A Self-Reconfigurable Framework for Context
Awareness

Nicola Bicocchi', Damiano Fontana?, and Franco Zambonelli

! Dip. di Ingegneria Enzo Ferrari
Universitd di Modena e Reggio Emilia
Modena, Italia
2 Dip. di Scienze e Metodi dell’Ingegneria
Universitd di Modena e Reggio Emilia
Reggio Emilia, Italia
name.surname@Qunimore.it

Abstract. Urban environments are increasingly pervaded by ICT de-
vices. Soon, citizens and technologies could collaboratively constitute
large-scale socio-technical organisms supporting both individual and col-
lective awareness. This paper illustrates a modern awareness framework
designed to deal with the complexity of this scenario. The framework is
able to collect and classify data streams in a modular way by supporting
service oriented, reconfigurable components. Furthermore, we evaluate
an innovative meta-classifcation scheme based on state-automata for (7)
improving energy efficiency, (%) improving classification accuracy and
(#i) improving software engineering of aware systems, without affecting
the overall performance.

Key words: Awareness Framework, Meta-Classication, Self-Reconfiguration,
Self-Optimization

1 Introduction

The widespread adoption of sensor networks, actuators and computational re-
sources capable of interacting with people is transforming urban environments
[2, I7]. Citizens will be continuously connected in both a situation-aware and
socially-aware way [19]. This will eventually contribute to define a dense ecosys-
tem whose individual components will enable collaboration between ICT devices
and humans, enabling advanced urban services ranging from transportation sys-
tems, to environmental sustainability and participatory governance [10, [1].

In this scenario, awareness modules are called for knowledge collection, or-
ganisation, and reasoning. However, the design and deployment of such modules
in future urban scenarios is not trivial. In fact, engineering collaborative and co-
ordinated components capable of harnessing the human and ICT capabilities in
sensing at a large urban scale, shakes current approaches until their foundations
rooted in top-down design. Designing with a top-down approach means that all
the requirements of a software architecture have to be taken in account a pri-
ori; systems engineered in this way have a predictable and measurable behavior

name.surname@unimore.it

2 N.Bicocchi, D.Fontana, F.Zambonelli

but are not well suited to cope with dynamic execution contexts. Contrarily,
bottom-up design delivers robust systems and can be fruitfully used in pervasive
environments. However, predicting and controlling their behaviour by design is
not an easy task.

Short coming urban scenarios call for a balanced trade off between the two
approaches in designing an awareness framework. In fact, both top-down design
and self-* properties are required. In this context, the contribution of this paper
is twofold:

— it describes an awareness framework for knowledge collection using industrial-
level tools. It is able to collect data from a number of different sources and
classify them using general-purpose algorithms. The framework is higly dy-
namic; modules can be loaded, unloaded and reconfigured at runtime.

— it shows, using a case study, how state based automata could enable self-*
properties and optimizations within the framework. More in detail, experi-
mental results quantify their effectiveness in: (i) improving energy efficiency,
(#) improving classification accuracy and (#4) improving software engineering
of aware systems.

The rest of the paper is organised as follows. Section [2| describes motivations
and challenges behind this work. Section [3| presents the global architecture of our
awareness framework, while a case study is sketched in Section [d Preliminary
experimental results have been explained in Section[5] Section [f]discusses related
work. Section [l draws conclusions.

2 Reconfigurable components and knowledge collection

Smart phones are increasingly equipped with computational, connectivity and
sensing capabilities. At the same time, autonomous ICT devices (camera, drone,
sensor networks and intelligent object) with sophisticated sensing capabilities
are pervading our cities. In this scenario, entities with heterogeneous sensing
capabilities are involved in complex sensing tasks.

However, this scenario implies novel challenges in knowledge collection: (%)
different approaches and algorithms are needed to effectively deal with the many
facets of real-world problems; (ii) the same classification scheme often requires
to be tuned at runtime; (i) classification accuracy is inversely proportional to
the number of treated classes [I8] [11].

Thus, modern architectures dealing with these requirements should exhibit
a certain degree of dynamism and flexibility by making applications able to au-
tonomously reconfigure. Service oriented and dynamically reconfigurable compo-
nents have been proposed as a solution [I5]. In particular, they can be deployed
and removed at runtime. These features allow to select among different com-
ponents depending on the situation. For example, given a specific classification
task, it is possible to select a highly precise and computationally expensive algo-
rithm or a less precise one considering the device. Furthermore, reconfigurable
components can transparently modify their internal parameters. For example,

A Self-Reconfigurable Framework for Context Awareness 3

classifiers can analyse temporal windows of different sized based on the availably
of computational resources, energy boundaries, or environmental conditions.

Despite reconfigurable components could provide a higher degree of flexibil-
ity to applications, the problem of driving reconfiguration processes is still open.
In fact, every system capable of changing its internal structure or parameters
must take decisions according to its environment. We decided to start driving
internal reconfigurations with state-based automata because of their simplicity
and generality. Each status is associated with a set of sensors specifically config-
ured, while transitions and consequent reconfigurations are triggered by specific
conditions. Moreover, such models are simple to understand and configure by
developers.

Summarising, the key idea consists in using service oriented, reconfigurable
components to classify data streams with data-driven models, while specification-
driven models, such as automata, can drive the reconfiguration of the architec-
ture. This design approach leads to three main advantages:

— Improve energy efficiency. In particular, for each specific situation the less
energy demanding sensors and classifiers could be used. For example, it is
possible to roughly recognise the vehicle used by a user with either GPS or
accelerometer or microphone. An energy constrained system could constantly
monitor its energy consumption and select the most appropriate trade-off. Fur-
thermore, classification algorithms could be parameterized to be less precise
in favour of a minor computational complexity.

— Improve classification accuracy. In the near future, the number of sensors
available will rapidly increase and several classifiers could be used to recognise
specific situations. It is up to the awareness framework to activate on-demand
the most suitable sensors and classifiers by taking in consideration the current
context awareness of the framework (e.g. the vehicle classifier could be activate
when the speed overcomes a certain threshold).

— Improve software engineering. Organising the framework around the idea of
reconfigurable components (i.e., sensors, classifiers) leads to modularity and
composability of the software ecosystem. Users will be able to deploy compo-
nents that are: (i) already included in the framework or (ii) developed by the
developer community.

3 Internal architecture

This section details an awareness architecture supporting ideas described in Sec-
tion [2] Specifically, its goal is to provide general-purpose awareness that could
be used as a starting point for many diverse applications. Developers are only
required to select the needed modules, define the topology of data flows and
specify their reconfiguration strategies as depicted in Figure [T}

The architecture is structured around three layers, namely sensor, classi-
fier and awareness layer. Each layer can host multiple modules connected each
other via application-definable topologies. The data flow from sensors (i.e., both

4 N.Bicocchi, D.Fontana, F.Zambonelli

hardware and software) through the whole architecture by means of in-memory
queues enabling modules decoupling and many-to-many asynchronous communi-
cations. Each layer can host multiple modules (i.e, sensors, classifiers, awareness
modules, queues).

The sensor layer hosts modules that are in charge of retrieving raw data
from physical/social sensors and preprocess them. An example could be a module
acquiring images from a camera and cropping and resizing them. Other examples
could be modules acquiring facts from social networks, such as Twitter, Facebook
or Foursquare. At the time of writing, we have already implemented modules for
reading data from Android devices.

The classification layer hosts modules that consume data coming from the
sensor layer and classify them (i.e., generate semantically richer information).
An example could be a module able to classify the activity performed by a user
by processing accelerometer data. At the time of writing, we have implemented
modules for classifying user activity, location, speed, vehicle used on the basis on
common smartphone sensors. Specific applications will need their own modules
to be developed.

The awareness layer hosts modules consuming labels produced in the clas-
sification layer and feeding external applications with situational information.
These modules might have different goals depending on the application. How-
ever, they could be divided into two main classes.

The former comprises modules delegated to sensor fusion processes. These
modules receive labels, eventually conflicting, coming from multiple classification
modules and apply algorithms to achieve higher semantical levels. For example,
commonsense knowledge has been recently proposed [5] and could be integrated
at this level.

areness Layer
Controller
.-~ (State Automata) Label Collector

OpenCV, jMIR, Weka
SEDA queues

! { . . Glassification Layer Apache Camel
3 iPOJO
Location_ Location_ Speed Activity_1 Talking [0SGI)
3 4 - SEDA queues

-+ Classification Layer

Deploy

Accelerome Microphon Engi ing Viewpoil
ter e

Sensor Layer

\
\\
\\
‘\
] [

Fig. 1. Conceptual and engineering viewpoints of the architecture. The framework is
structured around three layers, namely sensor, classifier and awareness layer and it is
implemented on the top of industrial-level Java technologies.

N v EGO component --7-» Awareness Layer f---

I

o1ty

A\ 1 1 Java JVM

\V /L + Linux,Android B Sensor Layer -
[

GPs J Conceptual Viewpoi

A Self-Reconfigurable Framework for Context Awareness 5

The latter, instead, is related with the capability of the framework of moni-
toring and controlling itself. In a sense, the awareness layer could be the key of
building a self-aware awareness module. For example, it would be possible to in-
tegrate within this level modules observing the internal status of the framework
and activating different classifiers and sensors depending on operating conditions.
This capability could be used to achieve both improved classification accuracies
and reduced power consumption levels by continuously selecting to most suitable
classifiers and sensors.

The strategies used to drive reconfiguration might vary depending on the
application. For example, in Section [4] we propose a meta-classification scheme
based on a simple automata in which each state in associated to a set of active
sensors and transitions are triggered by their labels.

3.1 Implementation Insights

From an engineering viewpoint, the architecture is implemented on the top of
industrial-level Java technologies. The reconfiguration mechanisms are provided
by OSGi, a well-known Java framework that provides the typical features sup-
ported in a Service Oriented Component model.

On top of OSGi, we have an iPOJO layer. iPOJO is a container-based frame-
work handling the lifecycle of Plain Old Java Objects (POJOs) and supporting
management facilities like dynamic dependency handling, component reconfig-
uration, component factory, and introspection. Moreover, the iPOJO container
is easily extensible and allows pluggable handlers, typically for the management
of non-functional aspects. Each module deployed in the three layers is actually
an iPOJO component able to meet the requirements mentioned in Section [2] [4].

The communications between layers is handled by exploiting a staged and
even-driven approach in order to decompose a complex, application into a set
of layers loosely connected. We build the support for the staged and layered
architecture by making use of Apache Camel. This framework gives the capability
to the iPOJO components in the different layers of asynchronously processing
data streams and communicate through in-memory queues. These queues allow
modules belonging to different layers to continuously communicate each other
with minimum hardware requirements.

Finally, considering that pattern classification and analysis has a central role
in situation awareness, we wrapped well-know data manipulation libraries within
the framework such as Weka, jMIR and OpenCV.

4 Life logging application, a case study

To drive reconfiguration we started experimenting with state-based automata
because of their simplicity and generality. A number of real-world problems
can, in fact, be described using this approach and it is possible to drive the
reconfiguration process using simple and clear schemas.

6 N.Bicocchi, D.Fontana, F.Zambonelli

Location_4 (pub, restaurant, other)
indoor ”

Location_1 (indoor, outdoor)
Location_2 (home, office, other)
Talking(no voice, phone, dialogue, group)

indoor
Location_1 (indoor, outdoor)

R Activity_1 (walk, run, stand)
Speed (fast, slow) ~ p----" Location_3 (park, street)
Location_1 (indoor, outdoor)

Activity_1 (walk, run, stand)

Fig. 2. Examples of state based-automata driving a self-aware smartphone collecting
data about the life of the user.

To demonstrate that, in this section we describe a self-aware smartphone
application collecting data about the life of the user. In particular: her activity,
kind of location, vehicle used and people talking around.

Automata are defined by a list of its states and transitions between states.
The current state in the automata defines active sensors and classifiers in the
framework (Figure ; it can change from one state to another when initiated
by a triggering event, i.e a particular situational information or label produced
by an active classifier; this is called a context-aware transition. A context-aware
transition could triggers (i) an automatic reconfiguration or deploy of new sen-
sors and classifiers; () eventually an undeploy of active classifiers.

Thanks to this design approach modules can be enabled, disabled, wired and
rewired in a dynamic way by making use of their output to navigate a state
automata. For example, state C activates both the location and activity sensors
but triggers transitions to itself on state B using only location labels.

The reconfiguration strategy driven by this automata improves (i) energy
efficiency because costly component in terms of energy consumption are activated
on-demand (e.g. when the system reaches state D, the only microphone is used to
perceive changes); (i) classification accuracy because classifiers work in optimal
conditions (e.g. labels produced by the vehicle classifier are avoided when the user
is located indoor). Furthermore, (i) software engineering is greatly simplified.
One can simply draw an automata, associate to each status sensors and classifiers
and deploy the application.

5 Experimental evaluation
To assess our ideas we evaluated how (%) an automata-driven meta-classification

scheme impacts on both classification accuracy and energy consumption; (ii) the
framework behaves in terms of performace and scalability. We have tested the

A Self-Reconfigurable Framework for Context Awareness 7

Vehicle Classifier - Precision Vebhicle Classifier - Recall

Automata-Driven il Always-On # Automata-Driven B Always-On

Fig. 3. Precision and recall of vehicle classifier obtained by classifying a dataset with
or without automata-driven reconfiguration.

framework on a server with Core Duo 2 CPUs operating at 2.2GHz and 5GB
of RAM. In the tests we used MacOSX 10.6 with JVM v1.6. The framework is
running on Apache Karaf 2.3.0 OSGi container.

5.1 Smartphone case study

To evaluate the framework we implemented the smarthpone case study on
top of our self-aware architecture. The dataset has been collected using an
Android Galaxy Note II smartphone running a modified version of Funf [3].
Ground truth has been manually annotated. We defined a situation s =
{activity, location, speed, vehicle}. Each field of the tuple can assume specific
values. In particular activity = {walk, run, stand, sit}, location = {indoor, outdoor},
speed = {slow, fast}, vehicle = {car, bus, train, other}.

Each field of the tuple is managed by a specific classifier (see Figure [I}left).
In particular: (i) an activity classifier using accelerometer and microphone data,
that has a discriminative core based on SVM that uses a 64 dimensions Sim-
ple Magnitude Spectrum feature vector and its maximum value; (i) a location
classifier recognising indoor and outdoor environments when there is a lack of
GPS data in a sliding window of 15 seconds; (iii) a speed classifier recognising
fast and slow movements by computing the average speed over a sliding window
of 10 GPS samples; (iv) a vehicle classifier using microphone data collected at
44.100Hz, 16bit, mono and divided in windows of 4 seconds long, that is based
on SVMs and two feature vectors computed for each window using jMIR: a 13
dimension Mel-Frequency Cepstral Coefficient (MFCC) feature vector and a 10
dimension Linear Prediction Coeflicients feature vector.

We recorded 7200 seconds of GPS, accelerometer and microphone data
streams collected by three different users. The dataset has been divided into
two equal non-overlapping sets, one used as training, the other as test set.

Results, summarised in Figure[3] show that classification precision for the ve-
hicle classifier increases around 10% while recall does not vary significantly. The
improvement derives from the fact that automata avoid all the errors produced
by sensors working without context (e.g., a vehicle classifier working while users
are walking in a busy street).

8 N.Bicocchi, D.Fontana, F.Zambonelli

Heap Memory Usage Throughput

sas 600 610 3529 3430

3302

— throughput (msg/sec

06 200 —Heap Memory Usage (MB) 5500

1650

) 0 © 100 w0 400 w00 2 s B 0 0 © w0
Number of messages processed (k) Number of components

Fig. 4. Evaluation of memory consumption and throughput of the framework by in-
creasing the number of parallel components in the classifier layer.

Furthermore, these results have been achieved with a substantial reduction
of the energy required because the GPS is active around 46% of time, the mi-
crophone 54% and the accelerometer 6%, instead of being always-on.

5.2 Performance evaluation

As experimental evaluation, we have estimated the performance of the frame-
work by dynamically increasing the number of parallel components in the clas-
sifier layer that process a data stream of 10k messages (injected as fast as pos-
sible and with small payload) without further computations. The effect is an
increasing number of messages that have to be processed in the framework. The
corresponding experimental results are reported in Figure [4]

The first metric used to evaluate the performance is the memory usage. In
particular, the graph shows how the heap memory usage increases linearly with
the increasing number of messages processed.

The second metric is the throughput, i.e. average number of messages per
second processed by all the components in the classifier layer. In particular,
the graph shows how the average throughput of classifiers decreases linearly
with the increasing number of components consuming the data stream. However,
in the worst case (eighty parallel components) the average throughput remain
acceptable (411 msg/sec).

These results demonstrate how (i) the bottleneck in the awareness module
is the CPU that limits the scalability in terms of number of messages processed
per second; (i) the overhead introduced by our awareness module is negligi-
ble, because the performance decreases linearly with an increasing number of
components.

6 Related work

In the last years, researchers prototyped sensing systems able to acquire detailed
situational information from data streams [6], 13, [12] using both specification-
driven (e.g., logic ontologies, logic programming, fuzzy logic) or data-driven ap-

A Self-Reconfigurable Framework for Context Awareness 9

proaches (e.g., support vector machine, decision trees, neural networks). The
most prominent works have been surveyed in [I8] and [I1].

However, the majority of these systems lacks in generality and addresses
specific classification problems, by making use of a pre-defined set of sensors [14].
Few of them tried to make use of both the approaches designing frameworks that
are resource efficient and robust in a large plethora of situations. For example,
in [I5] authors make use of processing pipelines on various sensors (i.e., GPS,
accelerometer) to show how dynamic reconfiguration could be used in continuous
sensing. However, the framework doesn’t use any specification-driven approach.

On the other hand, Cimino et. al. [7] describe a framework using specification-
driven reasoning to deal with heterogeneous user behaviours. However, it doesn’t
allow awareness to drive the reconfiguration of sensors and classifiers. Other
works [16], [8] propose to optimise the sensing process in terms of power saving.
In particular, the former [16] exploits a specification-driven reasoning technique
to learn relationship among context attributes to optimise the internal logic of
an awareness framework. However, like previous works, these frameworks focus
only the optimisation of energy consumption in continuous sensing.

Kawsar et. al. [9] demonstrate that our approach of modelling human activi-
ties and contexts with a set of states glued by a set of transitions can successfully
describe a number of real world scenarios and drive the reconfiguration process.

To the best of our knowledge, our self-aware framework represents a first
attempt to integrate the two approaches in a more general way. The framework
is able (i) to make full use of all the strategies proposed in previous works and
(ii) to deal with more complex scenarios rooted in self-* requirements.

7 Conclusion and future work

In this paper we proposed an innovative awareness framework suitable for de-
veloping pervasive applications. It has been designed around the concept of re-
configuration and built using industrial-level tools. Its modular and portable
architecture has been provided with a meta-classification scheme based on state
automata to drive reconfiguration, with promising results in terms of both clas-
sification accuracy and energy consumption.

As future work, we plan to challenge our reconfigurable framework in more
complex scenarios to better understand how the framework self-* structure could
simplify the engineering of a mobile context-aware operating system.

Acknowledgments: work supported by the ASCENS project (EU FP7-FET, Contract
No. 257414).

References

1. Smart cities Ranking of European medium-sized cities.
http://tinyurl.com/bgh83np, Vienna, Austria, 2007.

10

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

N.Bicocchi, D.Fontana, F.Zambonelli

. Looking ahead in pervasive computing: Challenges and opportunities in the era of

cyber physical convergence. Pervasive and Mobile Computing, 8(1):2 — 21, 2012.

. N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland. Social fmri: Investigating

and shaping social mechanisms in the real world. Pervasive and Mobile Computing,
7(6):643-659, 2011.

. P. Bellavista, A. Corradi, D. Fontana, and S. Monti. Off-the-shelf ready to go

middleware for self-reconfiguring and self- optimizing ubiquitous computing appli-
cations. Proceedings of the 5th International Conference on Ubiquitous Information
Management and Communication, 2011.

. N. Bicocchi, M. Lasagni, and F. Zambonelli. Bridging vision and commonsense for

multimodal situation recognition in pervasive systems. In International Conference
on Pervasive Computing and Communications, Lugano, Switzerland, 2012.

. D. Choujaa and N. Dulay. Tracme: Temporal activity recognition using mobile

phone data. In Embedded and Ubiquitous Computing, 2008. EUC ’08. IEEE/IFIP
International Conference on, volume 1, pages 119126, 2008.

. M. Cimino, B. Lazzerini, F. Marcelloni, and A. Ciaramella. An adaptive rule-

base approach for managing situation-awareness. Fzpert System with Applications,
39(12):10796-10811, 2012.

. S. Kang, J. Lee, H. Jang, Y. Lee, S. Park, and J. Song. A scalable and energy-

efficient context monitoring framework for mobile personal sensor networks. Mobile
Computing, IEEE Transactions on, 9(5):686-702, 2010.

. F. Kawsar, G. Kortuem, and B. Altakrouri. Designing pervasive interactions for

ambient guidance with situated flows. 3:371-375, 2010.

M. Kehoe and al. Understanding ibm smart cities. Redbook Series, 2011.

W. Z. Khan, Y. Xiang, M. Y. Aalsalem, and Q. Arshad. Mobile phone sensing
systems: A survey. IEEE Communication Survey and Tutorials, 15:402 — 427, 2013.
J. R. Kwapisz, G. M. Weiss, and S. A. Moore. Activity recognition using cell phone
accelerometers. SIGKDD Explor. Newsl., 12(2):74-82, Mar. 2011.

K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy trade-off for
continuous mobile device location. In Proceedings of the 8th international confer-
ence on Mobile systems, applications, and services, MobiSys 10, pages 285298,
New York, NY, USA, 2010. ACM.

H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell. Soundsense: scal-
able sound sensing for people-centric applications on mobile phones. Proceedings
of the Tth international conference on Mobile systems, applications, and services,,
pages 165—-178, 2009.

H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell. The
jigsaw continuous sensing engine for mobile phone applications. Proceedings of the
8th ACM Conference on Embedded Networked Sensor Systems, pages 71-84, 2010.
S. Nath. Ace: exploiting correlation for energy-efficient and continuous context
sensing. pages 29-42, 2012.

H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M. Nilsson, and A. Oliveira.
The future internet. chapter Smart cities and the future internet: towards coop-
eration frameworks for open innovation, pages 431-446. Springer-Verlag, Berlin,
Heidelberg, 2011.

J. Ye, S. Dobson, and S. McKeever. Situation identification techniques in pervasive
computing: A review. Pervasive and Mobile Computing, 8:33—-66, 2012.

F. Zambonelli. Toward sociotechnical urban superorganisms. I[IEEE Computer,
45(8):76-78, 2012.

	Nicola Bicocchi, Damiano Fontana,Franco Zambonelli
	Introduction
	Reconfigurable components and knowledge collection
	Internal architecture
	Implementation Insights

	Life logging application, a case study
	Experimental evaluation
	Smartphone case study
	Performance evaluation

	Related work
	Conclusion and future work
	References

