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Abstract: Individual tree modeling for terrestrial LiDAR point clouds always involves heavy com-
putation burden and low accuracy toward a complex tree structure. To solve these problems, this
paper proposed a self-adaptive optimization individual tree modeling method. In this paper, we
first proposed a joint neighboring growing method to segment wood points into object primitives.
Subsequently, local object primitives were optimized to alleviate the computation burden. To build
the topology relation among branches, branches were separated based on spatial connectivity analysis.
And then the nodes corresponding to each object primitive were adopted to construct the graph
structure of the tree. Furthermore, each object primitive was fitted as a cylinder. To revise the local
abnormal cylinder, a self-adaptive optimization method based on the constructed graph structure
was proposed. Finally, the constructed tree model was further optimized globally based on prior
knowledge. Twenty-nine field datasets obtained from three forest sites were adopted to evaluate the
performance of the proposed method. The experimental results show that the proposed method can
achieve satisfying individual tree modeling accuracy. The mean volume deviation of the proposed
method is 1.427 m3. In the comparison with two other famous tree modeling methods, the proposed
method can achieve the best individual tree modeling result no matter which accuracy indicator
is selected.

Keywords: individual tree modeling; terrestrial LiDAR; object primitive; joint neighboring growing;
global optimization

1. Introduction

Through photosynthesis, forests can effectively offset part of the carbon dioxide
emissions [1–3]. Thus, it is of great practical significance to conduct forest inventory
and explore the carbon sink capacity of forests to protect the Earth’s environment and
achieve green development [1,4,5]. To better strengthen the investigation of forest resources,
promote the study of tree growth mechanism, forest ecosystem simulation, and analysis
of the impact of environmental change, it is urgent to analyze the structure change and
growth rule change of trees in the process of growth on a single tree scale [6–8].

Conventional forest dynamic survey is generally dependent on massive and chronic
forestry inventory data [9,10]. This kind of forestry resource survey not only always needs
huge labor and material resources, but it is also inefficient in data acquisition, which will
fail to reflect forestry resource change in the short term [11,12]. As a result, it cannot
effectively realize the dynamic monitoring of forest resources. In recent years, with the
rapid development of three-dimensional LiDAR, this technology has become a vital method
in dynamic survey of forestry resources [13,14]. LiDAR technology is an active remote
sensing technology, which can actively emit laser pulses and obtain the three-dimensional
coordinate information of the target object [15]. The laser pulse emitted by the LiDAR
system is able to penetrate vegetation and accurately depict the spatial structure of the
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vegetation canopy, making itself gradually become an important data source for analysis of
vegetation spatial topology [16]. Currently, LiDAR technology has been widely applied
in forestry, ecology, botany, and other related fields due to its continuous improvement of
measurement accuracy and sampling rate [17,18].

Compared with LiDAR systems with other platforms, terrestrial LiDAR can obtain
denser point cloud data. Meanwhile, since the distance of data scanned by terrestrial laser
scanner (TLS) is relatively close, the quality of acquired data is relatively high and data
error caused by external influence is small [19]. TLS has gradually become the technology
that supports for constructing a three-dimensional tree model with high fidelity due to its
characteristics such as accuracy, efficiency, and high density of points, etc. [20–22].

According to different principles, tree modeling methods using TLS can be classified
into two categories: segmentation-based and skeleton-based [12]. In the segmentation-
based methods, tree points are first segmented as a series of subsections, which can be
further fitted as small modeling units, such as cylinders. By connecting these modeling
units together, a tree model can be constructed. Raumonen et al. [23] developed a famous
individual tree modeling method named TreeQSM. In their method, tree points are first
segmented as a sequence of cover sets. Thereafter, the neighboring relation among these
cover sets can be determined to obtain tree components. Last, tree components are further
segmented for fitting cylinders with different radius and length. Hackenberg et al. [24]
segmented the tree points into a subpoint cloud using a varying sphere. The sphere
center is located at the skeleton of a tree, while its radius is larger than the underlying
branch segment. In each subpoint cloud, the sphere center and fitted circle center can
be obtained, which will be set as the start point and end point for building the cylinder.
Hackenberg et al. [25] further improved this method by first segmenting the points as stem
and branch points. In so doing, higher cylinder fitting accuracy can be acquired.

In the skeleton-based methods, the tree skeleton is generally generated by thinning the
raw point clouds. The obtained skeleton generally reflects the geometry of the tree. The final
tree model can then be reconstructing by estimating the radius of each branch section [26].
Bucksch and Lindenbergh [27] proposed a skeletonization method for a point cloud named
CAMPINO. In their method, the skeleton was extracted based on octree-graphs. Although
CAMPINO can extract the tree skeleton structure with highly consistent with the original
tree points, its performance heavily relies on the voxel size setting. Bucksch et al. [28]
further improved this method and proposed a robust skeleton extraction method called
SkelTre. The main strength of SkelTre is that this method is insensitive to varying point
density and data gaps within point clouds. Wang et al. [26] acquired the tree skeleton
by building a minimum distance spanning tree. The main strength is that this method
can achieve a complete tree model even if there are data gaps in the raw point clouds.
Delagrange et al. [29] presented a tree reconstruction method named as PypeTree. In
PypeTree, the skeletal curves were extracted by computing four distinct graph structures.
The reconstruction accuracy of this method was evaluated by comparing the skeleton
length. Experimental results show that mean automatic reconstruction error was 5.1%.
Du et al. [12] proposed a skeleton extraction method named as Adtree, which was further
optimized by Fan et al. [30]. In AdTree, the initial tree skeleton was first built based on
the Dijkstra shortest path method. Subsequently, the skeleton was optimized by removing
adjacent vertices and edges. Finally, the branch model can be built by fitting a series of
cylinders. Fan et al. [30] developed an open tool with an end-user interface for AdTree and
named it as AdQSM. All the above mentioned methods can be seen as graph-based skeleton
extraction methods since these methods generally need to construct a graph structure, such
as a minimum spanning tree.

In addition to the graph-based approaches, there are two other kinds of skeleton
extraction methods, namely L-1-Medial-based and Laplacian-based. In the L-1-Medial-
based methods, the point sets are represented by the median points. The skeleton line
is formed by connecting the median points together [31–33]. This method has strong
universality and can directly process the original point cloud data. However, if there is a
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great amount of noise in the point cloud or a large point cloud missing, it may produce
wrong output. To solve these problems, Wei et al. [32] combined the advantages of L-
1-Medial-based methods and minimum spanning tree and proposed L1-MST approach.
In their method, an optimal model considering both structure and point density was
established based on the principle of point balance force on the surface of the object. L1-
MST can extract the tree skeleton with high precision. However, the extraction accuracy of
stem skeleton is poor in dense leaf area.

In the Laplacian-based methods, the Laplace weight matrix of adjacent point clouds is
first constructed, and then a series of skeleton points are obtained by iteratively shrinking
from the outside to the inside. Finally, skeleton lines are obtained using the minimum
spanning tree method [34]. The results of skeleton line extraction in this kind of method
depend on the setting of Laplace operator parameters, and inaccurate parameter setting
will lead to wrong extraction results. Su et al. [35] first adopted the constrained Laplacian
smoothing method to obtain the basic shape of the skeleton, and then the skeleton model
was obtained by progressive sampling and optimization. This method can obtain relatively
complete tree model and has certain noise resistance, but it is difficult to construct complex
canopy model and accurate model for canopy twigs.

To sum up, for individual tree modeling based on terrestrial LiDAR, there are still
some problems that need to be solved.

i. The robustness of the tree modeling is not strong. When encountering complex tree
structure, the construction of local branch model is prone to error. As a result, the
model accuracy is low.

ii. The computation burden for tree modeling is huge. High time complexity and low
modeling efficiency lead to the tree modeling methods are not suitable for large-scale
and mass tree point cloud modeling.

iii. The modeling methods lack adaptive modeling ability and cannot conduct adaptive
optimization and adjustment for some incorrectly constructed model elements.

To solve these problems, this paper proposed a self-adaptive optimization tree mod-
eling method. In this paper, a joint neighboring growing method was first proposed to
segment wood points into object primitives. To reduce the amount of calculation and im-
prove the implementation efficiency of modeling, this paper proposed local object primitive
self-adaptive constraint adjustment method. Then, branch topology relation was built using
graph structure to strengthen the robustness of modeling. Subsequently, local and global
optimization was applied to the built tree model to improve the modeling accuracy. This
study is expected to propose a tree modeling method with high accuracy, strong robustness
and wide applicability, thereby providing contribution to forest inventory.

2. Method

In this paper, we proposed a self-adaptive three-dimensional tree structure modeling
method. The flowchart of the proposed method is shown in Figure 1. The individual tree
point clouds are first conducted the wood and leaf separation to obtain the wood points.
In this paper, the LeWoS method proposed by Wang et al. [36] was applied for wood and
leaf separation. In LeWoS, recursive segmentation was first conducted to the individual
tree points. Then, the wood components were separated based on the characteristics of
each segment, such as linearity and size. After wood and leaf separation, the wood points
were further segmented as object primitives based on the neighboring growing method
proposed in this paper. For building the topological relation among the branches, the single
branches were also separated from each other according to the spatial connectivity during
the object primitive segmentation. Note that in the initial wood points segmentation, the
segmented results are generally oversegmented. It is because that only the similar neigh-
boring points can be segmented as one object primitive. Obviously, these object primitives
can be used for cylinder fitting. However, the computation will be huge. To alleviate the
computation burden, object primitives were further locally optimized—that is, the similar
object primitives will be fused together. According to the optimized objected primitives and
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the separated branches, the topology relationship among each primitive can be built using
the graph structure. In the graph construction, the nodes are the centers of each primitive.
Furthermore, each object primitive will be fitted as a cylinder. To revise the local abnormal
cylinder, a self-adaptive optimization method was proposed. Finally, the constructed tree
model was further optimized globally based on prior knowledge. To sum up, six main
steps are included in this paper, namely 1©wood points segmentation based on the joint
neighboring growing; 2© single-branch separation based on spatial connectivity analysis;
3© local object primitive self-adaptive constraint adjustment; 4© branch topological relation

construction based on graph structure; 5© local self-adaptive repair and optimization of
branch model; and 6© global optimization of tree model guided by prior knowledge.
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2.1. Wood Points Segmentation Based on the Joint Neighboring Growing

To build the individual tree model, the local tree points should be first fitted into
cylinders. Then, by combining these cylinders together, the three-dimensional tree structure
model can be obtained. Thus, the wood points should be first segmented as objective
primitives to conduct further cylinder fitting. In this paper, a joint neighboring growing
method was proposed. In this segmentation method, only the growing neighboring points
can be seen as an object primitive. The growing starts from the stem base points, which
are points lower than 0.7 m from the tree root. In each time of growing, the K nearest
neighbors of each point within the starting points are found and merged together as the
nearest neighboring points. This procedure can be defined as Equation (1):{

setk
}
=

{
p
∣∣∣∣ ∪i=1···n

neighborsk[pi] , pi ∈ {startingpts}
}

(1)
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where
{

setk
}

is the K nearest neighboring points set. Note that in terms of TLS point
clouds, the point density is generally non uniform due to the scan angle of the laser scanner.
As shown in Figure 2a, the point density of the left blue points is higher than that of the
right blue points. As a result, when detecting the K nearest neighbors of the blue points
according to Equation (1), the orange points are found. Obviously, these points do not meet
the acquirement that the orange points should be able to fit as a cylinder. To solve this
problem, a joint growing strategy was proposed here. On the basis of the detected nearest
neighbors, a fixed neighboring radius constraint is applied. That is, only the neighboring
points within the r radius are detected as the growing neighboring sets. This is defined as
Equation (2): {

setk
r

}
=
{

p
∣∣∣‖p, pc‖ ≤ r, p ∈

{
setk

}}
(2)

where pc is the center point of {startingpts}, ‖p, pc‖means the distance between two points,
and r is the radius. In this paper, r is calculated as the mean value of top ten percentile of
the points within {startingpts} to center pc. As shown in Figure 2b, red points are excluded
successfully under the constraint of the fixed radius. Green points are the final growing
neighboring sets. Apparently, these green points will be easy to fit as a cylinder.
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Figure 2. Neighbors growing based on joint K-neighbors and fixed radius. (a) Neighbors growing
based on K-neighbors; (b) neighbors growing under the constraint of the fixed radius. In (a), blue
points are the starting points, while orange points are the growing points using K nearest neighbors.
In (b), green points are the final growing points for the blue points under the constraint of a fixed
radius. Red points are the excluded points.

2.2. Single-Branch Separation Based on Spatial Connectivity Analysis

To build the correct topology relation among the branches, each branch should be
first separated. In this paper, we realized this based on the spatial connectivity of the
neighboring points set. As shown in Figure 3, P1 represents the growing starting point set.
According to the method mentioned in Section 2.1, in each time of growing, the neighboring
point set will be acquired as the {Seti} shown in Figure 3. To separate each branch, spatial
connectivity analysis was conducted to the neighboring points set. The points within {Seti}
were first voxelized as a series of voxels. By conducting eight connectivity analysis to these
voxels, the number of connected components can be obtained. As shown in Figure 4, it is
easy to find that the number of connected components in Figure 4a is 1, while the number
of connected components in Figure 4b is 2.
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In this paper, the growing starts from the starting points. In each time of growing, the
spatial connectivity of neighboring points set was conducted. If the connectivity of the set
of adjacent points does not change, the neighboring point sets belong to the same branch,
such as L1 shown in Figure 3. When the connectivity of the set of adjacent points changes,
such as P2, the branches should be separated. As shown in Figure 4b, it can be found that
the number of connected components is 2. From P2, the branches will be labeled as L2.
According to the connected components, the branches will be further labeled as L2-1 and
L2-2 as shown in Figure 3. Thereafter, the growing will continue along each branch. By
conducting the spatial connectivity analysis, the branches were labeled correspondingly.

2.3. Local Object Primitive Self-Adaptive Constraint Adjustment

According to the method described in Section 2.1, the wood points can be segmented
as a series of object primitives as shown in Figure 5a. From Figure 5a, it can be found that
the neighboring points are clustered as a sequence of individual object primitives. These
object primitives can be directly used for cylinder fittings. However, this procedure will
involve too much calculation and will be time-consuming since there are too many object
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primitives. Moreover, it is also not convenient for the lightweight expression of the tree
structure model. To alleviate the computation burden, in this paper, we first adjusted the
object primitives locally.
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As shown in Figure 6, {Set1}, {Set2}, and {Set3} are three successive points sets. pc
1,

pc
2, and pc

3 are their corresponding center points. From pc
1 to pc

2, the direction vector
→

pc
1 pc

2 can

be obtained. Similarly, the direction vector
→

pc
2 pc

3 can also be obtained. As shown in Figure 6,

θ is the angle between
→

pc
1 pc

2 and
→

pc
2 pc

3. Meanwhile, pc
1 pc

2 can be seen as the centerline of
point sets {Set1} ∪ {Set2} and pc

2 pc
3 can be seen the centerline of point sets {Set2} ∪ {Set3}.

r12 and r23 are the fitted radiuses of point sets {Set1} ∪ {Set2} and {Set2} ∪ {Set3}, which
can be calculated as the average distance between each point within {Set1} ∪ {Set2} and
{Set2} ∪ {Set3} to its corresponding centerlines. In this paper, angle θ and radius change
rate δ were combined to determine whether the point sets can be merged together. θ and δ
are defined as Equation (3): {

θ =<
→

pc
1 pc

2,
→

pc
2 pc

3 >

δ = abs(r23 − r12)/r12

(3)

In this paper, if θ < 15◦& δ < 0.15, point sets {Set1}, {Set2}, and {Set3} can be
merged together. It means only the point sets with similar radius and directions can be
fused together. For better cylinder fitting, the max number of point sets fusing is set to 5.
That is, at most five successive point sets can be fused together. In so doing, the point sets
fitting error as a cylinder will not be larger.

Figure 5 shows the comparison of object primitive before and after self-adaptive
constraint adjustment. Figure 5a is the segmented object primitives based on the joint
neighboring growing. Figure 5b is the result of object primitive self-adaptive adjustment.
From the comparisons between ‘A’ and ‘C’ and ‘B’ and ‘D’ shown in Figure 5a,b, it can be
found that the similar neighboring point sets are fused effectively. The object primitives
after fusing show a better shape of cylinder, which will lead to a better cylinder fitting result.
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2.4. Branch Topological Relation Construction Based on Graph Structure

To construct the correct tree structure model, the topological relation among different
branches should be built. In this paper, we adopted the graph structure to build the branch
topological relation. In the graph, two sets are concluded, namely node and edge, which is
defined as Equation (4):

G = (V, E) (4)

where V represents the node set, while E represents the edge set. In this paper, vi is the
center point of each object primitive after locally adjustment. ei,j is the edge between two
nodes. In this paper, ei,j is defined as Equation (5):

ei,j =


1 , i f

vj ∈ {neighbors(vi)}
vi ∈

{
branchl

}
&vj ∈

{
branchl

}
, i 6= j

1 , elsei f
vj ∈ {neighbors(vi)}
vi ∈

{
endpointl

}
&vj ∈ {branchm}, l 6= m

0 , otherwise

(5)

As defined in Equation (5), if ei,j is existed, two requirements should be met. One is
that vj is one neighboring point of vi. Meanwhile, vi and vj belong to the same branch. The
other one is vi is one endpoint of the lth branch. Meanwhile, vj is one point of another
branch. In so doing, the built graph structure will be more like a tree skeleton. In Section 2.2,
this paper has separated each branch. Thus, it will be easy to determine whether vi and vj
belong to the same branch or not. Note that to limit the number of edges, only six nearest
neighbors were selected for each node in this paper. Moreover, if the length of ei,j is long,
ei,j will also be eliminated. Figure 7 shows the graph structure for the tree. From Figure 7,
it can be found that the graph can reflect the topology relation among the object primitives.
According to the graph structure, the following tree model can be optimized self-adaptively,
which will be described in Sections 2.5 and 2.6.
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2.5. Local Self-Adaptive Repair and Optimization of Branch Model

After object primitives adjusted, each object primitive can be fitted as a cylinder by
finding the central axis and calculating the diameter. The radius can be calculated as
the mean value of distance between each point within the object primitive to the central
axis. However, the cylinder fitting errors always occur when encountering the branch
cross as shown in Figure 8. In this paper, the neighboring points will be clustered as
object primitives. Thus, the diameter of the fitted cylinder for each object primitive can be
calculated as two times of the mean value of distance between each point to the central axis.
However, when encountering with the cross of branches the calculated diameter always
exists error. As shown in Figure 8a, R1 is obvious larger than R2. As a result, the fitted
cylinder based on the larger diameter will be abnormal as shown in Figure 8b. To obtain
better tree modeling result, the abnormal diameters for fitting cylinders should be revised.
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2.5.1. Abnormal Fitted Cylinder Optimization

To obtain a better tree modeling result, the abnormal fitted cylinder should be op-
timized. This paper optimized the tree model mainly based on the priori knowledge of
tree growth. Figure 9a shows the diameter changes along one same branch. Obviously,
R1 > R2 > R3. Figure 9b shows the diameter changes among different branches. Likewise,
R1 > R2 > R3. Thus, it can be concluded that under natural conditions, branches closer to
the root tend to have larger diameters.
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According to the separated branches mentioned in Section 2.2 and topology relation
among branches built in Section 2.4, the abnormal cylinder can be detected as follows.
Starting from the root of stem, every branch was traversed along the growing direction.
If the diameter (R) of fitted cylinder is larger than that of last neighboring fitted cylinder
(Rlast), the current cylinder will be detected as an abnormal cylinder and its diameter (R)
should be revised as Equation (6):

R =

{
mean(Rlast, Rnext) i f Rnext < Rlast

η ∗ Rlast i f Rnext ≥ Rlast
(6)

In this paper, Rnext represent the diameter of next neighboring cylinder. η is the
adjustment coefficient. In this paper, η is set to 0.99. It means the diameter of the revised
cylinder should be close but smaller than its nearest cylinder.

Figure 10 shows tree model comparison before and after local optimization. From
Figure 10, it can be found that after local optimization, the abnormal cylinders were revised
successfully. For example, R1 > R2 in Figure 10a was revised as R1 < R2 in Figure 10b;
R3 > R4 in Figure 10a was revised as R3 < R4 in Figure 10b.
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2.5.2. Self-Revision of Branch Crosses

As shown in Figure 11a, ‘A’ is the abnormal cylinder that needs to be optimized.
After local optimization as mentioned above, the abnormal cylinder can be adjusted as
shown in Figure 11b. From Figure 11b, it is easy to find that the diameter of the abnormal
cylinder was revised effectively. However, the geometry of the branch cross is destructed.
In other words, the constructed tree model is not connected at the branch cross. To solve
this problem, this paper mainly used graph path analysis to repair the gap caused by the
abnormal cylinder.

As shown in Figure 11c, each cylinder can be seen as an object primitive. It is because
the cylinders are built from object primitives. The center points that can be seen as nodes in
graph within each cylinder can be obtained. Thereafter, according to Equations (4) and (5),
the graph structure for the tree can be constructed. To repair the branch cross, the neigh-
boring cylinders of the revised cylinder ‘A” as shown in Figure 11b should be found. In
this paper, it was realized by using the shortest path analysis. According to the constructed
graph, each node will have a shortest path to the tree root based on the Dijkstra algorithm.
For example, in Figure 11c, the shortest path from v7 to v1 is SP{v7 → v1}. The shortest
path from v8 to v1 is SP{v8, v7 → v1}. The shortest path from v9 to v1 is SP{v9, v7 → v1}.
Thus, it is easy to find that v8 and v9 are the neighboring nodes of v7. To repair the gap
caused by the abnormal cylinder, two cylinders between v8 and v7, v9 and v7, should be
added. The diameter of added cylinder between v8 and v7 can be calculated the mean value
of diameters of the cylinders corresponding to v8 and v7. Similarly, the diameter of added
cylinder between v9 and v7 can also be calculated. Figure 11d shows the self-revision result
after cylinder repair. It can be found that the cylinders ‘B” and ‘C” filled the gaps, which
are formed by abnormal cylinder successfully.
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2.6. Global Optimization of Tree Model Guided by Prior Knowledge

Figure 10b shows the local abnormal cylinder optimization result. From Figure 10b,
it can be found that after local optimization, the abnormal cylinders can be detected and
revised effectively. However, at this time, the overall shape of the model still does not
conform to the trend of the branch model gradually thinning along the growth direction
of the tree. This is because in Figure 10b, only local optimization is carried out without
considering the overall shape change trend. Therefore, further overall optimization of the
optimization results in Figure 10b is required in this paper. Specific overall optimization
method is described as follows. According to the separated branches and topology relation
among them, the branches can be set as different levels. The branch closer to the tree root
is set as lower level. As shown in Figure 3, the branch closet to the root is set as L1 level.
Along the growth direction, the level of branch increased gradually. To optimize the branch
model globally, the cylinder within each branch was traversed. In general, for the diameter
of different level of branches, the branch closer to the root tends to have larger diameter.
Thus, if the diameter of one cylinder that forms the branch of the next level is larger than
the average diameter of all cylinders forming the last level, the corresponding cylinder
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model will be detected as an abnormal cylinder and the diameter of the cylinder will be
adjusted. This procedure can be defined as Equation (7):

i f RL(k) >
n
∑

i=1
RL−1(i)/n RL(k) = max

(
Rn

L−1, Rn−1
L−1, Rn−2

L−1

)
(7)

where RL(k) represents the diameter of the kth cylinder within the Lth level of branch.
RL−1(i) represents the diameter of the ith cylinder within the L-1th level of branch. n is the
number of cylinder forming the L-1th level of branch.

3. Result

To evaluate the performance of the proposed method, 29 field datasets obtained from
three forest sites, namely Peru, Indonesia, and Guyana were tested (Tanago et al. [37]).
The datasets were acquired using the RIEGL VZ-400 terrestrial laser scanner, of which
the scan resolution is 0.06◦ and the scan range is 360◦ in azimuth and 100◦ in zenith. The
characteristics of the 29 datasets were tabulated in Table 1. From Table 1, it can be found
that these 29 datasets are from three different type of forest. The mean tree elevation is from
22 m to 312 m. The mean stem density is also different from each other. The minimum mean
stem density is 516 stems/ha, while the maximum mean stem density is 1314 stems/ha.
Moreover, the mean DBH of different forest type is also different. Figure 12 shows 12 tree
samples selected from the three forest sites. Obviously, they own different morphological
characteristics. Thus, these 29 datasets are representative for validating the effectiveness of
the proposed method.

Table 1. Characteristics of the 29 datasets.

Peruvian Site Indonesian Site Guyanese Site

Number of plots 9 10 10
Forest type Lowland tropical moist Terra firme forest Peat swamp forest Lowland tropical moist forest

Region Madre de Dios. South western Amazon
Mentaya

River (Central
Kalimantan)

Vaitarna Holding’s concession

For the 29 datasets, the geometry of the stem, buttresses, and branches of each har-
vested tree was measured. Thus, the reference volume of each harvested tree can be
calculated by summing the volumes of stem, buttresses, and branches. Since the tree
model is built by connecting a series of cylinders, the volume of the built tree model can
be calculated as the sum of these cylinders. Obviously, the tree modeling accuracy can be
evaluated by comparing the volumes of referenced harvest tree and the built tree model.
Moreover, this paper also estimated the tree heights and DBHs for each individual trees
(Table 2).

Table 2. Experimental results of the proposed method for 29 samples.

Sample Species Volume (m3) Height (m) DBH (cm)

PER01 Buchenavia macrophylla 41.934 38.957 137.6
PER02 Dacryodes peruviana 10.385 26.688 76.8
PER03 Couratari macrocarpa 7.799 31.878 77.4
PER04 Couratari macrocarpa 5.956 34.624 66.2
PER05 Sloanea eichleri 25.91 35.053 108
PER06 Pterygota amazonica 21.353 41.837 115.4
PER07 Pterygota amazonica 14.111 43.997 117
PER08 Pseudopiptadenia suaveolens 20.144 43.231 91.4
PER09 Nectandra longifolia 7.82 34.012 67.1
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Table 2. Cont.

Sample Species Volume (m3) Height (m) DBH (cm)

IND01 Tetramerista glabra 1.578 23.251 41.5
IND02 Tetramerista glabra 2.918 25.214 59.8
IND03 Tetramerista glabra 4.545 23.758 66.8
IND04 Parastemon urophyllus 1.751 26.288 38.3
IND05 Cratoxylon glaucum 0.974 21.446 34.6
IND07 Shorea 15.859 36.651 89.6
IND08 Aglaia rubiginosa 3.732 26.389 61.3
IND09 Diospyros evena 4.717 23.373 51
IND10 Shorea teysmanniana 2.697 24.999 49.1
IND11 Shorea 12.869 36.457 79.8
GUY01 grandiflora 13.207 32.261 88.3
GUY02 jupunba 5.646 31.781 63.9
GUY03 grandiflora 6.078 29.138 60.3
GUY04 grandiflora 6.527 28.476 62.6
GUY05 grandiflora 5.98 30.017 66.4
GUY06 grandiflora 6.382 31.484 70.5
GUY07 grandiflora 12.455 33.996 95.8
GUY08 grandiflora 8.661 28.924 75.9
GUY09 coutinhoi 16.817 35.051 95.2
GUY10 falcata 8.506 27.893 65.4
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Figures 13–15 shows the deviations of volume, height, and DBH for each sample
according to the referenced values. In our paper, volume is calculated as the sum of
a series of cylinders forming the tree. Tree height is calculated based on the highest
and lowest points within the tree points. DBH is calculated using the method proposed
by Wang et al. [38]. In this DBH estimation method, Fourier series and circle fitting are
combined. As a result, the root mean square error of DBH can be improved by 12.4%. From
Figure 13, it can be found that there are 21 out of 29 QSM volume deviations that are larger
than −2 m3 and smaller than 2 m3. It means that 72.4% testing samples can achieve accurate
volume estimation results. In other words, the QSMs constructed by the proposed method
are also similar to the referenced ones. Thus, it can be concluded that the proposed method
can achieve good modeling effect. Figure 14 shows the tree height deviation corresponding
to the referenced values. From Figure 14, it can be found that the tree heights measured by
terrestrial laser scanner tend to be lower. It is because the treetops cannot be accurately detected
by terrestrial laser scanner due to the limit of the vertical scan angle. As a result, most of the
tree height deviations are negative. Figure 15 shows the DBH deviation for each sample. From
Figure 15, it can be found that the DBH estimation results are similar to the referenced values.
Most of the DBH deviations are smaller than 10 cm. Thus, it can be concluded that terrestrial
laser scanner can achieve good DBH measuring results.
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where iVol  is the volume of the ith sample, r
iVol  is its corresponding harvested volume, 
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Comparing with tree height or DBH, tree volume can better reflect the performance of
the tree modeling method. It is because the tree volume can be calculated as the sum of
a series of cylinders forming the tree. If the tree modeling effect is not good, the volume
of the constructed tree model cannot be similar to the harvested volume. Thus, in the
following of our paper, tree volume was mainly used for accessing the performance of our
proposed method. Five accuracy indicators, namely mean deviation (md), relative mean
deviation (rmd), root mean square error (rmse), relative root mean square error (rmse), and
concordance correlation coefficient (ccc), were adopted for quantitative analysis, which are
defined as Equations (8)–(12).

md =
n

∑
i=1

(Voli −Volr
i )/n (8)

rmd = md/Volr (9)

rmse =

√
n

∑
i=1

(
Voli −Volr

i
)2/n× 100% (10)

rrmse = rmse/Volr × 100% (11)

ccc =
2 ∗

n
∑

i=1
(Voli−Vol)(Volr

i −Volr)/n

1
n

n
∑

i=1
(Voli−Vol)

2
+ 1

n

n
∑

i=1
(Volr

i −Volr)
2
+ (Vol −Volr)

2
(12)

where Voli is the volume of the ith sample, Volr
i is its corresponding harvested volume,

Volr is the average of harvested volume, and Vol is the average of estimated volume. From
Figure 13, it can also be found that the largest QSM volume deviations belong to the study
site of PER. Combining with the results shown in Figures 14 and 15, it is easy to find
than the trees in PER tend to be larger since these trees tend to have higher tree heights
and larger DBHs. To further analyze this, this paper calculated rmd, rrmse, and ccc of
trees with different DBH and tree height. Figure 16a shows accuracy metrics of trees with
different DBHs. From Figure 16a, it can be found that rmd and rrmse of the trees with DBH
smaller than 70 cm are obviously smaller than the ones of the trees with larger DBHs. A
similar result can be found in Figure 16b. rmd and rrmse of the trees with height lower
than 30 m are obviously smaller than the ones of the trees with higher heights. Thus, it
can be concluded that the proposed method tends to achieve better modeling results for
the trees with smaller DBH and lower tree height. In addition, no matter which kind of
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trees, the proposed method can achieve good concordance correlation coefficient (ccc). All
of the concordance correlation coefficients are larger than 0.85. In statistics, ccc indicates
the agreement between two variables. In Figure 16, the two variables are QSM volume and
harvested volume. Larger ccc represents high agreement between the calculated values
and referenced values. Thus, it can conclude that the proposed method can achieve good
modeling results as a whole.
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4. Discussion

To access the performance of the proposed method objectively, two classical individual
tree modeling methods, namely TreeQSM and AdQSM were adopted for experimental
analysis. TreeQSM was developed by Raumonen et al. [23]. In their method, tree points are
first segmented as a sequence of cover sets. Thereafter, the neighboring relation among these
cover sets can be determined to obtain tree components. Last, tree components are further
segmented for fitting cylinders with different radius and length. TreeQSM is implemented
in MATLAB and is freely available at https://github.com/InverseTampere/TreeQSM
(accessed on 10 March 2022).

AdTree was first developed by Du et al. [12] and was quickly further optimized by
Fan et al. [30]. In AdTree, the initial tree skeleton was first built based on the Dijkstra
shortest path method. Subsequently, the skeleton was optimized by removing adjacent
vertices and edges. Finally, the branch model can be built by fitting a series of cylinders.
Fan et al. [30] developed an open tool with an end-user interface for AdTree and named
it AdQSM, which can be acquired freely (https://github.com/GuangpengFan/AdQSM,
accessed on 10 March 2022).

Table 3 tabulated the volume accuracy metrics of the three methods. The five accuracy
indicators as defined as Equations (8)–(12) were calculated for TreeQSM, AdQSM, and
ProposedQSM, respectively. From Table 3, it can be found that no matter which accuracy
indicator is selected, the proposed method performs the best. In terms of md, the mean
volume deviation of the proposed method is 1.427 m3, which is much smaller than that of
TreeQSM and AdQSM. Moreover, rmse of TreeQSM and AdQSM are also more than two
times of that of the proposed method. Similar results can be obtained by comparing rmd
and rrmse with the ones of the proposed method. In terms of ccc, the proposed method also
performed much better than the other two methods.

Table 3. Volume accuracy metrics of different method. The bold font means the lowest or highest
value comparing with other methods.

TreeQSM AdQSM ProposedQSM

md (m3) 4.257 2.364 1.427
rmse (m3) 6.732 5.766 2.887

rmd 36.45% 20.24% 12.22%
rrmse 57.60% 49.40% 24.70%

ccc 0.679 0.788 0.949

Figure 17 shows the regression analysis for the three methods between the built QSM
volume and the harvested volume. For each method, the linear regression model was
fitted. Meanwhile, the coefficient of determination (R2) for each fitted regression model
was calculated as Equations (13)–(15).

Sreg =
n

∑
i=1

(
f (Voli)−Vol

)2
(13)

Stot =
n

∑
i=1

(
Voli −Vol

)2
(14)

R2 = Sreg/Stot (15)

where f (Voli) represents the fitted linear regression model. In general, the larger R2 is, the
better fitting can be achieved between the built QSM volume and the harvested volume. In
other words, if R2 is closer to 1, it means a better linear regression model can be achieved
between the built QSM volume and the harvested volume. From Figure 17, it is easy to
find that R2 of the proposed method is much higher than that of TreeQSM and AdQSM.
Table 4 tabulates the comparison of R2 toward these three methods. From Table 4, it can be

https://github.com/InverseTampere/TreeQSM
https://github.com/GuangpengFan/AdQSM
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found that the closer Sreg to Stot is, the larger R2 is. This character can also be found from
Equations (13)–(15). The closer Sreg and Stot means the fitted volume values are close to
the real values. Thus, the larger R2 indicates that a better regression model has been fitted
between the QSM volume and the harvested volume.
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Table 4. Comparison of R2 toward the three methods.

Fitted Linear Model Sreg Stot R2

TreeQSM y = 0.98 + 0.55x 763.57 1048.33 0.73
AdQSM y = 2.1 + 0.61x 934.93 1195.21 0.78

ProposedQSM y = −0.14 + 0.89x 1999.39 2151.76 0.93

From Figure 17, it can also be found that the built QSM volumes of the proposed
method for the 29 samples are much closer to their corresponding harvested volumes. To
further analyze this, in this paper, we compared the volume deviations of the 29 samples
for the three methods. Figure 18 shows the box plot of the volume deviations for TreeQSM,
AdQSM, and ProposedQSM. From Figure 18, it can be found that range of volume deviation
of TreeQSM for the 29 samples is much larger than that of AdQSM and the ProposedQSM.
The mean volume deviation of the proposed method is much closer to 0. It means the QSMs
built by the proposed method are closer to the referenced tree volumes. Thus, it can be
concluded that the proposed method can achieve the best individual tree modeling result.
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5. Conclusions

Individual tree modeling is an important step for forestry investigation and applica-
tions. For example, above-ground biomass estimation is generally based on quantitative
structural model (QSM). To improve tree modeling accuracy and robustness towards com-
plex forest environments, in this paper, we proposed a self-adaptive three-dimensional tree
structure modeling method. In this paper, tree points are first segmented into object primi-
tives using the proposed joint neighboring growing method. Then, the object primitives are
further self-adjusted to alleviate computation burden. Subsequently, the object primitives
are fitted as a series of cylinders with varying radius and length. Moreover, the built tree
model is further optimized locally and globally based on prior knowledge. Twenty-nine
field datasets obtained from three forest sites were used for testing the performance of the
proposed method. There are 21 out of 29 QSM volume deviations that are smaller than 2 m3.
That is, 72.4% testing samples can achieve accurate volume estimation results. Two other
famous tree modeling methods, namely TreeQSM and AdQSM were used for comparing
the performance of the proposed method. From comparison, it can be found that no matter
which accuracy indicator is selected, the proposed method performs the best. In terms of
md, the mean volume deviation of the proposed method is 1.427 m3, which is much smaller
than that of TreeQSM and AdQSM. Moreover, rmse of TreeQSM and AdQSM are also more
than two times of that of the proposed method. In summary, the proposed method can
achieve satisfying individual tree modeling result. When encountering trees with different
species and tree sizes, the modeling accuracy can be still good. The main reason for this
is that the proposed modeling method can be self-adjusted and optimized. Note that the
proposed method can only be used for modeling individual trees. When encountering with
forest plot with many mixed trees. The individual tree detection methods should be first
applied to obtain individual trees. And then, the proposed method can be utilized for mod-
eling. In our future research, we will focus on the tree modeling method toward individual
trees with huge data gaps and try to further improve the modeling accuracy. Moreover, we
will also conduct research on leaves modeling to realize virtual reality for trees.
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