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The dynamical symmetry breaking phenomena in the Nambu and Jona·Lasinio model are reexamined 
in the framework of a self· consistent mean·field (SCMF) theory. First, we formulate the SCMF theory in 
a lucid manner based on a successful decomposition of the Lagrangian into semiclassical and residual 
interaction parts by imposing a condition that "the dangerous term" in Bogoliubov's sense should vanish. 
Then, we show that the difference of the energy density between the super and normal phases, the correct 
expression of which the original authors failed to give, can be readily obtained by applying the SCMF 
theory. Furthermore, it is shown that the expression thus obtained is identical to that of the effective 
potential (E. P.) given by the path· integral method with an auxiliary field up to the one loop order in the 
loop expansion, then one finds a new and simple way to get the E. P. Some numerical results of the E. P. 
and the dynamically generated mass of fermion are also shown. As another demonstration of the 
powerfulness of the SCMF theory, we derive, in the Appendix, the energy density of the D(N ).¢4 model 
including the higher order corrections in the sense of large N expansion. 

§ 1. Introduction 

The dynamical symmetry breaking (DSB) phenomena of the vacuum are essentially 
due to nonperturbative effects of interaction, as phase transitions of matter are. For 
example, one must include all order diagrams of some kind in the calculation of the so· 
called the effective potential (E. P J/) the minimum point of which gives the true vacuum. 
To calculate the E. P., the path· integral method has been adopted2

) so far. This method 
is systematic and elegant but not so easy to have an insight into the nature of the E.P. 
Moreover, actual calculations have been performed mainly up to the one-loop order in the 
loop expansion.2

),3) There is another and simple way to calculate the vacuum energy; to 
show that is the case is one of the main subjects of this report. 

Our method is based on a self-consistent mean-field (SCMF) theory, which has been 
always a starting point to approach problems of phase transitions (at least of the second 
kind) of matter; the magnetic phase transitions, the superfiuidity, the superconductivity 
and so on.4

) For instance, the BCS theory of the superconductivity turned out to be an 
SCMF theory as was demonstrated by Bogoliubov, Valatin and Gorkov. In this paper, by 
way of an SCMF approach, we examine the DSB in the Nambu and Jona-Lasinio (NJL)S) 
model which is based on an analogy with the superconductivity. This model initiated the 
physics of the DSB in the elementary particle physics, and has been a useful theoretical 
laboratory in helping us to understand the DSB. Furthermore, the relevance of the NJL 
model to QCD (the quantum chromodynamics) has been discussed in recent literature.6

) 

Therefore, it is worthwhile to gain a deeper understanding of the model. It is certain that 
Nambu and Jona-Lasinio also intended to develop an SCMF theory of their model, 
however they failed in reducing the original Lagrangian to the proper one for the SCMF 
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theory. As a result, they could not give the correct energy of the vacuum, which was 
given later by SuzukF) with the use of a variational method a la BCS. ,In this paper, we 
will give a correct formulation of the SCMF theory and discuss the vacuum of the N JL 
model. 

In § 2, we develop the SCMF theory of the NJL model. In §3, we calculate the energy 
density of the vacuum in this framework and show that the result is identical to that given 
by SuzukF) and also the E.P. obtained by the path-integral method with an auxiliary field 
up to the one-loop order; hence one finds a new and simple way to get the E.P. It is also 
shown that the self-consistency condition to determine the mass (the gap equation) is 
nothing but the condition that the E.P. should take the extremum at the true vacuum. As 
is well known, the E.P. for a composite operator can be interpreted as the energy density 
of the vacuum only at its minimum point.3

) In Appendix B, we give the energy density of 
the state with a given condensation < ¢¢ > by introducing an external field coupled to the 
composite field ¢¢, for completeness. In §4, we give some numerical results of the E.P. . . 

and the dynamically generated fermion mass. The final section is devo;ted to concluding 
remarks, where it is indicated that the present approach is applicable to a wide range of 
the many-body systems. As one of the applications, the energy density of the vacuum of 
the O(N )-rp modep),8) is derived in Appendix C, wh~re it is shown that the infinite series 
of higher order corrections in the sense of large N expansion can be readily obtained. 

§ 2. Formulation of the SCMF theory 

We start with the following Lagrangian density,5) 

.£=.£0+.£1 

• with 

.£o=¢[ir·a]¢ , 

.£ 1 = 9 [( ¢¢ )2+ (¢ir5¢ )2], 

(2·1a) 

(2·1b) 

(2·1c) 

where ¢ represents the Dirac field (quark) with Nc colors. Flavours are ignored for 
simplicity. The coupling constant 9 has dimensions of [mass]-2 and is assumed to be 
positive so that the attractive force between quark and anti-quark is guaranteed. Since 
this theory is not renormalizable, we must introduce a cutoff A. We will regard that 
masses or energies which will appear in the development of the theory have a physical 
significance only when they are smaller than A. Here, we note that the Lagrangian is 
invariant under the chiral transformation, 

(2'2) 

In the SCMF theory, it is assumed that the system is well described as an assembly of 
the non-interacting particles moving in the mean-fields (MF) which are generated by the 
particles self-consistently. In the present case, four types of MF arise; scalar, pseudo­
scalar, vector and axial-vector. Keeping this in mind, we first decompose the Lagrangian 
density (2'1) into two parts by introducing c-number fields 6, J[, VI' and AI': 

(2·3a) 
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where 
\ 

with 

T. Kunihiro and T. Hatsuda 

(2·3b) 

(2·3c) 

Here, we have introduced a constant f1. with mass dimension to make the c-number fields 
have the dimension of boson. G is a dimensionless constant. Note that this decomposi­
tion is merely an identity. The physics comes as follows: If one takes the interaction 
picture of .J: res and imposes proper conditions on the c-number fields, .J: res becomes a 
normal product of .J: 1 with respect to the vacuum of .J: MFA. Let us show this in the 
following. 

The field equation of fermion in the interaction picture reads 

iy· o¢(x)= G[o-(x)+ iJr(x )Y5+ V,,(x )y"/'; Nc + A,,(x )Y5Y"/'; Nc ]¢(x). (2·4) 

Then, ¢(x) can be decomposed as 

(2·5) 

where Uk and Vk are the classical solutions to Eq. (2·4), which become the positive and 
negative energy solutions, respectively, when the MF are time-independent. The 
"vacuum" of .J:MFA which we denote by 1[0-, Jr, V", A,,]> is naturally defined by 

(2·6) 

In our interaction picture, using Wick's theorem, .J: res can be expanded as 

.J: res = 9 [ : ( (f¢ )2: + : ( (fiY5¢ )2 : ] + Ro + Rl , (2·7a) 

where 

(2·7b) 

and 

(2·7c) 

with 
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.E(x) 

II(x) 
=<[a,7[, Vp, Ap]I¢"(x) 

{3p(x) 

ap(x) 

1 

ZYs 

1 
INc yp 

1 
INc YsYP 

a(x) J 7[(x) 

2 Vp(x) . 

2Ap(x) 
/' 

/----
(2·7d) 

We note that the vector and axial-vector terms in (2·7b, c) come out from the Fock terms 
of .Lres , which indicate that they are next to leading terms in the sense. of large Nc 
expansion. Now we impose the condition that R1 (the dangerous term in Bogoliubov's 
sense) should vanish, 

(2·8) 

Then, the residual interaction .L res becomes a normal product of .L 1, 

(2·ga) 

and 

(2·9b) 

is concluded. If one remembers that the statel[a, 7[, Vp, Ap]> is defined in terms of the 
fields a, 7[, Vp and A p , one can see that Eq. (2·7d) with (2·8) becomes a self-consistency 
condition (See), which determines the c-number fields as the self-consistent mean fields 
generated by the fermions, 

a(x) 

7[(x) 

2 V,.{x) 

2Ap(x) 

1 

iys 

1 
INc yp 

1 
INc YsYP 

The see will be found to play an essential role in the SeMF theory: It turns· out to be 
the gap equation (mass equation) for the ground state and reduces to the field equations 
of the mean-fields for the excited states.9

) 

Now let us rewrite the see in a convenient form for evaluation. If we define the 
Green's function by 

the see be<,:omes 
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6(X) 

Jr(x) 

2 Vp(x) 

2Ap(x) 

T. Kunihiro and T. Hatsuda 

=-i lim Tr 

1 

ir5 
1 

INc rp 

1 
INc r5'Yp 

(2·12) 

Equation (2·12) is highly non-linear equations for the MF and include nonperturbative 
effects of the interaction. With the solution of (2·12), the state 1[6, Jr, VI', Ap]> is 
determined throughEq. (2·6); however, some remarks are needed for the ground state 
(true vacuum), which is the subject of the next section. 

Although our formalism is applicable both for the true vacuum and the excited states, 
we will concentrate on the former in this article: The excited states will be treated in a 
separate paper.9

) 

§ 3. Determination of the vacuum 

If the state 1[6, Jr, VI', Ap]> is the vacuum, on account of the symmetry properties of 
the state, we can put 

6(X )=constant=60 and Jr(x)= Vp(x )=Ap(x )=0. (3·1) 

In the following, we represent the vacuum state by 160> for simplicity. The see in this 
case reads 

(3·2a) 

(3·2b) 

(3·2c) 

(3·2d) 

. where Q is the volume of the system, M= G60, SF(X-Y; M) denotes the Feynman 
propagator with mass M, and A is a cutoff of the three-momentum. Equation (3·2) is 
essentially identical to the mass equation obtained by NJL who used the ladder approx­
imation for the Bethe-Salpeter equation to derive it. As long as g>Jr2/(Nc·A2 )=gc, 

Eq. (3· 2d) has a nonvanishing solution for 60, although always is there a trivial solution 
60 = 0; there is no compelling reason to exclude one of the two. One cali determine the 
true 60 only by comparing the energy of the states corresponding to the two solutions; the 
true vacuum has the lowest energy. Provided that 60 satisfies the see Eq. (3·2), the 
Hamiltonian H can be decomposed as follows in accordance with Eq. (2·3):· 

H=HMFA+Hres, (3·3a) 

where 
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(3·3b) 

and 

(3·3c) 

so that 

< 601 Hresl (0) =0 . (3·3d) 

Here, HMFA and H res correspond to ..L MFA and ..L res, respeCtively. Note that the last term 
in HMFA, by which a double counting of the interaction is avoided has appeared naturally 
in our formulation but was missed in the original paper: They included this term in the 
residual interaction H res in our notation, then their residual interaction has a nonvanish­
ing vacuum expectation value; hence they failed in obtaining the correct expression for the 
vacuum energy. 

The energy density of the vacuum which we represent by E(60) are defined as 

E(60)= <60IHI(0) / Q = < 60lHMFAI (0) / Q , 

E(O)=<oIHIO)/Q. 

They are easily evaluated as 

E(60)= -2Nc/Q· ~E p(M)+ f-l2 /2· 602
, 

p 

E(O)= -2Nc /Q· ~E p(o) 
p 

with 

(3·4a) 

(3·4b) 

(3·5a) 

(3·5b) 

(3·6) 

These expressions can be understood easily from the hole-theoretical point of view: E(O) 
and the first term of E(60) are the energy density of the Dirac sea composed of massless 
and massive fermions, respectively; with the second term of E(60), as is already stated, the 
double counting of the interaction energy is avoided. The energy density difference 
C{J(60) of the two vacua 1(0) and 10) becomes 

C{J(60)= -2Nc/Q· ~(I p2+ M2-lpl)+f-l2/ 2· 602
, (3·7a) 

p 

= - Ndl 4
/ (47[2).{( 1 +.~2 )/1 + x 2 -1- ~41n11 +~ I }+f-l2/ 2.602 (3·7b) 

with x=M/A. It is noteworthy that C{J(60) can be rewritten in an invariant form (see 
Appendix A), 

C{J(60)= iNc Trf(fj)4 In( if; M)+ f-l2/ 2· 602
• (3·7c) 

Although 60 in the above equation is a solution of the see (3·2), if we vary 60 freely and 
regard C{J(60) as a function of 60, C{J(60) is identical to the expression of the effective 
potential up to the one-loop order obtained by the path-integral method with an auxiliary 
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1338 T. Kunihiro and T. Hatsuda 

field. We note that the E.P. for composite field can be interpreted as the energy density 
of the vacuum only at the minimum point.3

) The energy density with a given condensa­
tion < ¢¢) can be obtained by introducing an external field coupled to the composite field 
¢¢; see Appendix B. In the effective potential approach, the optimum value of 60 is 
determined by 

(3·8) 

which we call the energy extremum condition (EEC). For the E.P.- and SCMF-approach .' . . . 

to be consistent, the EEC Eq. (3·8) must coincide with the SCC Eq. (3·2); as can be easily 
verified, that is the case. 

Note that we must use the same cutoff scheme and cutoff A to calculateCV(60) and 
the r.h.s. of Eq. (3·2), as is evident from the derivation. Inserting Eq. (3·2c) into Eq. 
(3·7a), we get the difference of the energy density between the normal and the true 
vacuum, 

(3·9) 

where we define 6M as the value of 60 at the true vacuum. This expression was first given 
by Suzuki,7) who used the reduced ·Hamiltonian of the NJL model. 

§ 4. Numerical results 

For a summarizing illustration, we evaluate the E.P. and give its approximate form 
in the case where the symmetry breaking occurs. For this sake, let us rewrite CV(60) 
(Eq. (3·7b» and SCC (Eq. (3·2d» by using a parameter C=-g/gc= gNc· A 2/Jr2 (the ratio of 
the original and critical coupling constant) and x=- C6M/ A, 

~CV(60)=X2- C{ (1 +- ~2 )/1 + x 2 -1- ~41n 11 +~ I}, (4·1) 

OJ IXminl 

0.5 

0.3 

0.1 
c' 

0.7 0.8 0.9 1.0 1.1 1.2 13 1~ 1.5 1.6 

Fig. 1. IXmlnl at which the E.P. has the minimum 
value is plotted as a function of the coupling 
strength C= glgc. 

(4·2) 

The nature of the vacuum is char­
acterized by C, 

the normal phase (6M=O) 
for C:::;:I, 

the super phase (6M=FO) 
for C>I. 

This fact can be directly seen in Fig. 1 
where IXminl (at which the E.P. has the 
minimum value) is plotted as a func-

. tion of C. We show in Fig. 2 the 
shape of the E.P. for the two typical 
values of C(C=O:85 and C=1.25). In 
the case C>1 (DSB occurring case), 
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I 
I 

I X 

0.8 

Fig. 2; The shape of the effective potentials (a) for C=O.85 and (b) for C= 1.25. The solid lines are 
for the exact formula (Eq. (4'1)) and the dashed line is for the approximate one (Eq. (4'3)). 

we can expand Eq. (4·1) to the power-series of x 2- .f2, which becomes up to the second 
order, 

(4·3) 

where 

The dashed line in Fig. 2 is obtained by using this approximate expression. As is seen 
from the figure, this approximation is very good around x =.f and not so bad in the whole 
range of x. 

Of course, the shape of the E.P. depends on the cutoff scheme: For example, if an 
invariant cutoff at Po2+lpI2=A2 is adopted, resulting E.P. has the minimum at a finite x 
only for 1 < C::'S1.21. 

§ 5. Concluding remarks 

The present method to examine the DSB phenomena is applicable to bose systems, as 
the· superfiuidity of He 4 can be treated by using the Bogoliubov transformation for 
bosons.4

) ·The energy density of the vacuum for bose systems can be expressed by a sum 
of the zero point energy, instead of the energy of the Dirac sea for fermi systems. This 
change corresponds to the difference between the Fredholm determinants of bosons and 
fermions in the path-integralmethod.10

) To demonstrate the powerfulness of our method 
and the applicability to bose systems, we derive the energy density of the O(N )_¢4 
modeI3

),S) in Appendix C; we show that the higher order corrections in the sense of large 
N expansion can be readily obtained in our framework. 
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1340 T. Kunihiro and T. Hatsuda 

Our method is also applicable to the system with finite temperature and chemical 
potential. In this case, the sum of the energy of the Dirac sea is replaced by that of the 
occupied states multiplied by a distribution function. 

Furthermore, we can treat not only the ground state (vacuum) properties but also the 
collective modes (including the Nambu-Goldstone bosons) in the framework of the self­
consistent mean-field theory.9) 

Details of the above will be reported elsewhere. 
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Appendix A 

Here, we show that Eq. (3 0 7c) can be derived starting from Eq. (3 0 7a) as follows: 

-N oZ"oTr} d
4

p In(jJ-M) 
- c (2Jl' )4 jJ . 

The last expression of the above equation is nothing but the first term of the r.h.s. of 
Eq. (3 0 7c). 

Appendix B 

In this appendix, we give the energy density of the state with a given condensation 
<¢¢>. To construct the state in which the condensation <¢¢> develops, we introduce an 
external field ] coupled to ¢¢ and define 

.£' = .£ + 2gJ ° ¢¢ , (Bo!) 

where .£ is the NJL Lagrangian density given in (2° 1). In the same way as in the text, 
.£' can be decomposed into the semi-classical and quantum correction parts: 
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A Self-Consistent Mean-Field Approach to the Dynamical Symmetry Breaking 1341 

(B'2a) 

where 

(B·2b) 

and 

(B'2c) 

with M = C(Jo_ Here, if we represent the vacuum of .£ ltFA by lao>, which is the state having 
a condensation <(Jol ¢¢I(Jo>, the self-consistent mean-field (Jo satisfies the following see, 

- f-l2 I C' (Jo = < (Jol ¢¢I (Jo>, 

which can be explicitly evaluated as 

with 

M,=] 
2g 

M,=M-2g] . 

(B'3a) 

(B'3b) 

(B'3c) 

(B' 3) gives the relation between M and]; The Hamiltonians corresponding to .£' and 
.£ are given as 

H' = fd 3z [¢( - i'Y' Ii' + M, )¢+ f-l21 2· (J02]- g fd 3z [: (¢¢)2 : + : (¢iY5¢)2 : ] , (B'4a) 

H=H'+2gfd 3z].¢¢. (B·4b) 

Then, the energy density of the state l(Jo> with a condensation <(Jol ¢¢I(Jo> becomes 

(B·5a) 

= -2Nc/Q· ~jM/+ p2+f-l21 2· (J02- C](Jo, (B'5b) 
p 

= -2NcIQ· ~jM/+ p2+ M/I (4g )-gj2 . (B'5e) 
p 

In this expression, ] is supposed to be written in terms of M or (Jo by the use of the see 
(B·3b). The differences of V«(Jo) from the E.P. CV«(Jo) given in the text are i) M is 
replaced by M,= M - 2g] and ii) the quadratic term of external field - gj2 is added. In 
the approach in this appendix, the optimum value of (Jo is determined by an energy 
extremum condition, 

0= dV«(Jo) . - C] , 
8(Jo (B'6) 

or ] = O. Inserting this into the see (B· 3), we obtain the same see for (Jo as that given 
in the text, 
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1342 T. Kunihiro and T. Hatsuda 

(B·n 

Appendix C 

In this appendix, we derive the energy density of the vacuum of the O(N)-ifJ 4 model 
by using the SCMF theory. Infinite series of higher order corrections in the sense of large 
N expansion can be easily obtained in our framework. 

The Lagrangian density for the O(N )_ifJ4 model is 

(C'1) 

where ifJa denotes the N component real scalar field. Although the Lagrangian density 
has O(N) invariance, there is a possibility that spontaneous symmetry breaking occurs, 
which was investigated in detail by some authors within the leading order of 1/ N. 3),8) In 
the following, we concentrate on the case that the symmetry of the vacuum breaks down 
to O(N -1) and two types of condensation appear, 

(C'2) 

where rpa is a shifted field (rpa = ifJa_<ifJa». If we choose <ifJa) = oaNrpo for convenience, 
F ab becomes 

(C'3) 

as a result of the O(N -1) invariance of the vacuum. Thus we have only to concern with 
the three independent condensation (rpo, /0, /1) or (rpo, Tr F, Tr F2). 

Following the method explained in the text, we decompose the Lagrangian density 
(C'1) into the semiclassical and quantum correction parts (r =.r MF A + r res) by introduc­
ing the c-number constant mean-fields Mab, 

(C'4) 

and 

r' _ 1 2A.a A.a ,10 (A.a A.a)2+ 1 aM b C 
..Lres--,[f-lO'l' ''1' - 8N '1"'1' '[rp. abrp - (C'5) 

with 

(C'6) 

where C denotes the c-number term which is determined by the requirement that vacuum 
expectation value of r res should vanish. After the expansion of r res using Wick's 
theorem, C and r res become 
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A Self-Consistent Mean-Field Approach to the Dynamical Symmetry Breaking 1343 

and 

C= ~~[(TrF)2+2Tr F2] 
SN 

+Fab[ t (Mab-J1.02oab)-lN «¢C><¢C>oab+2<¢a><¢b»] 

- stv «¢a><¢a> )2_ t J1.02<¢a><¢a>, 

where 

and 

p=- stv ' 

Qab= t (Mab-J1.020ab)- 4tv «¢C><¢C>oab+2<¢a><¢b>+Tr FOab+2Fab ), 

R a = _<¢b>[J1.020ab+ 2tv «¢C><¢C>oab+Tr Foab+2Fab)] 

(c·n 

(C·g) 

(C· 10) 

(C·11) 

(C·12) 

The second term in .L res is the dangerous term which must be already included in .LMFA, 
and the third term generates the tadpole diagrams. Therefore, the self-consistency 
condition (SCC) in this model is nothing but the requirement Q=R=O, which becomes 

J1.2=J1.02+ 2tv (Tr F+2/0+902), (C'13) 

(C'14) 

and 

90=0 or J1.0 2+ 2tv (Tr F+2/1 +902 )=0. (C·15) 

The SCC (C'13)~(C'15) includes the well-known solutions in the limit of large N; (J1.2~0, 
J1.N 2 ~ (Ao/ N )902

), which corresponds to the unstable vacuum first examined by Coleman, 
Jackiw and Politzer,8a) and (J1.N2~J1.2~J1.02+(Ao/ 2)/0, 90=0), which corresponds to the 
stable and symmetric vacuum discussed by Kobayashi and Kugo.8b) Detailed discussion 
on the stability of various vacua is beyond the scope of this short note; we limit ourselves 
to deriving the vacuum energy density in the case that both condensations occur (90*0, 
J1.2 * 0) and show that the result includes the infinite series of the higher corrections in the 
1/ N -expansion. The Hamiltonian of the system under consideration can be easily 
derived as 

H=HMFA+Hres (C·16) 
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1344 T. Kunihiro and T. Hatsuda 

with 

and 

(C-lS) 

where w~a) = j /12 + k 2 (1 sa s N - 1), w<t) = j/1N2 + k2 and Q denotes the volume of the 
system. To get (C-I7), we have used the SCC (C-13) and (C-14). Thus, the energy 
density difference between the condensed and noncondensed vacua is 

= ~Q 1 ~(j /12+ k 2 -j /102+ k 2)+ 21 ~(j /1N2+ k 2 -j /12+ k2 ) 

- s7v [(Tr F)2+2 Tr F2]+ s7v rp04+/1l rp02 , 

(C-lga) 

(C-19b) 

where (/12, /1N2) are related to (rpo, /0, /1) through the SCC (C-13), (C-14), (C-15), Tr F 
= (N - 1)/0+ /1 and Tr F2= (N - 1)/02+ /12. Note that the first line in (C-19b) arises from 
the zero point energy of the bose particles; this situation is obviously different from the 
case of fermion (see Eq. (3-7a) in the text). In the covariant notation, CV(rpo, /0, /1) reads 

CV(rpo, /0, /1)= - ~ Tr f(~;;4In( :a2-=-~22)- s7v [(Tr F)2+2Tr F2]+ s7v rp04+ /1:/ rp02, 

(C-20) 

where M is the diagonal matrix defined in (C -6). 
Here we mention briefly the relation between (C -20) and the effective potential of the 

O(N)_¢4 model. (C-20) denotes the energy density of the true vacuum and (rpo, /0, /1) in 
the expression must be the solution of the SCC (C -13), (C -14) and (C -15). However, if 
we regard (rpo, /0, /1) in (C-20) as free-parameters, (C-20) is nothing but the effective 
potential which does not have the meaning of the energy density of the vacuum except for 
the stationary point in the case that there exists a condensation of a composite opera­
tor.3)One can easily prove above facts, if one formulates the SCMF theory including. 
the external source, which is the straightforward generalization of the method ex­
plained above (in the case of.N JL model, see Appendix B). 

Let us show that CV(rpo, /0, /1) includes higher order corrections in the sense of large 
N expansion. To simplify the argument, we restriCt ourselves to the case of symmetric 
vacuum (rpo = 0, /0 = /1) and rewrite CV as a function of /12 == X; 

1 N ( 2)2 
(i +2/N) 2,10 X- /10 . (C-21) 

Comparing (C-21) to the leading order results of large N expansion,S) one can see that 
(1 +2/N)-I_ factor in (C-21) and X (C-13) obviously include the higher order corrections 
in the sense of large N expansion. 
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More about the vacuum structure, SCMF theory including the external source, and the 
excited states of O(N)-(p model will be reported elesewhere. 
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