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Abstract

This paper describes a self-contained, automated methodology for active 
ow control which

couples the time-dependent Navier-Stokes system with an adjoint Navier-Stokes system

and optimality conditions from which optimal states, i.e., unsteady 
ow �elds and controls

(e.g., actuators), may be determined. The problem of boundary layer instability suppres-

sion through wave cancellation is used as the initial validation case to test the methodology.

Here, the objective of control is to match the stress vector along a portion of the boundary

to a given vector; instability suppression is achieved by choosing the given vector to be that

of a steady base 
ow. Control is e�ected through the injection or suction of 
uid through

a single ori�ce on the boundary. The results demonstrate that instability suppression can

be achieved without any a priori knowledge of the disturbance, which is signi�cant because

other control techniques have required some knowledge of the 
ow unsteadiness such as

frequencies, instability type, etc. The present methodology has been extended to three

dimensions and may potentially be applied to separation control, re-laminarization, and

turbulence control applications using one to many sensors and actuators.
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1. Introduction

In the last decade, increased attention has been devoted to the development of tech-

niques capable of enhancing our ability to control the unsteady 
ow in a wide variety of

con�gurations such as engine inlets and nozzles, combustors, automobiles, aircraft, and

marine vehicles. Controlling the 
ow in these con�gurations can lead to greatly improved

e�ciency and performance, while decreasing the noise levels generally associated with the

otherwise unattended unsteady 
ow. Depending on the desired result, one might wish to

delay or accelerate transition, reduce drag or enhance mixing. There might be a need to

postpone 
ow-separation, increase lift or manipulate a turbulence �eld. Gad-el-Hak1 and

Gad-el-Hak and Bushnell2 provide an excellent introduction to and overview of various

control methodologies.

Small improvements in system performance often lead to large payo�s. For exam-

ple, Butter3 estimates that a 5 percent improvement in landing maximum lift coe�cient

(Cl(max)) can translate to a 25 percent increase in payload. Cousteix4 notes that 45 per-

cent of the drag for a commercial transport transonic aircraft is due to skin friction on the

wings, fuselage, �n, etc., and that a 10 to 15 percent reduction of the total drag can be

expected by laminarizing the 
ow over the wings and the �n. This translates into a reduc-

tion in fuel requirements, improved performance, and/or increased payload. Muirhead5

has shown with a wind tunnel investigation that control of 
ow separation on a tractor-

trailor truck can reduce the drag by 30 to 40 percent of the baseline truck con�guration.

This translates into a savings of millions of barrels of fuel per year.

Encouraged by the potential for huge rewards with what may be a modest input,

research into ways of achieving the above gains is ever important. In many applications,

the 
ow starts from a smooth laminar state, which is inherently unstable, and develops

instability waves. These instability waves grow exponentially, nonlinearly interacting, and

lead ultimately to fully developed turbulence or 
ow seperation. Therefore, one goal of

a good control system is to inhibit, if not eliminate, these instabilities which lead to the

deviation from laminar to turbulent 
ow state.

1.1 The Wave-Cancellation Concept

The simplest form of control which might achieve this objective is the wave-

cancellation approach, based on the premise that the instability mechanisms in low-speed

transition are dominated by a single instability wave; therefore, cancelling this wave will

preclude the nonlinear interactions leading to laminar-turbulent transition. The wave-

cancellation method further assumes that a wavelike disturbance can be cancelled by in-
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troducing another wave equal in amplitude but opposite in phase, and thus it is mostly

applicable to systems governed by linear or quasi-linear equations. The key is to deter-

mine the parameters of the downstream wave which counter (cancel) the evolution of the

upstream generated wave. Because there are a number of experiments and numerical sim-

ulations which validate this approach, the wave-cancellation problem is an excellent test

problem for the new 
ow-control methodology described in this paper.

Most of the experiments, aimed at verifying the wave-cancellation concept, were con-

ducted on the 
at plate, except those of Ladd and Hendricks6, Pupator and Saric7, and

Ladd,8 who considered axisymmetric bodies. Many of these experiments were conducted

in water tunnels. Vibrating wires,9 hot strips,10;11 suction and blowing,7;8 electromagnetic

generators,12 and adaptive heating6 are some of the methods that were used to generate the

controlling wave. All these input mechanisms give the necessary control of the phase and

amplitude of the input wave. Among the more successful studies, Milling9 and Thomas12

achieved at least an 80 percent reduction in the input amplitude of the 2-D wave (with

0.6%-1% amplitude). However, it was not possible to achieve relaminarization, proba-

bly because of the three-dimensionality of the 
ow resulting from the interaction between

background disturbances and the primary 2-D wave. As expected, the studies conducted

on axisymmetric bodies produced relatively less wave cancellation because these 
ows are

inherently three-dimensional. Furthermore, good wave cancellation requires a linear sys-

tem with constant coe�cients. This requirement is clearly violated for 
ow over a body

with curvature. It should also be noted that Liepmann and Nosenchuck11 compared the

e�ects of steady and non-steady heating, and found that steady heating demands a 2000%

increase in energy over an unsteady wave-cancellation technique. Hence, unsteady control

may be more e�cient for 
ow control applications.

In addition to the aforementioned experiments, several theoretical (i.e., linear compu-

tations and theory) and computational studies (i.e, nonlinear simulations) have focused on

understanding the physics of this wave-cancellation process. Maestrello and Ting13 pro-

vided a linear asymptotic analysis to demonstrate the relationship between the input of

localized disturbances and their e�ect on the Tollmien-Schlichting (TS) instability waves

present in the wall-bounded shear 
ow. They showed that small amounts of local periodic

heating could excite disturbances that actively control the TS waves which propagate in

a boundary layer on a 
at plate. Analogous to the experiments, several wave input mech-

anisms were considered. In one of the early Navier-Stokes simulations of active control,

Biringen14 used suction and blowing at the wall in a channel 
ow. He observed approx-

imately a 50 percent reduction in the amplitudes of the 2-D instabilities and a decrease
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in the growth of the 3-D instabilities. The Reynolds stress originally generated by the

waves was all but removed. On the other hand, Metcalfe et al. 15 studied the e�ect of a

moving wall on unstable waves traveling in a laminar 
ow on a 
at plate. The simulations

were based on the Navier-Stokes equations solved within a temporal framework. An energy

analysis revealed that the wall motion causes the Reynolds-stress term to become negative,

which implies a feed of energy from the perturbed 
ow back into the mean 
ow. In e�ect,

this energy analysis showed how a perturbation to an unstable 
ow can be stabilizing.

However, an instability wave eventually formed downstream of the control, with the same

growth rate as the uncontrolled wave. This is a clear indication that the cancellation was

not complete. Although intuitively obvious, until the work of Bower et al. 16 and Pal et

al., 17 it was not known that perfect cancellation could be obtained within the context of

linear theory (for which the mean 
ow is independent of the propagating direction). They

used the 2-D Orr-Sommerfeld equation to study and control instability-wave growth by

superposition, and showed, within the limits of linear stability theory and the parallel-
ow

assumption, that single and multifrequency waves can be cancelled. The basic conclusions

drawn by the early experimentalists were con�rmed by the studies of Laurien and Kleiser18

and Kral and Fasel.19 They showed that it was possible to delay/accelerate transition by

superposing disturbances out of/in phase with the primary TS wave. Similar results were

also reported by Danabasoglu et al.20 Finally, Joslin et al.21 performed a numerical ex-

periment which served to unequivocally demonstrate the link between linear superposition

and instability suppression. To ensure that linear superposition of individual instabilities

was, in fact, responsible for the results found in previous experiments and computations,

they carried out three simulations with i) only the disturbance; ii) only the control; and

iii) using both disturbance and control, which is the wave-cancellation case. By discretely

summing the control-only and forcing-only numerical results, they found that this linear

superposed solution is identical to the wave-cancellation results. These tests cleary verify

the hypothesis that linear superposition is the reason for the previous experimental and

computational results.

>From the above experiments, linear computations and nonlinear simulations, several

common features emerge: (1) It is impossible to achieve perfect wave cancellation unless the

system is linear, with constant coe�cients; (2) the e�ciency of wave cancellation decreases

as the system becomes more nonlinear; (3) as the geometry of the con�guration becomes

more complex, cancellation becomes more di�cult; and (4) the current approaches require

foreknowledge of the instability wave characteristics, such as its frequency and amplitude

before wave suppression can be realized.
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1.2 Optimal Control Theory

The optimal control theory provides an approach which does not require a priori

knowledge of the 
ow characteristics. The goal of optimal control theory is to minimize or

maximize an objective function in a robust manner. When the 
ow is time-dependent, and

a strong function of initial conditions, it becomes di�cult to establish the precise controls

that will achieve the desired e�ect. Wave-cancellation, as discussed above, only works

well when the input wave has a dominant frequency, and its properties are known. Then

(either in a passive fashion, or through a feedback mechanism), one seeks to cancel its

e�ect while still in a linear regime. In practice, there are many waves, which can interact

nonlinearly in ways not always known in advance. Rather than try to cancel the incoming

waves, one seeks appropriate controls in other ways. One means of achieving this, without

an extensive search over the space of possible controls, is to postulate a family of desired

controls (e.g., an arbitrary time-dependent amplitude and a speci�ed spatial distribution),

and an objective function (i.e., stress over a region of the plate). Then, through a formal

minimization process, one derives a set of di�erential equations, and their adjoints, whose

solution produces the optimal actuator pro�le (among the speci�ed set). While the solution

to this set of equations cannot be accomplished in real time, the results can be applied

using standard passive or active control mechanisms. The advantage of this approach is

that entire collections of controls can be studied simultaneously, rather than one at a time.

Optimal control methodologies have been recently applied to a variety of problems in-

volving drag reduction, 
ow and temperature matching, etc. to provide more sophisticated


ow control strategies in engineering applications. Computational 
uid dynamics (CFD)

algorithms have reached a su�ciently high level of maturity, generality, and e�ciency so

that it is now feasible to implement sophisticated 
ow optimization methods, which lead

to a large number of coupled partial di�erential equations. Optimal control theory is quite

mathematical, and its formal nature is amenable to the derivation of mathematical the-

orems related to existence of solutions and well-posedness of the problem. (Only partial

results of this type are possible in three-dimensions since, in this case, the Navier-Stokes

equations themselves do not enjoy a full theoretical foundation; in two-dimensions, a com-

plete theory is available.) Two recent surveys of the mathematical theories of optimal 
ow

control are Gunzburger22 and Borggaard et al.23 A mathematical study of a simpli�ed

problem related to the one considered in this paper can be found in Fursikov et al.24

Flows may also be controlled through controllers whose actuation is determined by

feedback laws. For unsteady 
ows, including turbulent 
ows, feedback controls are con-

sidered, for example, in Choi et al.25 and Bewley et al.26, as well as in Joslin et al.28
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Determining optimal feedback laws is a very di�cult proposition, especially in the context

of nonlinear problems, so that one usually has to be content with using sub-optimal feed-

back laws. On the other hand, in our study, we consider optimal controllers as determined

by optimal control methodologies instead of a feedback strategy.

Optimal control techniques will not provide the real time control that one is ultimately

interested in, but by systematically computing the best control within speci�ed tolerances,

with a given objective function, it will be possible to develop strategies (active or passive)

to control a wide variety of disturbances. For example, to e�ectively control boundary-layer

transition due to the interaction of a cross
ow vortex and a TS wave using periodic heating

and cooling, optimal control would allow: (1) a determination of the best objective function

to use for a given type of control (some are better than others) and (2) provide insight into

the relationship between the time dependence of the control and the input waves. This

insight could then be built into a neural network, or other type of self-learning system, to

allow e�ective control over a wide range of input parameters.

1.3 The Current Approach

The methodology of the current paper is based on de�ning a control mechanism and

an objective for control, and then �nding, in a systematic and automated manner, controls

that best meet the objective. In the present setting, an objective or cost functional is

de�ned that measures the \distance" between the measured stresses, and their desired

values along a limited section of the bounding wall and over a speci�ed length of time.

One may interpret the objective functional as a \sensor," i.e., the objective functional

senses how far the 
ow stresses along the wall are from the corresponding desired values.

To control the 
ow, time-dependent injection and suction are imposed along a small ori�ce

in the bounding wall. Although the spatial dependence of the suction pro�le is speci�ed (for

simplicity), the optimal control methodology determines the time-variation of this pro�le.

However, unlike feedback control methodologies wherein the sensed data determines the

control through a speci�ed feedback law or controller, here the time-dependence of the

control is the natural result of the minimization of the objective functional. This scenario

is shown in Fig. 1. We have a sensor that feeds information to a controller that in turn

feeds information to the actuator. However, in the optimal control setting, the sensor is

actually an objective functional and the controller is a coupled system of partial di�erential

equations that determine the control that does the best job of minimizing the objective

functional. The present active-control approach is demonstrated for the evolution and

automated control of spatially growing 2D disturbances in a 
at-plate boundary layer. As

the length of time over which the minimization process is increased, the results obtained by

6



wave cancellation are recovered, thus validating the approach. The ultimate goal of this line

of research is to introduce automated control to external 
ows over realistic con�gurations

such as wings and fuselages, and to devise novel 
ow control systems.

2. The Optimization Problem

2.1. The state equations

Let 
 denote the 
ow domain which is the semi-in�nite channel or boundary layer

[x � 0, 0 � y � h], where h is the location of the upper wall for the channel or the

truncated freestream distance for the boundary layer. Let � denote its boundary and let

(0; T ) be the time interval of interest. The in
ow part of the boundary [x = 0; 0 � y � h]

is denoted by �i and the part of the boundary on which control is applied (i.e., along

which the suction and blowing actuator is placed) by �a which is assumed to be a �nite

connected part of the lower boundary (or wall) [x � 0, y = 0]. Solid walls are denoted

by �w; for the channel 
ow, �w is the lower boundary [x � 0, y = 0] with �a excluded

and the upper boundary [x � 0, y = h]; for the boundary layer 
ow, �w is only the lower

boundary with �a excluded. For the boundary-layer case, the upper boundary [x � 0,

y = h], which is not part of �w, is denoted by �e. Controls are only activated over the

given time interval t 2 (T0; T1), where 0 � T0 < T1 � T .

The 
ow �eld is described by the velocity vector (u; v) and the scalar pressure p and

is obtained by solving the following momentum and mass conservation equations

@u

@t
+ u

@u

@x
+ v

@u

@y
+

@p

@x
� �

@

@x

�
2
@u

@x

�
� �

@

@y

�
@u

@y
+

@v

@x

�
= 0 in (0; T ) � 
 ; (1)

@v

@t
+ u

@v

@x
+ v

@v

@y
+

@p

@y
� �

@

@x

�
@u

@y
+

@v

@x

�
� �

@

@y

�
2
@v

@y

�
= 0 in (0; T ) �
 ; (2)

@u

@x
+

@v

@y
= 0 in (0; T ) � 
 ; (3)

subject to initial and boundary conditions:

(u; v)
��
t=0

= (u0; v0) in 
 (4)

(u; v)
��
�a

=

(
(g1; g2) in (T0; T1)

(0; 0) in (0; T0) and (T1; T )
(5)

(u; v)
��
�i

= (ui; vi) and (u; v)
��
�w

= (0; 0) in (0; T ) (6)

(u; v; p)! base 
ow;
@u

@x
;
@v

@x
! 0 as x!1 : (7)
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Here, the initial velocity vector (u0(x; y); v0(x; y)) and the in
ow velocity vector

(ui(t; y); vi(t; y)) are assumed given and the base 
ow is assumed to be Poiseuille 
ow

for the channel case and Blasius 
ow for the boundary-layer case. The above system holds

for both the channel and Blasius 
ow cases; in the latter case, the upper boundary is not

part of �w and the additional boundary condition

uj�e = U1 and p� 2�
@v

@y

�����
�e

= P1 in (0; T ) (8)

is imposed, where U1 and P1 denote the free-stream 
ow speed and pressure, respectively.

The control functions g1(t; x) and g2(t; x) which give the rate at which 
uid is injected

or sucked tangentially and perpendicularly, respectively, through �a are to be determined

as part of the optimization process. In order to make sure that the control remains bounded

at T0, it is required that

g1jt=T0 = g10(x) and g2jt=T0 = g20(x) on �a ; (9)

where g10(x) and g20(x) are speci�ed functions de�ned on �a. Commonly, one chooses

g10(x) = g20(x) = 0.

2.2. The objective functional and the optimization problem

Assume that �s is a �nite, connected part of the lower boundary [x � 0, y = 0] which

is disjoint from �a and that (Ta; Tb) is a time interval such that 0 � Ta < Tb � T . Then,

consider the functional

J (u; v;p; g1; g2) =
�1
2

Z Tb

Ta

Z
�s

j�1 � �aj
2
d�dt+

�2
2

Z Tb

Ta

Z
�s

j�2 � �bj
2
d�dt

+
�1
2

Z T1

T0

Z
�a

�����@g1@t
����
2

+ jg1j
2

�
d�dt+

�2
2

Z T1

T0

Z
�a

�����@g2@t
����
2

+ jg2j
2

�
d�dt ;

(10)

where g1 and g2 denote the controls and �a(t; x) and �b(t; x) are given functions de�ned

on (Ta; Tb) � �s. Note that since �s is part of the lower boundary of the channel or

boundary-layer wall, �1 = �@u=@y and �2 = �p + 2�@v=@y are the shear and normal

stresses, respectively, exerted by the 
uid on the bounding wall along �s and thus �a and

�b may be interpreted as given shear and normal stresses, repectively. Then, the boundary

segment �s can be thought of as a sensor which measures the stresses on the wall. Thus,

in (10), �s is the part of the boundary � along which one wishes to match the shear and

normal stresses to the given functions �a and �b, respectively, and (Ta; Tb) is the time
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interval over which this matching is to take place. (There are no di�lculties, other than

notational, introduced if one wishes to match each component of the stress vector over a

di�erent boundary segment and/or over a di�erent time interval.)

The third and fourth terms in (10) are used to limit the size of the control. Indeed, no

bounds are a priori placed on g1 or g2; their magnitudes are limited by adding a penalty to

the stress matching functional de�ned by the �rst two terms in (10). The particular form

that these penalty terms take, i.e, the third and fourth terms in (10), is motivated by the

necessity to limit not only the size of the controls g1 and g2, but also to limit oscillations.

The constants �1, �2, �1, and �2 can be used to adjust the relative importance of the

terms appearing in the functional (10).

The (constrained) optimization problem is given as follows:

Find u; v; p; g1; and g2 such that the functional J (u; v; p; g1; g2) given
in (10) is minimized subject to the requirement that (1)-(7) and (10) are

satis�ed and, for the boundary-layer 
ow case, (8) is also sati�ed.

3. The Optimality System

We �rst consider, in Sections 3.1-3.5, the case of a channel 
ow; the optimality system

for the boundary layer 
ow is considered in Section 3.6.

3.1. The Lagrangian Functional

The method of Lagrange multipliers is formally used to enforce the constraints (1)-(3)

and (5). To this end, the Lagrangian functional
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L(u; v; p; g1; g2; û; v̂; p̂; s1; s2)

=
�1
2

Z Tb

Ta

Z
�s

j�1 � �aj
2
d�dt+

�2
2

Z Tb

Ta

Z
�s

j�2 � �bj
2
d�dt

+
�1
2

Z T1

T0

Z
�a

�����@g1@t
����
2

+ jg1j
2

�
d�dt+

�2
2

Z T1

T0

Z
�a

�����@g2@t
����
2

+ jg2j
2

�
d�dt

�

Z T

0

Z
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+
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d
dt

�

Z T

0
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v̂

�
@v

@t
+ u

@v

@x
+ v

@v

@y
+

@p

@y
� �

@

@x

�
@u

@y
+

@v

@x

�
� �

@

@y

�
2
@v

@y

��
d
dt

�

Z T

0

Z



p̂

�
@u

@x
+

@v

@y

�
d
dt

�

Z T1

T0

Z
�a

s1(u� g1)d�dt �

Z T0

0

Z
�a

s1ud�dt�

Z T

T1

Z
�a

s1ud�dt

�

Z T1

T0

Z
�a

s2(v � g2)d�dt�

Z T0

0

Z
�a

s2v d�dt �

Z T

T1

Z
�a

s2v d�dt

(11)

is introduced. In (11), û and v̂ are Lagrange multipliers that are used to enforce the x

and y-components of the momentum equation (1) and (2), respectively, p̂ is a Lagrange

multiplier that is used to enforce the continuity equation (3), and s1 and s2 are Lagrange

multipliers that are used to enforce the x and y-components of the boundary condition

(5), respectively. Note that Lagrange multipliers have not been introduced to enforce the

constraints (4), (6), (7), and (9), so that these conditions must be required of all candidate

functions u, v, p, g1, and g2.

Through the introduction of Lagrange multipliers, the constrained optimization prob-

lem is converted into the unconstrained problem:

Find u, v, p, g1, g2, û, v̂, p̂, s1, and s2 satisfying (4), (6), (7), and (9)
such that the Lagrangian functional L(u; v; p; g1; g2; û; v̂; p̂; s1; s2)

given by (11) is rendered stationary.

In this problem, each argument of the Lagrangian functional is considered to be an

independent variable so that each may be varied independently.

The �rst-order necessary condition that stationary points must satisfy is that the �rst

variation of the Lagrangian with respect to each of its arguments vanishes at those points.

One easily sees that the vanishing of the �rst variations with respect to the Lagrange
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multipliers recovers the constraint equations (1)-(3) and (5). Speci�cally,

�L

�û
;
�L

�v̂
= 0 =) x- and y-momentum equations (1) and (2)

�L

�p̂
= 0 =) continuity equation (3)

�L

�s1
;
�L

�s2
= 0 =) x and y components of the boundary condition (5) ;

where �L=�û denotes the �rst variation of L with respect to û, etc.

3.2. The Adjoint Equations

Next, set the �rst variations of the Lagrangian with respect to the state variables u,

v, and p equal to zero. These result in the adjoint or co-state equations. Note that, since

for the channel 
ow, candidate solutions must satisfy (4), (6), (7), and (9), one has that

�ujt=0 = �vjt=0 = 0 on 
 ; �g2jt=T0 = 0 on �a ;

�uj�i = �vj�i = 0; �uj�w = �vj�w = 0 for (0; T ) ;

�p; �u; �v;
@�u

@x
;
@�v

@x
! 0 as x!1 for (0; T ) (12)

First, consider �L=�p = 0 which yields

�2

Z Tb

Ta

Z
�s

�p (�2 � �b) d� +

Z T

0

Z



�
û
@�p

@x
+ v̂

@�p

@y

�
d
dt = 0

for arbitrary variations �p in the pressure. Applying Gauss' theorem then yields that

�2

Z Tb

Ta

Z
�s

�p (�2 � �b) d��

Z T

0

Z



�p

�
@û

@x
+

@v̂

@y

�
d
dt+

Z T

0

Z
�

�p(ûn1 + v̂n2) d�dt = 0

where n1 and n2 denote the x and y components, respectively, of the outward normal to


 along �. Choosing variations �p that vanish on the boundary � but which are arbitrary

in the interior 
 of the 
ow domain yields that

@û

@x
+

@v̂

@y
= 0 on (0; T ) � 
: (13)

Now choosing variations �p that are arbitrary along the boundary � yields that

ûn1 + v̂n2 =

8><
>:

0 on(0; T ) � �n�s; (0; Ta) � �s; (Tb; T )� �s

� �2

�
�p+ 2�

@v

@y
� �b

�
on (Ta; Tb) � �s ;

(14)
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where �n�s denotes the boundary � with �s deleted. Note that in the above derivation of

(13) and (14), as in the derivations found below, the boundary integrals at in�nity do not

make any contribution due to the last relation in (12).

Next, consider �L=�v = 0 where equation (12) has been used to eliminate boundary

integrals along �i, �w and as x ! 1 and an integral over 
 at t = 0. First, variations

�v that vanish at t = 0, t = T , and in a neighborhood of � are chosen, but which are

otherwise arbitrary. Such a choice implies that all boundary integrals in (12) vanish giving

�
@v̂

@t
+û

@u

@y
+ v̂

@v

@y
� u

@v̂

@x
� v

@v̂

@y
�

@p̂

@y

��
@

@x

�
@û

@y
+

@v̂

@x

�
� �

@

@y

�
2
@v̂

@y

�
= 0 in (0; T ) � 
 ;

(15)

where equation (3) is used to e�ect a simpli�cation. Next, variations that vanish in a

neighborhood of �, but which are otherwise arbitrary, are chosen to obtain

v̂jt=T = 0 in 
 : (16)

Now, along �, �v and @�v=@nmay be independently selected, provided that (12) is satis�ed,

where @=@n denotes the derivative in the direction of the outward normal to 
 along �. If

�v = 0 and @�v=@n varies arbitrarily along �, then

v̂ =

8><
>:

0 on(0; T ) � �n�s; (0; Ta) � �s; (Tb; T )� �s

�2

�
�p+ 2�

@v

@y
� �b

�
on (Ta; Tb) � �s :

(17)

To see this, note that along the in
ow, �i, n2 = 0 and @=@n = �@=@x while along the top

and bottom boundaries n1 = 0, @=@n = �@=@y, respectively, and, since �v = 0, @�v=@x =

0. Note that (14) and (17) agree on the boundary segments where they simultaneously

apply. Finally, �v is arbitrarily chosen along �a to obtain

s2 = �p̂n2 � v̂(un1 + vn2) � �

�
@û

@y
+

@v̂

@x

�
n1 � 2�

@v̂

@y
n2 on (0; T ) � �a : (18)

Next, consider �L=�u = 0. Applying to the resulting equation the same process that

led to (15)-(18) yields

�
@û

@t
+û

@u

@x
+ v̂

@v

@x
� u

@û

@x
� v

@û

@y
�

@p̂

@x

��
@

@x

�
2
@û

@x

�
� �

@

@y

�
@û

@y
+

@v̂

@x

�
= 0 in (0; T )� 
 :

(19)
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ûjt=T = 0 in 
; (20)

û =

8><
>:

0 on(0; T ) � �n�s; (0; Ta)� �s; (Tb; T )� �s

�1

�
�
@u

@y
� �a

�
on (Ta; Tb)� �s ;

(21)

and

s1 = �p̂n1 � û(un1 + vn2)� 2�
@û

@x
n1 � �

�
@û

@y
+

@v̂

@x

�
n2 on (0; T )� �a : (22)

In deriving (21) we have used the assumption that �s is part of the lower boundary of the

channel so that along �s we have that n2 = �1. Again, there is no con
ict between (14)

and (21) along boundary segments on which both apply.

3.3. The Optimality Conditions

The only �rst-order necessary conditions left to consider are �L=�g1 = 0 and �L=�g2 =

0. (These conditions are usually called the optimality conditions.) Now, since all candidate

functions g1 and g2 must statisfy (9), it follows that �g1 = 0 and �g2 = 0 at t = T0. Then,

take �L=�g2 = 0 and apply Gauss' theorem to remove all derivatives from the variation

�g2. Choosing variations �g2 that vanish at t = T1, but which are otherwise arbitrary, and

using (18) yields

�
@2g2
@t2

+ g2 = �
1

�2

�
p̂+ 2�

@v̂

@y

�
on (T0; T1) � �a ; (23)

where (17) and the assumption that �a is part of the lower boundary so that, along �a,

n1 = 0 and n2 = �1 have been used. Now, choosing variations that are arbitrary at t = T1

yields that @g2=@t = 0 along �a at t = T1 so that, invoking (9), g2(t; x) satis�es

g2jt=T0 = g20(x) and
@g2
@t

���
t=T1

= 0 on �a : (24)

Note that, given p̂ and v̂, (23) and (24) constitute, at each point x 2 �a, a two-point

boundary value problem in time over the interval (T0; T1).

In a similar manner, setting �L=�g1 = 0 yields that

�
@2g1
@t2

+ g1 = �
1

�1

�
�
@û

@y

�
on (T0; T1)� �a (25)

g1jt=T0 = g10(x) and
@g1
@t

���
t=T1

= 0 on �a : (26)

13



3.4. Finite Computational Domains

In the computations, the semi-in�nte domain 
 (we are still only considering the

channel 
ow case) is replaced by a �nite domain 
C de�ned by the introduction of the

out
ow boundary �o given by [x = L, 0 � y � h]. Thus, we have that 
C is the rectangle

[0 � x � L, 0 � y � h]. The out
ow does not require the imposition of boundary

conditions along the out
ow boundary �o because a bu�er zone27 is attached to the end

of the physical computational domain, where the governing equations are parabolized in

this bu�er region.

A similar treatment of the adjoint variables should have required consideration of

an in�nite domain [�1 < x < 1, 0 < y < h]. If this had been done, the boundary

conditions (17) and (21) would not have been obtained along the in
ow �i. In fact, the

in
ow boundary �i for the state equation is the out
ow boundary for the adjoint equations

and, conversely, the out
ow boundary �o for the state equation is the in
ow boundary for

the adjoint equations. This is easily seen by comparing the leading inertial terms of the

state equations with t increasing and the adjoint equations with t decreasing. Now, on

both �i and �o we have that u > 0 and v � 0 which is why �i is an in
ow boundary and

�o is an out
ow boundary for the state. On the other hand, the fact that t is decreasing

in the adjoint equations implies that now �i is an out
ow boundary and �o is an in
ow

boundary for those equations.

Thus, to be consistent with the treatment of the state equations, the adjoint out
ow

�i should be treated in a manner similar to the above treatment of the state out
ow �o.

This treatment of the adjoint out
ow does not require the imposition of any boundary

conditions for the adjoint variables along �i. Finally, since �o is an in
ow boundary for

the adjoint equations, one has that

û = 0 and v̂ = 0 on (0; T ) � �o : (27)

3.5. The Optimality System for Channel Flow

We now have in hand the full optimality system for channel 
ow whose solutions

determine the optimal states, controls, and adjoint states. These are:

State equations { (1)-(7)
Co-state equations { (13)-(17), (19)-(21), (27)

Optimality equations { (23)-(26)

Since (18) and (22) merely serve to determine the uninteresting Lagrange multipliers

s2 and s1, they can be ignored.
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The state equations are driven by the given initial velocity (u0; v0), the given in
ow

velocity (ui; vi), and the controls (g1; g2). Indeed, the purpose of this study is to determine

g1 and g2 that optimally counteracts instabilities created upstream of �a. The adjoint

equations are homogeneous except for the boundary condition along �s, the part of the

boundary along which we are trying to match the stresses. The data in that boundary

condition is exactly the discrepancy between the desired stresses �a and �b and the stresses

�1 = �@u=@y and �2 = �p + 2�@u=@y along �s, weighted by the factors �1 and �2. The

equations for the controls are driven by the negative of the adjoint stresses along �a, the

part of the boundary along which we apply the control, weighted by the factors 1=�1 and

1=�2. Of course this division into equations for the state, the adjoint state, and the control

is really obscured by the fact that equations are all intimitately coupled.

3.6. The Optimality System for Boundary-Layer Flow

Following a similar process to that used in Sections 3.1-3.5 for the channel 
ow case,

one may derive an optimality system for the boundary layer 
ow case. The only di�erence

is that in the latter case �w denotes only the lower boundary with �a excluded and that

the additional boundary condition (8) along the upper boundary �e must be accounted

for.

With the new interpretation for �w, one can still de�ne the Lagrangian functional

(11) and use the constraints (12) on allowable variations; however, due to (8), allowable

variations are further constrained by

�uj�e =

�
�p � 2�

@�v

@y

����
�e

= 0 for (0; T ) :

which implies that, along �e, one may not choose the variations in �p and @�v=@y inde-

pendently. Considering, simultaneously, variations in p, v, and @v=@y along �e, one can

show that

û = 0 on (0; T ) � �e (28)

Then, letting �v be arbitrary along �e yields

p̂+ 2�
@v̂

@y
+ vv̂ = 0 on (0; T ) � �e : (29)

The resulting system for boundary-layer 
ow now includes (28) and (29) in addition

to the channel 
ow system.
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4. Numerical Experiments

Here, the optimal control methodology developed in Section 3 is applied to a boundary-

layer 
ow having a single instability wave that can be characterized by a discrete frequency

within the spectrum. As described by Joslin et al.,21;28 these discrete small-amplitude

instabilities can be suppressed through wave cancellation (WC) using known information

about the wave. Hence, the optimal control is \known" for validation of the present

DNS/optimal control theory numerical approach in which the instability is to be suppressed

without any a priori knowledge of said instability.

We note that although we are testing our methodology and code for the special prob-

lem of two-dimensional TS wave suppression, that these were developed for the fully

nonlinear Navier-Stokes system and thus are applicable to the case of nonlinear, three-

dimensional waves. We would expect that more iterations, and perhaps a re�ned inter-

ation procedure, would be needed for convergence in a multi-mode case. Also, we have

successfully suppressed a single large-amplitude TS wave; space limitations have prevented

us from presenting these results here.

The formidable coupled system is solved in an iterative manner. First, the Navier-

Stokes equations are solved for the state variables, i.e., the velocity �eld (u; v) and pressure

p with control information (i.e., no control g1 = g2 = 0 for �rst iteration). Then co-state

equations are solved for the adjoint or co-state variables (û; v̂) and p̂. Then, using these

adjoint variables, the controls g1 and g2 are then found by solving the optimality equations.

The procedure is repeated until satisfactory convergence is achieved.

The nonlinear, unsteady Navier-Stokes equations and linear adjoint Navier-Stokes

equations are solved by direct numerical simulation (DNS) of disturbances that evolve

spatially within the boundary layer. The spatial DNS29;30 approach involves spectral and

high-order �nite-di�erence methods and a three-stage Runge-Kutta method31 for time

advancement. The in
uence-matrix technique is employed to solve the resulting pressure

equation.20;32 Disturbances are forced into the boundary layer by unsteady suction and

blowing through a slot in the wall. The bu�er-domain technique27 is used for the out
ow

boundary treatment.

In the present study only normal injection or suction control is allowed, so that we

set g1 = 0 in (5), �1 = 0 in the functional (10), and ignore (25) and (26). Also, we only

match the normal stress along �s so that we choose �1 = 0 in the functional (10) and in

(21).
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4.1. Computational Parameters

For the computations, the grid has 401 streamwise and 41 wall-normal points. The

free stream boundary is located 75��o from the wall, and the streamwise length is 224��o
which is equal to approximately 8 TS wavelengths. The nondimensional frequency for

the forced disturbance is F = !=R � 106 = 86; the forcing amplitude is vf = 0:1%.

The Reynolds number based on the in
ow displacement thickness (��o) is R = 900. (The

boundary segment along which disturbance forcing and control is e�ected as well as where

stress matching occurs are located within the unstable region of the linear stability neutral

curve.) A time-step size corresponding to 320 steps per period Tp is chosen for a three-

stage Runge-Kutta method. Based on the disturbance frequency, a characteristic period

can be de�ned as Tp = 2�=! = 81:1781; the resulting time-step size is then �t = 0:2537.

To complete one period of the active-control simulation process, 0.75 minutes on the

Cray C-90 are required using a single processor. Note, two periods of cost (Ta ! Tb and

Tb ! Ta) are required to complete one iteration of the DNS/adjoint system. Although in

general any time interval may be speci�ed for Ta ! Tb, this study uses integer increments

of the period (Tp) for simplicity. Hence, Ta ! Tb = 2Tp would cost 4Tp in computations,

or roughly 3 min of C-90 time per iteration. Because only a single small-amplitude wave

(linear) is forced, the above grid is more than adequate; however, a grid re�nement was

performed and produced results equivalent to the results reported here.

For this study, the disturbance forcing slot �f , the control or actuator ori�ce �a,

and the matching or sensor segment �s have equal length 4:48��o. The forcing is centered

downstream at 389:62��o (the Reynolds number based on the displacement thickness at

that location is R = 1018:99), the actuator is centered at 403:62��o (R = 1037:13), and the

sensor is centered at 417:62��o (R = 1054:97). These separation distances were arbitrarily

chosen for this demonstration. In practice, the control and matching segments should have

a minimal separation distance so that the pair can be packaged as a single unit, or bundle,

for distributed application of many bundles.

4.2. Results

All simulations allow the 
ow �eld to develop for one period, i.e., from t = 0! Ta = Tp

before control is initiated. In the �rst series of simulations, the interval during which control

is applied is arbitrarily chosen to be Ta ! Tb = 2Tp. Based on �1 = �1 = 0, �2 = 1,

and �2 = 10, the convergence history for the wall-normal velocity and measured normal

shear �2 are shown in Fig. 2. The velocities are obtained at a �xed distance from the

wall corresponding to 1:18��o and at the �xed time Tb. Convergence is obtained with 4
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iterations. The results demonstrate that a measure of wave cancellation can be obtained

from the DNS/control theory system. The wall-normal amplitude of the modi�ed wave

at R = 1092:5 is 40 percent of the uncontrolled wave; the control without optimizing the

choice of �1, �2, �1, and �2 has led to a 60 percent decrease in the amplitude of the

travelling wave. Clearly, Fig. 2 shows that a net reduction of the disturbance energy is

obtained by energy input due to the control. This results in a delay of transition by-way-of

a suppression of the instability evolution.

In the simulation, the control has been applied from Ta ! Tb only; therefore, for

t > Tb, equation (5) indicates that the actuation is discontinued. Figure 3 compares

velocity pro�les at R = 1073:2 for the converged results (C1) of Fig. 2 with results for one

period after control t = Tb+Tp . The measured disturbance tends toward the uncontrolled

solution when the actuation is discontinued (as expected); because the control was applied

for Ta � Tp ! Tb = 2Tp, 2 periods are required after Tb before the computed solution in

the window exactly matches the uncontrolled solution. Clearly, the control only removes

energy from the system (decreases the wave instability amplitude); the resulting pro�les

retain the expected instability pro�le shape.

The e�ect of varying the window size (Ta; Tb) is demonstrated. The previous converged

results (C1) are shown with converged results (C2) for the extended window (Ta = Tp !

Tb = 3Tp). The results are identical for the �rst two periods of time and indicate that

extending the amount of time for control serves to extend control only. This result also

indicates that one can solve for the optimal control over a given time interval (Ta; Tb)

by breaking up that inerval and solving for the optimal control over a series of smaller

subintervals. This approach usually leads to substantial savings in CPU and memory

costs. An additional insight about the present DNS/control theory is gleamed by the

increased temporal frame. The resulting optimal control g2 approaches the desired wave-

cancellation time-periodic solution as the temporal length (Ta; Tb) is increased. This is

convincing evidence that the present self-contained methodology is valid.

The instability wave resulting from wave-cancellation (WC) is shown with the control

(C2) in Figs. 4 and 5. For the present comparison, the amplitude of the actuation for WC

was adjusted until nearly exact wave cancellation was achieved. Although the DNS/control

theory did not achieve the same level of energy removal, the similar e�ect of WC was

achieved without any a priori knowledge of the instability. Also, note that Fig. 5 shows

that the optimal control of the control theory has nearly the exact phase characteristics

as WC and only lacks the necessary amplitude for additional wave cancellation. These

encouraging results suggest that by the appropriate selection of �1, �2, �1, and �2, the
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optimal control can be made nearly as e�ective method of instability suppression as exact

wave cancellation.

From the wave-cancellation study of Joslin et al.,21 the relationship between ampli-

tude of the actuator (va) with resulting instabilty can be shown in Fig. 6. A similar result

was shown in the channel 
ow wave-cancellation study in Biringen.14 The trend indicates,

that beginning with a small actuation amplitude, as the actuation level is increased, the

amount of wave cancellation (energy extraction from the disturbance) increases. At some

optimal actuation, nearly exact wave cancellation is achieved for the instability wave. As

the actuation amplitude further increases the resulting instability amplitude increases; this

was clearly explained in Joslin et al.21 to occur because in the wave superposition process,

the actuator wave becomes dominant over the forced wave. At this point, the resulting

instability undergoes a phase shift corresponding to the phase of the wave generated by the

actuator. The relationship depicted in Fig. 6 is encouraging for the DNS/optimal control

theory approach and suggests that a gradient descent type algorithmmight further enhance

the wave suppression capability of the present approach. Namely, an approach for the op-

timal selection of �1, �2, �1, and �2 might lead to a more useful theoretical/computational

tool for 
ow control.

To simply demonstrate this concept, Lagrange interpolation (or perhaps extrapola-

tion) is introduced for �1 and �2 based on imposed values for �1 and �2:

�n+1
1;2 =

�n1;2(�
�

1;2 � �n�11;2 )� �n�11;2 (��1;2 � �n1;2)

(�n1;2 � �n�11;2 )
; (30)

where ��1;2 are some desired values of the stress components and �n1;2 are the stress com-

ponents based on the choice �n1;2. Although ��1 and ��2 may be equivalent to the target

values �a and �b in the functional (10), this may lead to signi�cant over/under shoots for

the interation process. Instead, ��1 and ��2 is the incremental decrease, or target value, for

interpolation to more desirable �1 and �2 values. To illustrate this process, the �2 = 10

(C2) and �2 = 11 control results are obtained with the iteration procedure. The measures

of normal stress are somewhat arbitrarly obtained at some time as measured by the sensor

or matching segment �s; the values of the normal stress are given in the Table 1. These

values are used for a desired normal stress ��2 , which in this case is 65% of the �2 = 11

results.

Table 1. Normal stress for two values of �2.

�2 normal stress
10 9:369� 10�6

11 8:814� 10�6
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Using the results for �2 = 10 and �2 = 11 in (30) yields the value �2 = 16:5 which

is used in a simulation to obtain a greater degree of instability suppression. The WC

results and the enhanced optimal control (C3) solution are shown in Figs. 7 and 8. This

interpolation approach based on relationship of Fig. 6 indicates that optimizing �2 has led

to results very close to WC. The solutions di�er somewhat near t = Ta and t = Tb because

of the conditions (24) and (26) that serve to control the levels of g1 and g2. For all practical

purposes, the solutions obtained with the present DNS/control theory methodology yield

the desired 
ow control features without prior knowledge of the forced instability.

The adjoint system requires that the velocity �eld (u; v) obtained from the Navier-

Stokes equations be known for all time. For the iteration sequence and a modestly course

grid, 82 Mbytes of disk (or runtime) space are required to store the velocities at all time

steps and for all grid points. For Ta ! Tb = 3Tp, 246 Mbytes are necessary for the compu-

tation. Clearly for three-dimensional problems the control scheme becomes prohibitively

expensive. Therefore, a secondary goal of this study is to determine if this limitation can

be elliminated.

Because the characteristics of the actuator (g1 and g2) and resulting solutions are

comparable to WC, some focus should be placed on elliminating the enormous memory

requirements discussed above. This limitation can easily be removed if the 
ow-control

problem involves small-amplitude unsteadiness (or instabilities). The time-dependent co-

e�cients of the adjoint system (15) and (19) reduce to the steady-state solution and no

additional memory is required over the Navier-Stokes system in terms of coe�cients. This

has been veri�ed by a comparison of a simulation with steady coe�cients compared with

the C2 control case. The results for both cases are identical (as expected). Additionally,

if the instabilities have small amplitudes, then a linear Navier-Stokes solver can be used

instead of the full nonlinear solver, which was used in the present study. This linear system

would be very useful for the design of 
ow-control systems. However, if the instabilities in

the 
ow have su�cient amplitude to interact nonlinearly, then some measure of unsteady

coe�cient behavier is likely required. Depending on the amplitudes, the coe�cients saved

at every time-step may be replaced with storing coe�cients every 10 or more time-steps

thereby reducing the memory requirements by an order of magnitude. This hypothesis

will require validation in a future study.

Conclusions

The coupled Navier-Stokes equations, adjoint Navier-Stokes, and optimality condi-

tion equations were solved and validated for the 
ow-control problem of instability wave
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suppression in a 
at plate boundary layer. By solving the above system, optimal con-

trols were determined that met the objective of minimizing the perturbation normal stress

along a portion of the bounding wall. As a result, the optimal control was found to be

an e�ective means for suppressing two-dimensional, unstable Tollmien-Schlichting travel-

ling waves. The results indicate that the DNS/control theory solution is comparable to

the wave-cancellation result but, unlike the latter, requires no a priori knowledge of the

instability characteristics.
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Fig. 1. Schematic of active 
ow control using optimal control theory.
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Fig. 2. Convergence of disturbance wall-normal velocity with downstream distance and

sensor-measured shear stress with discrete time for control in 
at-plate boundary-layer


ow. (Velocity signal at y = 1:18��o from wall; T1 � T0 = 2Tp.)
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Fig. 3. Disturbance velocity pro�les for no control (T=4), control (C1), and after control

is used and turned-o� (C=4) in 
at-plate boundary-layer 
ow.
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Fig. 4. Disturbance velocity with downstream distance for no control (T=4), control

(C2), and wave cancellation (WC) in 
at-plate boundary-layer 
ow. (Velocity signal at

y = 1:18��o from wall; T1 � T0 = 3Tp.)
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Fig. 5. Actuator response and sensor-measured shear stress for control (C2) and wave

cancellation (WC) with discrete time.
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Fig. 6. Disturbance velocity resulting from variations in actuator amplitude from simula-

tions in Joslin et al.21
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Fig. 7. Disturbance velocity with downstream distance for no control (T=4), control

(C3), and wave cancellation (WC) in 
at-plate boundary-layer 
ow. (Velocity signal at

y = 1:18��o from wall; T1 � T0 = 3Tp.)
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Fig. 8. Actuator response and sensor-measured shear stress for control (C3) and wave

cancellation (WC) with discrete time.
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