 102.29% 100.39% 102.66% 176.02% 100.47% 98.67% 100.79%
KRLS-T 100% 101.79% 101.79% 104.15% 170.31% 101.65% 100.96% 102.62%

behavior is found when using any machine listed in Table 1.
To compare computational time was required to run all the

methods in a single machine. The results presented before
were from a HPC consisting of different hardware. Then, it
was defined: (i) The goal of tracking and analyzing the soft-
ware metric is to determine the computational time of each
method; (ii) Each benchmark was from the same computer,
and how long it took (in seconds) across 10 different runs;
(iii) Table 6 shows the worst times found for each method
using different kernel machines (M = 70, LAG = 8) for one
entire process (33,684 training, 8,421 validation, and 168,413
test points).

The increase of the number of kernel machines directly
affects the time presented between the M2C and M3C groups.
Independent of the method used, the kind of kernel machine
(ALD-KRLS, SW-KRLS, KRLS-T) has a great impact on
the running time. Using the arithmetic means (MC-KRLS)
as reference in all cases the use of the weighted mean (MC-
KRLSW) brought a time increase, the use of the age factor
(MC-KRLSA) increased the execution time but not as much
as the weighted version, actually M3C-KRLSA (SW-KRLS)
had an reduce of 1.33% at execution time. The combination

of both (MC-KRLSAW) shows the highest execution time as
expected, since the increase of lines of codes and computa-
tions.

V. CONCLUSIONS
A novel and competitive adaptive method that can be used
in any kernel machine for short-term forecasting of wind
power is introduced in this work. This method uses multiple
kernel machines related to each other through the sizes of
the respective dictionaries. A competitive adaptive factor is
aggregated to the problem when all machines reach the max-
imum dictionary size and then the worst kernel is deleted.

It is worth noting that multiple kernel machines have been
applied to a dataset of wind power plants in Australia over a
period of two years.

The proposed algorithm creates new kernel matrices as
long as the process continues running, thus identifying
changes in the time series, avoiding the abrupt loss of in-
formation that typically occurs in tracking methods, and
maintaining a controlled number of examples since there is
an adaptive selection of active kernels. The kernel size is then
fixed rather than limited. The use of the MC-KRLS machine
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makes the use of smaller dictionary sizes possible, resulting
in better results and reducing the probability of overfitting.
The susceptibility of the model to the number of LAGs used
is also reduced. The kernel machine chosen impacts greatly
in the computation time. Note that the computation time
could be a matter during training, validation and test period,
but during regular operation, in the worst result to predictor
t + 5 minutes was computed in 1, 47 milliseconds.

As expected, there is not a single best performing algo-
rithm for all scenarios. The optimal choice of an algorithm
depends on the range for the target RMSE (%), the available
computational resources, and the particular dataset.

This work was motivated by the need to produce accurate
very-short-term forecasts for one or multiple wind farms.
Future work will focus on extending this approach to other
variables, e.g., temperature, wind speed, wind direction,
among others; additional forecast horizons; investigation of
other kernel machines; and consideration of the development
of other adaptive models, possibly taking into account the
similarity results in addition to the AE or MSE.
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