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Abstract

Differential evolution (DE) has been widely applied to complex global optimization problems. Different search strategies

have been designed to find the optimum conditions in a fitness landscape. However, none of these strategies works well over

all possible fitness landscapes. Since the fitness landscape associated with a complex global optimization problem usually

consists of various local landscapes, each search strategy is efficient in a particular type of fitness landscape. A reasonable

approach is to combine several search strategies and integrate their advantages to solve global optimization problems. This

paper presents a new self-feedback strategy differential evolution (SFSDE) algorithm based on fitness landscape analysis of

single-objective optimization problem. In the SFSDE algorithm, in the analysis of the fitness landscape features of fitness-

distance correlation, a self-feedback operation is used to iteratively select and evaluate the mutation operators of the new

SFSDE algorithm. Moreover, mixed strategies and self-feedback transfer are combined to design a more efficient DE algorithm

and enhance the search range, convergence rate and solution accuracy. Finally, the proposed SFSDE algorithm is implemented

to optimize soil water textures, and the experimental results show that the proposed SFSDE algorithm reduces the difficulty

in estimating parameters, simplifies the solution process and provides a novel approach to calculate the parameters of the Van

Genuchten equation. In addition, the proposed algorithm exhibits high accuracy and rapid convergence and can be widely

used in the parameter estimation of such nonlinear optimization models.
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1 Introduction

The fitness landscape is a new theory proposed by the the-

oretical biologist Sewall Wright that regards evolution as

a process of movement or adaptive migration in a three-

dimensional landscape with basins and valleys (Wright

1932). The concept of the fitness landscape was initially used

for biological evolution optimization dynamics, which has

a very important role in the analysis and understanding of

evolutionary algorithms. The fitness landscape predicts the

performance of the algorithm, and the study of the fitness

landscape will aid in the design of improved evolution-

ary algorithms. When the evolutionary algorithm is used

to solve complex optimization problems, the corresponding

landscape of fitness is usually complex. For instance, a com-

plex three-dimensional fitness landscape may include ridges,

valleys and basins. Each point in the landscape represents

a possible gene combination, and the height of each point

denotes the fitness. Peaks are points at which the gene com-

bination has a higher fitness, whereas valleys are points at
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which the gene combination has a lower fitness. Due to dif-

ferences in the fitness of different gene combinations, these

features present a rugged landscape of mountains and val-

leys, which we call a fitness landscape. The fitness landscape

is a commonly used metaphor for expressing the features

of evolutionary algorithms in solving complex problems.

The fitness landscape originates in evolutionary biology, and

scholars have begun to study the fitness landscape in the field

of evolutionary computation. We discuss the concept of a fit-

ness landscape and analyze and extract the features of such a

landscape, which will help scholars design and optimize the

performance of evolutionary algorithms.

Different search strategies have been employed to improve

the performance of evolutionary algorithms (Eskandarpour

et al. 2014). For example, Gaussian, Cauchy and Levy muta-

tion operations are used in evolutionary programming (Yao

et al. 1999; Lee and Yao 2004). The Gaussian mutation

operator is effective for certain uni-modal and multi-modal

functions with only a few local optimal points. The Cauchy

mutation operator works well only on multi-modal functions

with many local optimal points (Yao et al. 1999). How-

ever, according to the no free lunches theorem (Wolpert

and Macready 1997, 2005), none of these mutation opera-

tors is efficient in solving all optimization problems; each

is efficient only for specific fitness landscapes. From the

perspective of fitness landscapes, the efficiency of a search

strategy is closely associated with the features of the fitness

landscape. Following the terms of game theory, this mixed

search strategy is the probability that each individual or popu-

lation chooses a strategy from a strategy pool (Li et al. 2018).

Therefore, a reasonable approach is to combine multiple

search strategies together and dynamically select these strate-

gies to search complex fitness landscapes (Li et al. 2017a, b).

Many complicated phenomena such as weather changes,

stock market fluctuations and soil water-saving irrigation

may seem stochastic. However, these unpredictable and unre-

lated phenomena in fact follow a certain order (Cao et al.

2018). We examine these phenomena to find similar con-

cepts with unique properties: randomness, which is often

presented as the performance of random variables; ergod-

icity, which is the nonrepetition of all states over a range;

regularity, which is produced by deterministic iteration (Yang

et al. 2018). The system of these phenomena possesses the

property of self-feedback. Through the iteration of initial val-

ues, the distribution of ergodicity and randomness is formed

(Zhou et al. 2018). Self-feedback search is carried out in the

iterative process. The concept of self-feedback is introduced

into the evolutionary algorithm to balance the global explo-

ration and local exploitation ability.

At present, there is little research that directly links the

features of self-feedback evolutionary algorithms and fitness

landscapes. Merz examined the combination of fitness

landscape theory and the memetic algorithm (Merz and

Freisleben 1999, 2000; Merz 2004). Shen initially designed

a mixed-strategy evolutionary programming using the fit-

ness landscape (Shen and He 2010). Relevant experimental

results show that the use of fitness landscape analysis helps

design highly efficient evolutionary algorithms to solve

combinatorial optimization problems (Rohlfshagen and

Yao 2013). Therefore, combining the features of fitness

landscapes is a feasible approach to designing effective

evolutionary algorithms.

Since the first appearance of precision agriculture in the

early 1980s (McBratney et al. 2005), its development has

become a research hot spot. Precision agriculture is defined

in an assessment report formed by the experts of the National

Research Council of the USA in 1997 as a mechanical strat-

egy to obtain values from a variety of sources through infor-

mation technology (Zhang and Kovacs 2012). The key goal

of precision agriculture technology is to determine the actual

existence of spatial and temporal differences in the crop

yield and crop growth in the field of environmental factors,

for example, soil water textures, geology, fertilizer nutrition,

crop diseases. The factors affecting the differences in crop

yields are identified, and the technical feasibility of economic

control strategies is evaluated to implement the most effec-

tive controls. The ultimate goal of precision agriculture is to

help farmers conserve environmental quality while reducing

waste, improving efficiency and increasing returns. Pre-

cise agriculture requires precise control, and many precision

agriculture problems can be characterized as optimization

problems (Bongiovanni and Lowenberg-DeBoer 2004).

Precision agriculture can be applied to soil textures, one of

the most important factors influencing crop growth (Vachaud

et al. 1985). An accurate and timely analysis of the status of

soil nutrients will be of great value to guiding water-saving

agricultural production. Soil nutrients are also a major tech-

nical issue in the sustainable development of agriculture. The

soil water characteristic curve is an important indicator of the

basic hydraulic properties of soils and plays a very impor-

tant role in studying the retention and transport of soil water

(Van Genuchten 1980). Scholars have proposed mathemati-

cal models and computing methods for these problems. The

Van Genuchten equation has a wide range of applications

because the linear curve is very similar to the measured data

(Wang et al. 2000). However, there are many parameters in

the Van Genuchten equation, and conventional linear fitting

methods are difficult to realize. The parameter fitting of this

equation is a nonlinear fitting problem.

In recent years, evolutionary algorithms have become a hot

spot for solving nonlinear problems. These algorithms have

the characteristics of initial independence, delineating fea-

sibility regions and global optimization (Gupta et al. 2016).

These optimization problems are increasingly characterized

by high-dimensional, discontinuous, multi-peak, big-data

and other complex features (Hossain et al. 2018). Recent
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studies show that traditional algorithms are not suitable for

solving these optimization problems. However, differential

evolution (DE) (Storn and Price 1997) algorithms possess

characteristics such as strong search space, fast conver-

gence speed and exact solving ability, which is why these

algorithms have become the research direction of many

researchers (Wang et al. 2018a, b). In recent years, research

on DE algorithms has focused on the aspects of mutation,

parameter adjustment and selection strategy. In particular,

research on population topology, population diversity and

the representation of individuals in probabilistic space has

been developed (Li et al. 2017a, b; Al-Smadi et al. 2017).

This paper continues the line of inquiry into evolutionary

computation. Based on the fitness landscape, self-feedback

operation and mixed strategies described above, we design

a new DE algorithm to solve the optimization problem in

practical applications.

The next section describes related work on the subject

of fitness landscapes, specifically completely summarized

methods employing fitness landscape feature analysis. In

Sects. 3, 4 and 5, we define self-feedback operations,

the Van Genuchten model, their associated functions, as

well as self-feedback search and transfer operations based

on the mixed-strategies DE algorithm. We then propose

our approach, the self-feedback mixed-strategies differential

evolution (SFSDE) algorithm, in Sect. 6. Finally, we apply

the proposed new DE algorithm to solve six types of Van

Genuchten equation parameters. We close the paper with our

conclusions and suggestions for future research directions.

2 Fitness landscape features analysis

Analyzing the features of fitness landscapes plays an impor-

tant role in optimizing and designing effective search algo-

rithms (Li et al. 2017a, b). However, in general, it is difficult to

accurately represent a fitness landscape in polynomial time.

Instead, a prior observation of the fitness landscape is often

obtained. In evolutionary computation, a population contains

finite sample points in the fitness landscape, and each popula-

tion can be used as an observation of the fitness landscape. For

the statistical sampling of a local fitness landscape, we study

its features; for the fitness landscape in three-dimensional

space, we intuitively use ridges, valleys and basins to describe

the features of the local fitness landscape. However, for a fit-

ness landscape in high-dimensional space, we cannot employ

the same visualization. To approximate the real fitness land-

scape, new features and analysis methods must be developed.

A fitness landscape ΛS can be denoted by the following

(Stadler and Stephens 2003; Kallel et al. 2001):

ΛS � (X , n, f ) (1)

where X is the solution space; n(x) denotes a neighborhood

structure, used to assign to all neighbors x ∈ X (far or near);

and f (x) : X → R is a fitness function. In other words,

the solution space is a linked network of a neighborhood

structure, and this neighborhood structure can be expressed

as a local function. Fitness is represented as a local quadra-

ture mapping in the form of altitude or height (Richter and

Engelbrecht 2014).

We aim to describe the features of observed local land-

scapes. In certain low-dimensional spaces, the features of

local landscapes might be easy to understand using intuitive

expressions such as valleys, ridges and basins. However, as

the problem dimensions increase, it may be very difficult to

describe the features of local landscapes Wu et al. (2016).

Therefore, we need to use new approaches to analyze the

fitness landscape.

2.1 Local analysis method

The local features of a fitness landscape are defined based

on certain statistical measures (Reeves and Eremeev 2004).

The local analysis method for the local landscapes is the

local optima in an observed local landscape. This approach

is used to measure the roughness of a local landscape. We

summarize the following methods for analyzing the local

fitness landscape obtained from statistical sampling.

Roughness indicates changes in the neighborhood of fit-

ness points. Each optimization problem corresponds to its

own fitness landscape features; they may contain peaks, val-

leys and basins. Therefore, in the analysis of optimization

problems, the analysis of roughness is also very important.

The roughness of the fitness landscape increases the diffi-

culty in searching for the optimal solution with evolutionary

algorithms. Vassilev et al. (2003) presented the first entropic

measure (FEM) as a measure of ruggedness. The FEM was

adapted for real-valued and discrete problems (Malan and

Engelbrecht 2009). The FEM is generated by a random walk

adapting to a statistical sample, and it can generally be used

as metric of information entropy for a sequence of symbols,

indicating changes in fitness (Malan and Engelbrecht 2014).

The dispersion metric (Lunacek and Whitley 2006) is

defined by the average pairwise distance between the best

points.

DM � 1

p(p − 1)

p
∑

i�1

p
∑

j�1, j ��i

d
(

xrki , xrk j

)

(2)

where p is the number of best points and xrki
is the i-th point

among λ samples. The dispersion metric is generally used

in continuous optimization problems (Muñoz et al. 2012;

Baumgartner and Sbalzarini 2009; Morgan and Gallagher

2014). In the application of this metric, candidate solutions

are normalized to [0, 1]n for comparison, where n is the
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dimension of problem. Morgan and Gallagher (2014) clearly

showed that the dispersion metric will converge to 1
/√

6 as

the number of dimensions goes to infinity.

2.2 Global analysis method

Another means of increasing the complexity of the global

optimization problem is to consider the following global

analysis fitness landscapes method.

In the initial definition of fitness-distance correlation

(Jones and Forrest 1995), setting the fitness-distance correla-

tion is used to obtain more global optimal solutions, in which

the global optimal solution must be predicted. However, in

practice, the species is not known, which is a shortcoming of

this method. The main idea of fitness-distance correlation is

to determine how close the relationship between fitness and

distance is, which is used to find the optimum in the search

space.

The fitness-distance correlation (FDC) (Müller and

Sbalzarini 2011) is a global metric that measures the corre-

lation between distance and fitness in adapting to the global

optimum. The FDC can be defined as follows:

F DC � 1

σFσDλ

λ
∑

i�1

(

f (xi ) − f
)(

di − d
)

(3)

where λ is the number of candidate solutions χ �
{x1 , . . . , xλ}, di � d

(

xi , xg

)

is the i-th distance function,

d is the distance values, f denotes the average fitness, σF

is the standard deviation of fitness, and σD denotes the stan-

dard deviation of distance. In general, the FDC employs the

best candidate solution xg � arg minx∈χ f (x) instead of the

global optimum. The result of the FDC measure is a useful

fitness landscape feature and can be applied to combinatorial

and continuous problems (Huang et al. 2018).

To improve the population space, evolvability is a com-

monly used method for landscape fitness analysis for evolu-

tionary computation.

Smith et al. (2002) utilized the probability distribution to

analyze the neighbor and solution space and proposed the

evolvability metric for the candidate solution. The evolvabil-

ity metric can be defined as follows:

EV O � 1

λ

λ
∑

i�1

∣

∣N∗(xi )
∣

∣

/

|N (xi )| (4)

where N (x) denotes the set of neighborhood solu-

tions, |N (x)| is the number of N (x), N∗(x) �
{y|y ∈ N (x), f (y) ≤ f (x)} is a new set of neighborhood

solutions, whose value is better than the evaluation value.

Note that evolvability adapts to each candidate solution.

The evolvability metric representing the global landscape

feature can be given in various ways using the values of
∣

∣N∗(xi )
/

N (xi )
∣

∣, i � 1, . . . , λ. We can simply obtain the

evolvability metric by averaging the evolvability values of

λ candidate solutions. The evolvability metric can provide

important information and reveal new fitness landscape fea-

tures. However, previous experimental results show that the

evolvability metric alone does not provide complete infor-

mation (Pitzer and Affenzeller 2012); it is best used a

complementary addition for fitness landscape analysis.

These new features might lead to a better understanding

of the roughness of local landscapes along different axes. As

other statistical measures of features of landscapes exist in the

literature, such as autocorrelation (Weinberger 1990), epis-

tasis variance (Davidor 1991), fitness-distance correlation

and fitness variance (Radcliffe and Surry 1995), an intuitive

research question is whether the combination of several fea-

tures provides a better understanding of local landscapes. To

test this idea, mixed-strategies differential evolution algo-

rithms using multiple features were designed and evaluated

in the present study.

3 Self-feedback operation

All of the optimization problems were given goals, and all

obtained some responses in relation to their goals. These

responses can be expressed as feedback. In general, goal

presetting alone enhances the performance of optimization

(Huang et al. 2017). The idea of self-feedback operations

comes from the above description of feedback, which is self-

adaptation to the goal, and can also increase the likelihood

of achieving the goal and improving the optimization perfor-

mance. The self-feedback operation designed in this paper

is implemented with a self-feedback mapping function, self-

feedback search and self-feedback transfer.

3.1 Self-feedbackmapping function

We utilize the following formula as a self-feedback mapping

function:

λn+1 �
{

λn/0.4 0 < λn ≤ 0.4

(1 − λn)/0.6 0.4 < λn ≤ 1
(5)

This self-feedback mapping function has the character-

istics of randomness, ergodicity and regularity. The initial

conditions meet the requirements of uniform dispersion and

homogeneity. The self-feedback mapping function does not

change the randomness of the initial conditions but increases

the diversity of the population and individual search ergodic-

ity. Figure 1 illustrates a self-feedback mapping function of

the iterative point, which reflects the self-feedback mapping

function with randomness, ergodicity and regularity.
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Fig. 1 A self-feedback mapping function of the iterative point

3.2 Self-feedback search

In the iterative process of self-feedback, we assume that one

of the better individuals is P �
[

x1, x2, . . . , x j , . . . , xn

]

,

and the sequence λk
j is generated by the self-feedback map-

ping function. In each iteration, pc � x j,min + λk
j (x j,max −

x j,min) and the new location of x j is xk+1
j �

(

1 − βg

)

xk
j +

βg pc, βg � 1−((g − 1)/g)m where g is the evolution gener-

ation, and m is used to control the speed of compression. We

regularly calculate the fitness of P. If the fitness is better than

the original, this fitness replaces the original; otherwise, it

is left unchanged. By controlling the self-feedback compres-

sion factor, the algorithm reduces the search space around

the better individual gradually with the increase in evolu-

tion generations. The mutation space is large in the early

stages of evolution, which helps the algorithm search for the

global optimal solution in a wide space. In the late stages of

evolution, as the mutation space becomes smaller, searching

closely around the local optimal solution will help improve

the accuracy of the solution in a small space.

3.3 Self-feedback transfer

In the traditional evolutionary algorithm, the convergence of

the algorithm will be relatively fast at the beginning, but after

a certain number of iterations, the similarity of the individ-

uals in the population is higher and the diversity smaller.

Despite the crossover operations, the impact on individual

diversity is not obvious. To maintain the population diversity

and prevent premature convergence, it is necessary to test

the degree of population aggregation, which is the diversity

measure of the population (Wang et al. 2017). When pop-

ulation diversity is low, a self-feedback transfer operation

is performed, which generates a number of new individuals

in each individual dimension according to a self-feedback

iterative formula and substitutes those individuals for closer

individuals. The equation for the diversity measure is as

follows:

avgsum � [avgs1, avgs2, . . . , avgsD] �
[

N P
∑

i�1

xi1,

N P
∑

i�1

xi2, . . . ,

N P
∑

i�1

xi D]/N P

]

(6)

ts � [ts1, ts2, . . . , tsD] �

⎡

⎢

⎢

⎢

⎣

N P
∑

i�1

(xi1 − avgs1)2

(x1,max − x1,min)
,

N P
∑

i�1

(xi2 − avgs2)2

(x2,max − x2,min)
, . . . ,

N P
∑

i�1

(xi D − avgsD)2

(xD,max − xD,min)

⎤

⎥

⎥

⎥

⎦

(7)

diversity �
(

D
∑

i�1

tsi

)

/(D ∗ N P) (8)

When the diversity measure value is less than the set

threshold, the following self-feedback transfer operation is

performed.

The self-feedback mapping function is used to generate

an array tλ of length D, and a self-feedback coefficient

sλ � tλ ∗ 2 − 1 ∈ (−1, 1) is obtained. For an individ-

ual population P �
[

x1, x2, . . . , x j , . . . , xD

]

, the individual

S P is computed through the following self-feedback trans-

fer operation, and the original individual p is replaced by the

individual S P:

S P( j) �
{

Pbest( j) + sλ( j) ∗ (Pbest( j) − x j,min) sλ( j) < 0

Pbest( j) + sλ( j) ∗ (x j,min − Pbest( j)) sλ( j) ≥ 0

(9)

4 Van Genuchtenmodel

Van Genuchten proposed a soil water characteristic curve,

which is a key curve reflecting the movement of soil water and

the movement of chemical substances in unsaturated soils.

123



7778 Y. Huang et al.

Through the analysis of the curve, researchers can predict the

movement of water in the soil. The Van Genuchten equation

is defined as follows:

θ(h) � θr +
θs − θr

[

1 + |αh|n
]1− 1

n

(10)

where θ is the soil water texture (cm3/cm−3), h is the pres-

sure head (cm), θs denotes the equilibration of water texture,

and θr is the surplus of water texture (cm3/cm−3). α is an

empirical parameter and is often referred to as the inverse

of the air entry point cm−1, and n is an empirical constant

affecting the shape of the curve (Van Genuchten 1980).

For the problem of fitting curves and optimization param-

eters, the least squares method is usually used to estimate the

parameters as follows:

min( f ) �
n

∑

i�1

∣

∣xi − x̂
∣

∣

2
(11)

where xi is the measured data and x̂ is the result of fitting

curves. From the above description, we can set the fitness

function of the Van Genuchten model as follows:

min( f ) �
n

∑

l�1

∣

∣

∣
θ (hl ) − θ̂ (hl )

∣

∣

∣

2
(12)

However, the Van Genuchten equation has the following

drawbacks: (1) The equation is a nonlinear complex equation,

which means it is complicated to use with traditional math-

ematical methods. (2) The parameter values in the equation

are difficult to handle, and it is not easy to obtain the global

optimal solution. (3) The equation has poor versatility. (4)

Human factors introduce uncertainties in adapting to the dif-

ferent experimental operations and environments.

Because the Van Genuchten model has the above short-

comings, scholars have used the method of fitting solutions to

solve it. Wang et al. (2017) combined the nonlinear simplex

method with the least squares method to solve the problem of

retention characteristics in the soil water holding curve. Ma

et al. (2005) used the damped least squares method to fit the

parameters of the Van Genuchten equation. Although these

methods reduce the difficulty in using the Van Genuchten

equation to a certain extent, they are somewhat sensitive to

the selection of initial values. With the development of the

Van Genuchten equation, scholars have proposed solutions

that are independent of the initial values. Chen and Ma (2006)

proposed a random particle swarm optimization method to

optimize parameters of the Van Genuchten equation. Xu et al.

(2008) used the genetic algorithm to solve for the parameters

of the Van Genuchten equation. Guo et al. (2009) used the

hybrid genetic algorithm to estimate the parameters of the

Van Genuchten equation. Their experimental results show

that the use of a genetic algorithm to solve the Van Genuchten

equation parameters not only speeds up the solution but also

simplifies the solution process. In addition, the parameters

are more accurate and the rate of convergence is improved.

Therefore, the present paper follows in the footsteps of

these scholars and applies the SFSDE algorithm to the prac-

tical problems of soil water retention. Through its application

to solving for the parameters of Van Genuchten equation and

comparing the solution with the results of other algorithms,

the feasibility of the SFSDE algorithm in practical appli-

cations is verified. To compare with other algorithms, this

paper uses the mean square error (MSE) to evaluate the per-

formance as follows:

MSE � 1

n

n
∑

i�1

(xi − ⌢
x i )

2 (13)

5 Differential evolution

Storn and Price (1997) first proposed the differential evolu-

tion (DE) algorithm, which was originally used to solve the

Chebyshev polynomial problem. As the DE algorithm has

won many international algorithm competitions, an increas-

ing number of scholars have studied it, expanded it and

applied it successfully to all fields (Wu et al. 2017). The

DE algorithm has been favored by many scholars as an

emerging evolutionary computation because of its following

advantages: (1) A global population-based search strategy

is retained. (2) Real-world encoding is enabled. (3) Based

on the differential mutation operation, the complexity of the

algorithm is reduced. (4) The principle is simple and the algo-

rithm is easy to apply. A problem to be optimized is expressed

as follows:

min f (x), x � (x1, x2, . . . , xn) ∈ S (14)

[

L j , U j

]n
provides the initial vector randomly. The equa-

tion employs a random variable rand to generate an initial

individual.

xi � rand
(

U j − L j

)

+ L j , i � 1, 2, . . . , n (15)

where 0 ≤ rand ≤ 1 and 1 ≤ i, j ≤ n.

Compared with other evolutionary algorithms, the basic

framework of the DE algorithm is basically the same, includ-

ing all three basic operations of selection, mutation and

crossover. However, the major difference in the DE is the

differential mutation operation. The following are six com-

monly used mutation strategies (Iorio and Li 2004; Qin et al.

2009; Storn 1996):
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DE/rand/1/bin:

vi,g � xr1,g + F ·
(

xr2,g − xr3,g

)

(16)

DE/rand/2/bin:

vi,g � xr1,g + F ·
(

xr2,g − xr3,g

)

+ F ·
(

xr4,g − xr5,g

)

(17)

DE/best/1/bin:

vi,g � xbest,g + F ·
(

xr1,g − xr2,g

)

(18)

DE/best/2/bin:

vi,g � xbest,g + F ·
(

xr1,g − xr2,g

)

+ F ·
(

xr3,g − xr4,g

)

(19)

DE/current-to-rand/1/bin:

vi,g � xi,g + F ·
(

xr1,g − xi,g

)

+ F ·
(

xr2,g − xr3,g

)

(20)

DE/current-to-best/1/bin:

vi,g � xi,g + F ·
(

xbest,g − xi,g

)

+ F ·
(

xr1,g − xr2,g

)

(21)

The large differences among individuals in the initializa-

tion improve the initial search space of the algorithm. With

the continuous iteration of the DE algorithm, the individual

differences gradually reduce, causing the search range of the

differential mutation operation to gradually shrink and the

accuracy of local search to gradually increase, thus improv-

ing the convergence of the algorithm.

Based on the features of the mutation operator and fit-

ness landscape, we propose a new mixed strategy of the

DE/rand/1/bin, DE/rand/2/bin and DE/current-to-best/1/bin

operators. This strategy is a dynamic and adaptive selection

of a mixed mutation strategy based on fitness landscape fea-

ture distributions. The following equations are the new mixed

mutation operators using the Gaussian and Cauchy distribu-

tions.

• sGaussian:

vi � xi + FGaussian · (xbest − xi ) + FGaussian · (xr1 − xr2)

(22)

• sCauchy:

vi � xr1 + FCauchy · (xr2 − xr3) + FCauchy · (xr4 − xr5)

(23)

where FGaussian and FCauchy are control parameters that refer

to the Gaussian and Cauchy distribution, respectively.

{

FGaussian � randgi(F, 0.1)

FCauchy � randci(F, 0.1)
(24)

where randgi(F, 0.1) is a random value transfer from the

Gaussian distance and randci(F, 0.1) denotes a random

value transfer from the Cauchy distance.

6 The proposed approach

In this paper, we propose a new self-feedback mixed-

strategies differential evolution (SFSDE) based on fitness

landscape features for the problem of soil water texture opti-

mization. In the SFSDE algorithm, through the analysis of

local fitness landscape features in a population space, a self-

feedback operation is used to iteratively select and evaluate

mutation operators. Moreover, mixed strategies and self-

feedback transfer are combined to design a more efficient

DE algorithm, enhance the search space and improve the

convergence and accuracy (He et al. 2016; Lin et al. 2017).

The framework of SFSDE is described in Algorithm 1.

Algorithm 1: The Proposed SFSDE Algorithm

Input: training function set = { 1, 2, ⋯ , } and control 

parameters = { 1, 2, ⋯ , }

1 Initialize population based on the extract operation;

2 While t ≤ MaxGen do

3 For each training function do

4 Count the number of ;

5

6 

For = 1,2,⋯ , n do

Count control parameter , denote by < , >;

7 For each control parameter do

8 Add the components on all axes ′( ) = ∑ ′( )
=1 ;

9 Choose for mutation ( ) → ′( ) by equation 

1

| |
D

i ij bestj

j

d x x
=

= −∑ ;

10 Select better individuals to form a new population by 

self-feedback transfer Equations (7), (8) and (9);

11 t = t + 1;

12 End for

13 End while

Output: The highest fitness solution

7 Experimental results and analysis

In this section, we apply the SFSDE algorithm to the practical

application problem of solving six types of Van Genuchten

equation parameters. The following detailed experiments
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will explore the algorithm performance of the SFSDE from

many aspects, such as the estimated value, the measured

value, the accuracy, the convergence rate (Wang et al. 2018a,

b).

7.1 Experiment setup

In the experiments, our approach, the SFSDE algorithm, is

applied to six different types of Van Genuchten equation

parameters. The SFSDE algorithm is compared with meth-

ods in three other references and three standard DE methods.

The involved references are listed as below.

In Xu et al. (2008), the algorithm used to acquire 4

unknown parameters is developed by means of coupling the

least squares method and the nonlinear simplex method, and

the application of the hysteresis curve to numerical simula-

tion is discussed (LSNS).

In Wang et al. (2000), parameters are estimated by solving

the Van Genuchten equation using the damped least squares

method (DLS).

In Ma et al. (2005), the optimized algorithm for estimating

parameters is used to solve the Van Genuchten equation based

on stochastic particle swarm optimization (SPSO).

Our approach is the SFSDE algorithm.

For the above five algorithms, the parameters θs , θr , α and

m fall within the region [0,1], the control parameter F and

crossover rate CR are equal to 0.5, the population size NP

is equal to 30, and the maximum iteration number gmax is

equal to 2000. The weight of selection P is equal to 0.05, and

the weight of self-feedback c is equal to 0.5.

7.2 Experiment 1

In order to evaluate the SFSDE algorithm in solving the Van

Genuchten characteristic curve equation, experiment 1 will

be carried out from the following aspects: The SFSDE algo-

rithm is applied to solve the Van Genuchten characteristic

curve equation relevant parameters; then, the actual values

and the calculated values are compared with the existing

research methods in different references. The performance

evaluation of the SFSDE algorithm in this part of the experi-

ment is mainly focused on the optimization accuracy. The six

types of Van Genuchten equation parameter values in Table 1

are the result of Eq. (10).

Tables 2 and 3 are for different methods of comparing

the simulated value and actual value; the actual values in

Tables 2 and 3 were derived from Xu et al. (2008) and

Wang et al. (2000), respectively. Better results from SFSDE

algorithm optimization are marked in bold. The experimen-

tal results show that the SFSDE algorithm is more accurate

and computationally more efficient than the other three algo-

rithms in calculating the parameters of the Van Genuchten

equation.

The comparison results of the four methods used to cal-

culate the parameters of the Van Genuchten equation are

detailed in Table 4. The results of the three parameters θs ,

α and n calculated by the SFSDE algorithm are superior to

those of the Xu et al. (2008), Wang et al. (2000) and Ma

et al. (2005), and the parameters θr and m are also close to

each other. For the objective function of the Van Genuchten

equation, the experimental results show that the SFSDE algo-

rithm not only has obvious advantages in the accuracy of the

solution compared with the other three literature, but also

overcomes the phenomenon of falling into a local optimum.

Table 5 shows the comparison of MSE between the sim-

ulated and actual values for different algorithms. The bold

values represent the best results in this table. The values are

from Table 5 in Ma et al. (2005). Compared with the SPSO

method in Ma et al. (2005), we can conclude that the MSEs

of the SFSDE algorithm for silt loam dehumidification and

moisture absorption and sand loam moisture absorption and

gravel dehumidification are low. Therefore, the SFSDE algo-

rithm produces results closer to the actual values. The SFSDE

algorithm produces smaller MSE values than the LSNS val-

Table 1 The six types of Van Genuchten equation parameters

Types θs/cm3 ·cm−3 θr /cm3 ·cm−3 α m n

Silt loam

dehumidification

3.19E−01 6.59E−02 1.27E−02 7.53E−01 4.01E + 00

Silt loam moisture

absorption

3.52E−01 6.25E−02 1.28E−02 8.13E−01 5.34E + 00

Sand loam

dehumidification

3.78E−01 8.47E−02 1.50E−02 7.75E−01 4.43E + 00

Sand loam moisture

absorption

3.74E−01 8.17E−02 1.52E−02 7.98E−01 4.96E + 00

Gravel dehumidification 2.74E−01 6.05E−02 2.34E−02 6.71E−01 3.04E + 00

Gravel moisture

absorption

2.69E−01 5.65E−02 2.27E−02 7.08E−01 3.43E + 00
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ues in Xu et al. (2008) for the six types being compared, and

the result shows that the SFSDE algorithm is significantly

better than the LSNS method.

7.3 Experiment 2

To further analyze the SFSDE algorithm’s convergence

rate and accuracy, this section compares the standard DE

algorithm with the proposed SFSDE algorithm on the exper-

imental results of the parameters from the dehumidification

and moisture absorption of silt loam.

In this experiment, the standard DE algorithm uses the

mixed strategy to carry out mutation operations, where F is

set to 0.5 and CR is 0.9. The SFSDE algorithm has the same F

at 0.5, but the CR is 0.5, the weight of selection p is 0.05, and

the weight of self-feedback C is 0.5. The population size NP

is 30, and the maximum number of iterations gmax is 2000.

Table 6 compares the experimental data of the SFSDE

algorithm and the standard DE algorithm using three differ-

ent mutation operators. The experimental data show that the

SFSDE algorithm has the highest accuracy among the four

different algorithms, followed by the standard DE algorithm

with the DE/rand/2/bin mutation operator. The accuracies

of min( f ) calculated with the DE/current-to-best/1/bin and

DE/rand/1/bin mutation operators are lower than with the

LSNS and SPSO methods.

Figures 2 and 3 are iterative curves of the SFSDE algo-

rithm and the standard DE algorithm using three different

mutation operators to calculate the parameters of the Van

Genuchten equation for silt loam dehumidification and mois-

ture absorption, respectively. The two figures reflect the

relationship between the number of iterations and fitness.

Each figure takes the first 500 generations of each algorithm

as curve data. The star label line is an iterative curve of the

SFSDE algorithm. The circle, plus and rhombus label are

iteration curves using the DE/rand1/bin, DE/rand/2/bin and

DE/current-to-best/1/bin mutation operators, respectively. In

the iterative curve figures, if the curve descends faster, the

algorithm converges faster. The closer the curve is to 0, the

faster the algorithm converges and the more accurate is the

algorithm. We use Eq. (12) as a fitness function to calculate

the parameters of the Van Genuchten equation for silt loam

dehumidification and moisture absorption with a minimum

value of 0. The following conclusions can be drawn from

these two iteration curve figures.

When the standard DE algorithm adopts the DE/rand/2/bin

and DE/current-to-best/1/bin mutation operators, the perfor-

mance of the algorithm in convergence rate and accuracy is

not ideal. When compared with the SFSDE algorithm, the

DE/rand/2/bin operator standard DE algorithm has a final

convergence rate that deviates relatively far from the mini-

mum value of 0. The SFSDE algorithm converges fastest, as

indicated by the steepest descent of the star label curve in the
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Table 4 The results of Van

Genuchten parameters

calculated by different methods

Parameters LSNS DLS SPSO SFSDE

θs/cm3 · cm−3 3.63E−01 3.63E−01 3.59E−01 3.19E−01

θr /cm3 · cm−3 5.30E−02 5.30E−02 6.60E−02 6.59E−02

α 1.30E−02 1.40E−02 1.30E−02 1.27E−02

m 7.64E−01 7.62E−01 7.53E−01 7.53E−01

n 4.24E + 00 4.20E + 00 4.04E + 00 4.01E + 00

min( f ) 2.09E−03 3.82E−03 8.17E−04 7.54E−04

Table 5 Comparison of the MSE values for different methods

Types LSNS SPSO SFSDE

Silt loam dehumidification 430.8 83.8 81.37

Silt loam moisture

absorption

125.4 69.0 65.19

Sand loam dehumidification 169.6 48.6 51.26

Sand loam moisture

absorption

101.5 21.4 20.49

Gravel dehumidification 91.6 7.4 7.18

Gravel moisture absorption 24.3 13.8 14.72

figure, which is the fastest point in the four curves to reach

its optimum.

8 Conclusions

In this paper, the SFSDE algorithm is proposed to analyze the

local fitness landscape features in each population space, and

a self-feedback operation is used to iteratively select and eval-

uate mutation operators. Mixed strategies and self-feedback

transfer are combined to design a more efficient DE algorithm

and then enhance the search space, convergence rate and

accuracy. Finally, the proposed SFSDE algorithm is applied

to the optimization of soil water textures. The scope of the

experiments covers more comprehensive territory, includ-

ing a total of six texture types: silt loam dehumidification,

silt loam moisture absorption, sand loam dehumidification,

sand loam moisture absorption, gravel dehumidification and

gravel moisture absorption. According to the comparison of

the six types’ experimental and actual values (Table 3, 4 and

5), the θ̂ value obtained by the SFSDE algorithm is closer to

the actual θ̂ value, demonstrating that the SFSDE algorithm

is more effective.

To analyze the performance of the SFSDE algorithm in

parameter optimization of nonlinear complex equations more

comprehensively, this paper also compares the SFSDE algo-

rithm with the three mutation operators of the standard DE.

The experimental results in Table 6 show that the SFSDE

algorithm has the lowest fitness value among the four algo-

rithms, which indicates that the θ̂ value obtained by the

SFSDE algorithm is the closest to the actual value among

the four algorithms. Figures 2 and 3 illustrate that the SFSDE

algorithm has faster convergence and higher accuracy than

the DE algorithm using the other three mutation operators.

This result confirms once again that the SFSDE algorithm can

be used to calculate nonlinear complex equation parameters

with good performance.

By experimenting with the Van Genuchten equation to

verify the performance of the algorithm, we prove that the

proposed SFSDE algorithm can simplify the solution process

and provides a new way to calculate the parameters of the

Table 6 Comparison between the SFSDE algorithm and three standard DE algorithms by calculating Van Genuchten equation parameters for silt

loam

Types Solution methods θs θr α m n min( f )

Silt loam

Dehumidification DE/rand1/bin 0.366 0.054 0.014 0.643 4.197 1.266E−03

DE/rand/2/bin 0.359 0.066 0.013 0.751 4.011 7.542E−04

DE/current-to-best/1/bin 0.416 0.036 0.027 0.466 1.873 6.002E−03

SFSDE 0.359 0.066 0.013 0.753 4.053 7.540E−04

Moisture absorption DE/rand1/bin 0.361 0.053 0.014 0.683 3.151 1.551E−03

DE/rand/2/bin 0.356 0.059 0.013 0.758 4.130 8.569E−04

DE/current-to-best/1/bin 0.413 0.032 0.032 0.457 1.847 8.476E−03

SFSDE 0.352 0.063 0.013 0.813 5.336 6.205E−04
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Fig. 2 Iteration curves of the SFSDE algorithm for silt loam dehumid-

ification

Fig. 3 Iteration curves of the SFSDE algorithm for silt loam moisture

absorption

Van Genuchten equation. Our next work will be to optimize

the SFSDE algorithm for all aspects, and we believe the algo-

rithm can be generalized to solve a variety of other complex

optimization problems.
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