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ABSTRACT

Deep learning has demonstrated its predictive power
in modeling complex biological phenomena such as
gene expression. The value of these models hinges
not only on their accuracy, but also on the ability
to extract biologically relevant information from the
trained models. While there has been much recent
work on developing feature attribution methods that
discover the most important features for a given se-
quence, inferring cooperativity between regulatory
elements, which is the hallmark of phenomena such
as gene expression, remains an open problem. We
present SATORI, a Self-ATtentiOn based model to de-
tect Regulatory element Interactions. Our approach
combines convolutional layers with a self-attention
mechanism that helps us capture a global view of
the landscape of interactions between regulatory el-
ements in a sequence. A comprehensive evaluation
demonstrates the ability of SATORI to identify nu-
merous statistically significant TF-TF interactions,
many of which have been previously reported. Our
method is able to detect higher numbers of exper-
imentally verified TF-TF interactions than existing
methods, and has the advantage of not requiring a
computationally expensive post-processing step. Fi-
nally, SATORI can be used for detection of any type of
feature interaction in models that use a similar atten-
tion mechanism, and is not limited to the detection
of TF-TF interactions.

INTRODUCTION

High-throughput sequencing techniques are producing an
abundance of transcriptomic and epigenetic datasets that
can be used to generate genome-wide maps of different
aspects of regulatory activity. The complexity and magni-
tude of these data has made deep neural networks an ap-
pealing choice for a variety of modeling tasks, including
transcription factor (TF) binding prediction (1–5), chro-
matin accessibility analysis (6–8), prediction of chromatin

structure and its modifications (9,10), and identification of
RNA-binding sites (11,12). Besides providing improvement
in accuracy over traditional machine learning models, deep
learning methods typically require less feature engineering,
and can learn directly from sequence and other data. More-
over, deep learning models are able to capture non-linear
feature interactions that can help explain the underlying
regulatory phenomena.

The discovery that TFs work in tandem to regulate the
expression of their targets (13) has sparked the develop-
ment of a variety of computational methods for predict-
ing cooperativity among TFs and other regulatory proteins
by looking at regulatory element co-occurrences (14–20). In
fact, a recent report has demonstrated that TF cooperativ-
ity in active enhancers is dominant (21). Despite the demon-
strated ability of deep neural networks to extract regulatory
signals directly from sequence, there are very few studies
that explore cooperativity between regulatory features in ge-
nomic data using these methods. Deep Feature Interaction
Maps (DFIM) uses a network attribution method called
DeepLIFT (22) to estimate interactions between regulatory
elements, tested for one pair at a time (23). The major draw-
back of DFIM is that it is computationally expensive: the
interactions are inferred in a separate post-processing step
and involves recalculation of network gradients. We note
that the recent DeepResolve method infers feature impor-
tance and whether a feature participates in interactions with
other features, but does not infer pairs of interacting fea-
tures explicitly (24).

Recently, neural networks that use the concepts of at-
tention and self-attention (25,26) have achieved remarkable
success in natural language processing tasks, specifically in
machine translation (27). One of the strengths of atten-
tion is that it can capture associations between features re-
gardless of the distance between them, addressing a major
shortcoming of convolutional and recurrent networks. This
is particularly useful for tasks in computational biology
where our goal is to identify regulatory elements and their
associations/interactions in DNA or RNA sequences. The
value of attention for transcription factor binding site pre-
diction was recently demonstrated, motivated by the greater
interpretability of the resulting networks (28,29). However,
to the best of our knowledge, attention has not been em-
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ployed for inferring regulatory interactions between TFs
and other regulatory elements.

In this work we propose SATORI, a self-attention based
deep learning model that captures regulatory element in-
teractions in genomic sequences. The primary components
of the architecture of our model are a CNN layer and a
multi-head self-attention layer. Optionally, we also incor-
porate an RNN layer between the two primary layers. The
convolutional layer discovers features (motifs) in the input
sequences (for caveats and architecture choices that affect
this ability see (30)). The self-attention layer then captures
potential interactions between those features without the
need for explicitly testing all possible combinations of mo-
tifs. That enables us to infer a global landscape of interac-
tions in a given genomic dataset without the need for a com-
putationally expensive post-processing step.

We test SATORI on several simulated and real datasets,
including data on chromatin accessibility in 164 cell lines in
all human promoters and genome-wide chromatin accessi-
bility data across 36 samples in Arabidopsis. To compare
our method to DFIM, we incorporated their Feature Inter-
action Scores (FIS) (23) into our framework. In all our ex-
periments, SATORI and FIS returned highly consistent sets
of interactions. We believe this work will assist researchers
in improving the interpretability of complex deep learning
methods and providing actionable hypotheses for follow up
experiments.

MATERIALS AND METHODS

Model architecture

We present a self-attention based deep neural network to
capture interactions between regulatory features in genomic
sequences. Figure 1 shows the model architecture, each as-
pect of which is described in what follows. The DNA se-
quences that are the input to the model are represented us-
ing one-hot encoding where a sequence of length L is trans-
formed into a matrix of size 4 × L where each position in
the sequence is represented by a column in the matrix with
a single non-zero element corresponding to the nucleotide
in that position.

The first component of our model is a one dimensional
CNN layer where a set of filters are scanned against the in-
put sequence/matrix. Formally, we can express the result of
one dimensional convolution as a matrix X

′
defined by:

X′
i, j =

A−1∑
a=0

B−1∑
b=0

ω
( j )
a,b Xi+a,b, (1)

where X is the input matrix, i is the position at which con-
volution is performed, j is the index of the filter, and �(j)

is the weight matrix of filter j, with size A × B where A is
the length of the filter (window size) and B is the number of
input channels (four in the case of one-hot encoded input
DNA sequences). After the convolution operation, we ap-
ply the Rectified Linear Unit activation function (ReLU),
which is given by:

ReLu(x) = max(0, x). (2)

Next, we reduce the output size using max-pooling by tak-
ing the maximum value in a window of a pre-determined

size, a standard operation in convolutional networks. This
reduces the input size for the next layer and also provides
invariance to small shifts in the input sequence. We use a rel-
atively small max-pooling window (around six bp) to main-
tain location information for the subsequent layers, particu-
larly the attention layer which is used to detect interactions.

Following the CNN layer we use an optional RNN layer
(see Figure 1). RNNs have an internal state that enables
them to collect information across the length of the input se-
quence. Specifically, we employ a bi-directional RNN with
Long Short-Term Memory (LSTM) units (31).

Multi-head self-attention. The core component of our net-
work is a multi-head self-attention layer. Attention can
model dependencies within the input sequence regardless of
their distance (27), a property we leverage to capture TF co-
operativity. The key object in self-attention is the attention
matrix. Consider the input X to the attention layer and two
linear transformations of it, called the Query Q, and Key K
which are defined by:

Q = W�
Q

X, (3)

K = W�
K

X, (4)

where W
Q

and W
K

are the corresponding weight matrices
for the Query and Key, respectively. The attention matrix A
is then computed using the following expression:

A(Q, K) = softmax
(

QK�
√

dk

)
, (5)

where dk is the dimension of the Key K. The softmax func-
tion is applied to each row of the matrix QK�√

dk
, ensuring that

the elements of each row sum to 1. The ith component of
the softmax function applied to a vector x is defined by:

softmax(x)i = exi∑
j exj

. (6)

The scaling by 1√
dk

in Equation (5) ensures more stable
gradients of the softmax function for large sizes of the
query/key matrices (27). The attention matrix A, defined
in Equation (5), is a d × d matrix where d = L

Mp
,L is the

length of the input sequence, and Mp is the size of the win-
dow used in the max-pooling operation. For every position
in the max-pooled output, the corresponding row in the at-
tention matrix summarizes the influence of all other loca-
tions on that position. Intuitively, the Query corresponds
to a position of interest in the sequence; the dot product
between Query and Key compares that position with all
other positions in the sequence, summarizing the relevance
of all other positions in the corresponding row of the at-
tention matrix. Each row is normalized using the softmax
function to normalize the influences gathered from across
the sequence. This choice also leads to sparsity of the result-
ing attention matrix. To generate the output of the attention
layer, we first define the Value matrix

V = W�
V

X (7)
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Figure 1. Model architecture: we use a convolutional layer followed by a multi-head self-attention layer; optionally, we add a recurrent layer between the
two. The input in both cases is a one-hot encoding of the DNA sequence. The output of the model is either a binary or multi-label prediction. The figure
also illustrates the multi-head self-attention layer, details of which can be found in the Supplementary Material.

using the associated weight matrix W
V

. Finally, we define
the output of the attention layer as:

Z = A× V. (8)

This allows us to generate the output using the parts of the
input that we want to focus on––those which exhibit strong
inter-dependencies––and ignore irrelevant information.

We then concatenate the individual heads followed by a
linear transformation. The final output is then collapsed
along the hidden (attention) layer dimensions through ad-
dition and normalized by the mean and the standard devi-
ation of the result. Empirically we find that this final step
is not only computationally efficient but also leads to bet-
ter model accuracy in comparison to flattening the atten-
tion layer output. For explicit details, please refer to the
Supplementary Material. The final fully connected read-out
layer outputs the model’s prediction: either binary or multi-
label classification, depending on the experiment. For bi-
nary classification, we use the standard cross entropy loss
function. For multi-label classification, we use the binary
cross entropy with logits loss function:

L(y, ŷ) = − 1
C

C∑
i=1

[yi log σ (ŷi ) + (1 − yi ) log(1 − σ (ŷi ))] ,

where y is the vector of ground truth labels, ŷ are the net-
work predictions, C is the number of classes, and � is the
sigmoid function.

Network training and evaluation

For model selection and optimization, we employ a ran-
dom search algorithm to tune the network’s hyperparam-
eters. For the convolutional layers we considered filter size,
number of filters, and size of window over which pooling
is performed. For the multi-head attention layer we tuned
the dimensionality of the features generated, and the size
of the output of the multi-head attention layer. Details are
provided in Supplementary Table S1 in the Supplementary
Material. To evaluate the model, we use a simple strategy of
splitting the data into 80%, 10% and 10% for train, test, and
validation sets, respectively; we use Area Under the ROC
Curve (AUC) to assess model performance. The package
was implemented in PyTorch (32) and all the experiments
were ran on a Ubuntu workstation with a 12GB TITAN V
GPU.

Motif extraction

To interpret the deep learning model, we extract sequence
motifs from the weight matrices (filters) of the first con-
volutional layer, similarly to the methodology used in (6).
For binary classification problems, we use the positive test
set examples that achieve a probability score greater than
0.70. This cutoff was chosen as a good trade-off between
the number of qualifying examples and confidence in the
prediction. We use all test set examples when dealing with a
multi-class or multi-label problems. Next, for each filter we
identify regions in the set of sequences that activate the filter
with a value greater than half of the filter’s maximum score
over all sequences. The resulting substrings are stacked and
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for each filter, a position weight matrix (PWM) is calcu-
lated using the nucleotide frequency and background in-
formation. The terms ‘filter’ and the motif (PWM) that
describes it are used interchangeably. Sequence logos are
generated using the WebLogo tool (33). The PWMs are
searched against appropriate TF databases using the Tom-
Tom tool (34) with distance metric set to Euclidean. For
searching we use the human CISBP (35) and arabiodpsis
DAP (36) databases. In the benchmark experiments, we use
custom TF databases, details of which are provided in the
Supplementary Material.

Quantifying feature interactions

In this section we describe the process of inferring filter-
filter interactions from the self-attention layer. The atten-
tion matrix for each head is calculated using Equation (5).
Next, we collapse the k heads to a single d × d matrix
by taking the maximum at each position (see Figure 2).
This step summarizes the self-attention values from mul-
tiple subspaces associated with the corresponding single-
heads to a single, attention profile.

The attention matrix provides information about interac-
tions between positions in the sequence. That information
is next converted into interactions between filters by retriev-
ing the filters that are active in those positions. Although
we perform max-pooling following the convolutional layer,
pooling is performed over a very small window (six bp in
our experiments) so that sufficient positional information
is maintained to accurately detect active filters. The max-
pooling operation was useful for reducing the length of the
resulting sequences to reduce the computational overhead.
Finally, for each identified filter-filter interaction, we gen-
erate the attention profile across all testing examples. For a
given pair, this profile consists of a vector of its attention
values at positions where the corresponding filters were ac-
tive. An interaction pair is discarded if its maximum atten-
tion value is below a certain threshold. By default we used
the value 0.10; in the human promoter data we used 0.08 to
increase sensitivity. In the Supplementary Material we pro-
vide the distributions of attention values for all four datasets
(see Supplementary Figure F1).

Filter-filter interactions are then translated to TF interac-
tions by picking the most significant TomTom hits in the ap-
propriate TF database. Filters often learn redundant motifs
and, as a consequence, a single TF-TF interaction can be
captured by multiple distinct filter-filter interactions. Nev-
ertheless, we observe that for a given TF-TF interaction,
the corresponding interacting filters have very similar at-
tention scores (see Supplementary Figure F8). Note that
we might not find significant matches for every CNN fil-
ter in the database; it can be expected that our model is cap-
turing interactions of un-characterized regulatory elements.
However, in this paper we focus on the interactions between
known TFs. We also note that multiple filters can poten-
tially collaborate to contribute to the detection of a single
motif pattern. Such cases would be detected as a TF inter-
acting with itself. When reporting TF-TF interactions, the
SATORI software ignores such interactions.

To test the statistical significance of motif interactions, we
first generate their attention profiles in the background data

(described next). Then the non-parametric Mann-Whitney
U Test is used to calculate their significance. All the P-
values are adjusted for multiple hypothesis testing using
Benjamini-Hochberg method (37).

Background selection. As mentioned above, to test the sta-
tistical significance of regulatory interactions, we need to
compare them to a background. We use a biologically rele-
vant background depending on the experiment:

• For binary classification problems, the negative test set is
used as the background.

• For multi-label, multi-class or regression problems we
generate a background set by shuffling the test set se-
quences while preserving their di-nucleotide frequencies.
Next, in the shuffled sequences, we randomly embed mo-
tifs that are generated based on the CNN filters, inter-
preted as probability distributions, taking into account
the number of times a filter is active above a given thresh-
old in the original test sequences, using the same thresh-
old used for motif extraction.

Quantifying interactions using FIS scoring. To infer inter-
actions between motifs using the FIS method, we closely
follow the strategy described in (23). Given a test sequence
and all of its activated first layer CNN filters, first a source
motif is selected. The remaining filters serve as the target
motifs for the given source motif. Using Integrated Gra-
dients (38), we then calculate the attribution scores for all
the target motifs in the given test sequence. The attribution
score determines how important a motif is for the model to
accurately predict the test example. Next, the source motif
is mutated based on the GC-content of the given sequence
and the attribution scores are recalculated for all targets. Fi-
nally, to infer interactions, for each source and target pair,
the FIS score is calculated as the difference between the at-
tribution scores for each target motif, before and after mu-
tating the source motif. Intuitively, if modifying the source
motif affects the attribution of the target motif, this suggests
a potential interaction, and the magnitude of the change
in attribution scores is used to quantify this potential. We
compute FIS scores for all unique pairs of source and tar-
get motifs across all test sequences and identify statistically
significant interactions using the the same approach used in
SATORI (see Figure 2).

Selecting test examples. To quantify interactions using
SATORI or the FIS-based approach, we use the high-
confidence predictions of the model. For binary classifica-
tion, we pick all positive examples that are assigned predic-
tion confidence above a specified threshold. We use a thresh-
old of p = 0.70 in our experiments. For the background
examples, we pick all the negative test examples that score
below 1 − p. In case of the multi-label classification prob-
lem, we pick our test examples based on the precision of the
model’s prediction probabilities: for a test example to qual-
ify, the precision value––calculated using the given labels
and their model assigned probabilities––must be above a
specified threshold (default precision threshold =0.50). We
note that for FIS scoring of multi-label classification prob-
lems, we only use the attribution values of the true positive
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Figure 2. Summary of the process of inferring interactions from self-attention layer values. For a given example, we collapse the attention heads into a
single matrix. Next, at each pair of positions, the corresponding active CNN filters are identified and the attention value is assigned to the interacting pair.
This is repeated for all examples to generate interaction profiles for all filter-pairs. Finally, we use a background set to test the significance of filter-filter
interactions.

predictions. These values are summed and used in calculat-
ing the final FIS score.

Data collection and processing

We use four datasets to evaluate the ability of SATORI
to capture interactions between regulatory elements. The
datasets are summarized in Table 1, and specific details are
provided in the Methods section of the Supplementary Ma-
terial.

RESULTS AND DISCUSSION

Benchmark 1: embedded motif interactions in simulated ge-
nomic sequences

In this experiment we used SATORI to test if it can re-
cover interactions embedded in simulated DNA sequences.
The dataset was created similarly to the simulated dataset
of Greenside et al. (23): 120 000 random DNA sequences
were generated; in 40 000 sequences we embedded motifs of
the transcription factors SIX5 and ELF1. Motifs from both
TFs were present in each sequence, simulating an interac-
tion. These sequences were labelled as positive examples. In
the rest of the sequences we embedded only one of the two
motifs in each sequence. In addition, motifs occurrences of
TAL1 and AP3 were embedded at random across the whole
dataset.

Not surprisingly, both variants of our deep learning ar-
chitectures achieved perfect classification accuracy on the
test set for this data. We then analyzed the attention layer

weights and inferred statistically significant motif interac-
tions and found that all the significant interactions returned
by our model involve SIX5 and ELF1 as expected. These in-
teractions are summarized in Supplementary Table S2.

Benchmark 2: inferring TAL-GATA motif interactions from
ChIP-Seq data

The TFs TAL1 and GATA1 have been reported to interact:
GATA1 requires a prior or simultaneous binding of TAL1
before it can bind DNA (39). To investigate these interac-
tions in this experiment, which follows a similar experiment
performed by the authors of DFIM, we formulated a bi-
nary classification problem where the positive set consisted
of sequences of the TAL1, GATA1 and GATA2 ChIP-Seq
peaks that overlapped regions of open chromatin (DHSs) in
the human K562 cell-line by at least 200 bp. For the nega-
tive set, sequences of all other K562 DHSs that didn’t over-
lap any of the ChIP-Seq peaks were used. This experiment
serves as another benchmark for our model, and was also
used by Greenside et al. to test their model’s ability uncover
interactions between TAL1 and GATA1/GATA2 (23). Fur-
ther details regarding the dataset are provided in the Sup-
plementary Material.

We trained both variants of our model on this dataset;
in this harder dataset the variant with an RNN layer per-
formed much better with an AUC of 0.94 on the test set
compared to 0.85 for the model without an RNN. The au-
thors of DFIM achieved similar accuracy to our model
that uses an RNN using five layers of convolution. Please
note that we do not seek to demonstrate better model
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Table 1. Dataset summary. The first two datasets are binary classification problems whereas the last two experiments are multi-label problems

Dataset Description Size

Simulated Simulated DNA sequences 120 000 (total)
ELF1 and SIX5 embedded in positive examples 40 000 (positive), 80 000 (negative)
ELF1 or SIX5 embedded in negative examples
Instances of AP3 or TAL1 are also randomly embedded

TAL-GATA ChIP-Seq DNA sequences for TAL1, GATA1, and GATA2 ChIP-peaks in
K562.

105 134 (total)

Positive examples were peaks that overlapped DHSs. 25 134 (positive), 80 000 (negative)
Negative examples were all other DHSs.

Human promoter open
chromatin

DHSs overlapping human promoters 20 613 examples across 164 cell
types

Arabidopsis open
chromatin

DHSs and Transposase Hypersensitive Sites (THSs)
across the arabidopsis genome

88 245 examples across 36 samples

accuracy––our focus is on model interpretability, which we
seek to achieve without compromising on accuracy. For
that reason, we chose to present results using the architec-
ture that uses the additional RNN layer. Our experiments
with both architectures have yielded very similar results
when it comes to detecting interactions (see Supplementary
Figures F6 and F7 in the Supplementary Material). Using
SATORI we recovered multiple significant filter-filter inter-
actions that mapped to TAL1 and GATA motifs with highly
significant P-values (see Supplementary Table S3), demon-
strating the ability of our model to recover biologically rel-
evant interactions between TFs.

Since this dataset uses ChIP-Seq peaks of TAL and
GATA transcription factors that occur in regions of open
chromatin, other TF-TF interactions might present in these
regions. Therefore, we also let SATORI search for interac-
tions among all known human transcription factors. As ex-
pected, we found numerous other interactions. Table 2 sum-
marizes the 15 most frequent TF family-family interactions,
consisting predominantly of interactions between members
of the C2H2 ZF, Homeodomain, CxxC, and GATA fami-
lies (see Supplementary Table S4 for the list of individual TF
interactions). An interesting observation is that the interac-
tions between the GATA and bHLH (TAL1) families are
not the most frequent, despite the fact that the model used
their ChIP-Seq peaks. This is likely because of the differ-
ences in size of these TF families: the C2H2 ZF and Home-
odomain families are the largest TF families in humans,
whereas bHLH and particularly GATA, are much smaller
in size.

Because of the similarity between some TF motifs, the
matching between filters and motifs is not without errors.
In this second experiment, GATA was predicted to interact
with TCF15, which has a motif that closely resembles that
of TAL1. In fact, both of them belong to the same bHLH
family. Supplementary Figure F2 in the Supplement shows
the similarity between these motifs.

The TF interaction landscape across human promoters

In this experiment we investigated regulatory interactions
between TFs in all human promoter regions using DNase
I hypersentivity data (DHSs) across 164 immortalized cell
lines and tissues. This experiment was based on the work
of Kelley et al. (6) which used convolutional networks to
predict chromatin accessibility from sequence information

Table 2. The most frequent interacting families of human transcription
factors in the TAL-GATA ChIP-peaks in human K562 cell-line. All inter-
actions are significant with adjusted P-value <0.05

TF family interaction Frequency
Percent of total

interactions

C2H2 ZF ↔ CxxC 170 14.36%
Homeodomain ↔ C2H2 ZF 121 10.22%
C2H2 ZF ↔ C2H2 ZF 90 7.60%
GATA ↔ C2H2 ZF 79 6.67%
Homeodomain ↔ CxxC 72 6.08%
C2H2 ZF ↔ Sox 62 5.24%
C2H2 ZF ↔ bHLH 53 4.48%
GATA ↔ CxxC 51 4.31%
Sox ↔ CxxC 39 3.29%
C2H2 ZF ↔ THAP finger 21 1.77%
CxxC ↔ bHLH 19 1.60%
Nuclear receptor ↔ C2H2 ZF 19 1.60%
GATA ↔ bHLH 18 1.27%
Homeodomain ↔ bHLH 17 1.44%
SAND ↔ C2H2 ZF 17 1.44%

alone across the entire human genome. We chose to focus
on a subset of the data that consists of DHSs in human
promoters to determine interactions relevant to the regu-
lation of gene expression. The labels in this data represent
presence/absence of a given DHS across each of the 164
cell lines, and is a multi-label classification problem. Addi-
tional details are found in the Supplementary Material. We
trained both network variants (see Figure 1) and observed
that with the optional RNN layer, the network performed
better in terms AUC scores (see Supplementary Figure F3).
SATORI results are presented for this architecture variant.

The trained network yielded filters that matched 93 TFs
with known motifs (counting only filters that had informa-
tion content greater than 3.0). Among those 93 TFs, our
model identified 123 unique pairs of motifs that interact.
The 15 most frequent interactions are shown in Figure 3(A).
For the complete list, refer to Supplementary Table S5. We
also looked at the distribution of the distances between in-
teracting motifs, and observed that, as expected, interac-
tions tend to occur in close proximity with a median dis-
tance of interaction of 150 bp (see Figure 3B). Overall, the
Homeodomain, C2H2 ZF, Sox and CxxC families were the
most frequent families of interacting TFs (see Supplemen-
tary Figure F5). Finally, it is worth mentioning that for
four interactions out of the total of 123, we found evidence
in the TRRUST database (40) which lists 16 interactions
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A B

Figure 3. The most frequent TF interactions in human promoters (A). The distribution of TF–TF interaction distances for the most frequent interactions
(B). The dotted blue line represents the median distance across all significant interactions.

among the 150 TFs. This overlap is statistically significant
with a P-value of 5.98 × 10−4 using the hypergeometric
test. We also found support for nine out of the 123 inter-
actions in the HIPPIE database of human protein-protein
interactions (41), which had 56 total interactions among the
150 TFs. This overlap is statistically significant with a P-
value of 7.72 × 10−22 using the hypergeometric test. Sup-
plementary Table S6 in the Supplementary Material pro-
vides the interactions supported by these two databases. We
note that cooperativity between TFs does not necessarily
occur through direct physical interactions. Other modes of
cooperativity include competitive binding and remodeling
of chromatin (42).

In this work we only analyzed interactions between mo-
tifs of known TFs. Not all filters can be mapped to char-
acterized regulatory proteins. In this dataset, TomTom re-
turned no significant matches for 80 out of the 200 CNN fil-
ters with motif information content >3.0. The interactions
of these filters require further investigation to discover the
regulatory molecules associated with them.

As mentioned above, the motif matching results returned
by TomTom are noisy and imperfect. For example, some of
the statistically significant matches are clearly incorrect, as
shown in Supplementary Figure F4. However, this is not
a shortcoming of our model, but rather a limitation of the
interpretation of filter-filter interactions.

Genome-wide regulatory interactions in arabidopsis

In the next experiment we evaluated the ability of SATORI
to detect interactions on a genome-wide scale. For this task
we chose to focus on regions of accessible chromatin in
arabidopsis in a manner similar to our experiment in hu-
man promoter regions. More specifically, we predict chro-
matin accessibility from sequence across 36 arabidopsis
samples from recently published arabidopsis DNase I-Seq
and ATAC-Seq studies (GEO accession numbers provided

in the Supplementary Methods section). Like the previous
dataset, this too is a multi-label prediction problem, where
the labels indicates whether a given region has a peak in
each of the 36 samples of DNase I-Seq and ATAC-Seq.
We trained both deep learning architectures and as in the
other datasets, the network that included an RNN layer per-
formed better in terms of median AUC across samples (0.86
compared to 0.85).

In the next step, we investigated genome-wide regula-
tory interactions in those regions of open-chromatin. The
trained network yielded 189 filters with information content
above 3.0, and we obtained 100 unique matches for those fil-
ters in the DAP-Seq arabidopsis TF database (36). Among
these 100 TFs, our model identified interactions between
687 pairs of of motifs involving diverse plant transcription
factors (see Figure 4A). G2like, MYB, C2C2dof, and AP2
were the most frequently represented TF families in those
interactions. Similarly to our findings in human, plant TF
interactions tend to occur in relative proximity (median dis-
tance = 126 bp) as shown in Figure 4B. Arabidopsis does
not have a database of known interactions between TFs, so
our results could not be validated. Targeted experimental
validation of these predictions can thus significantly enrich
our knowledge of the combinatorial regulation of gene ex-
pression in plants.

Comparison: SATORI and FIS-based interactions

To compare our model to DFIM (23), we incorporated its
FIS scoring method as a feature in our framework and
tested it on the three real-world datasets. A key observation
is that among the top scoring interactions detected by the
two methods there is very high overlap: In the TAL-GATA
dataset twelve out of the top fifteen interactions detected by
FIS scoring were also reported by SATORI; for the human
promoter dataset 14 out of the top 15 FIS predictions were
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A B

Figure 4. The regulatory interaction landscape in accessible chromatin in the arabipdosis genome. The most frequently interacting families of plant tran-
scription factors (A). For the most frequent interactions, the box and whiskers plot depicts the distribution of interaction distances (B).

A B C

D E F

Figure 5. Common interactions in the top predictions of SATORI and FIS. Interactions detected by FIS are sorted by frequency. Those detected by
both methods are shown in blue, and ones detected only by FIS are shown in red. Top predictions are shown for the TAL-GATA dataset (A) the human
promoter dataset (B), and the genomewide arabidopsis dataset (C). For each experiment, the 10 most frequent TF family interactions are shown in (D),
(E) and (F) respectively.
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Figure 6. Run time in minutes for SATORI and FIS-based interaction estimation for the four datasets.

detected by SATORI; finally, for the arabidopsis genome-
wide dataset, all the top 15 FIS predictions were reported by
SATORI. At the TF family level, we observed perfect agree-
ment in the top ten predictions in all three datasets. These
results are summarized in Figure 5; a summary of the num-
ber of statistically significant interactions detected by the
two methods is provided in Supplementary Table S7. The
agreement on the top predictions suggests their high likeli-
hood of being biologically relevant, and make them promis-
ing candidates for experimental validation.

Next, we compared the computation times for the two
methods. As discussed earlier, unlike the FIS method,
SATORI does not require re-calculation of the gradients
to estimate the interactions, leading to much faster compu-
tation times: it processed all motif interactions 8–20 times
faster than FIS (see Figure 6).

In summary, we find a very high level of overlap be-
tween the results of the two methods, which use very differ-
ent approaches. This is important in view of the relatively
small number of experimentally verified interactions that
are available. Further wet-lab validation is needed to test
the quality of the reported interactions by the two methods.
High-frequency interactions consistently detected by both
methods can be used as the most promising candidates for
experimental follow-up.

CONCLUSIONS AND FUTURE WORK

In this work we presented SATORI––a method for ex-
tracting interactions between the learned features of an
attention-based deep learning model. Unlike existing meth-
ods, it only requires minimal post-processing and uses the
sparsity of the attention matrix to infer the most salient in-
teractions. We compared SATORI to the FIS interaction es-

timation method and reported a 10× speed-up in its compu-
tation time in most cases. Furthermore, the top predictions
made by both methods show very high overlap, suggesting
such interactions as promising targets for follow-up biologi-
cal experiments. This high overlap, despite the big difference
in the approach provides good evidence for their potential
biological relevance.

The proposed method can be extended in several ways.
In this work, we focused on globally scoring interactions
between TFs with known PWMs. This is in contrast to fea-
ture attribution methods that score the contribution of fea-
tures in genomic regions of interest. We believe that the
sparsity of the attention matrix could make it useful as an
attribution method as well, but further experiments are re-
quired in order to validate that. SATORI is able to detect
interactions between filters, even if they do not correspond
to known TFs. Furthermore, the proposed methodology is
flexible enough to be applied to deep networks that inte-
grate multiple data modalities, and has potential applica-
tions outside of computational biology. For example, it can
allow discovery of interactions between different character-
istics of chromatin structure to provide a better understand-
ing of the relationship between epigenetic markers such as
histone modifications, DNA methylation, and nucleosome
positioning and their contribution to the regulation of gene
expression.

DATA AVAILABILITY

The source code for SATORI and the processed data and
results are available at https://github.com/fahadahaf/satori.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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