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Abstract—Joint energy consumption and trading management
is still a major challenge in smart (micro-) grids. The main
goal of solving such problems is to flatten the aggregate power
consumption-generation curve and increase the local direct power
trading among the participants as much as possible. Here, an
inclusive formulation for energy management and trading of a
Micro/Nano-grid (M/NG) is proposed. Subsequently, a holistic
solution to jointly optimizing the internal energy consumption
management and external local energy trading for a smart grid
including several M/NGs is provided. As the problem is com-
putationally intractable, the proposed approach involves three
hierarchical stages. Firstly, a game-theoretic online stochastic
energy management model is provided with a reinforcement
learning solution by which the M/NGs can schedule their power
consumptions. Secondly, an effective incentive-compatible double-
auction is formulated by which the M/NGs can directly trade with
each other. Thirdly, the central controller develops an optimal
power allocation program to reduce the power transmission loss
and the destructive effects of local energy trading. The simulation
results validate the efficiency of the proposed framework.

Index Terms—Double-auction, energy consumption manage-
ment, energy trading, micro/nano-grids, reinforcement learning.

I. INTRODUCTION

IT is well known that traditional power systems are unable

to efficiently respond to the growing demand for energy [1].

This motivates the study and adoption of smart Micro/Nano-

grids (M/NGs), which are autonomous small-scale power sup-

ply networks with distributed generation (including both con-

ventional and renewable energy generators and storage units

such as plug-in electric vehicles) and consumption (the local

electrical loads from residential, commercial, and industrial

consumers). The M/NGs are capable of meeting the growing

energy demand by sustaining the renewable energy resources

(RERs) in a reliable, efficient, and economical manner [2].

As the electric power cannot be stored in a large scale, a

significant part of the efforts in the smart grids are to match

the power supply trend to the load demand trend and fully

utilize the available capacity of the energy sources [3]. This is
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challenging because the load demand is highly time-varying

and hard to predict. Besides, emerging the RERs under the

outstretch of the use of distributed energy generation policies,

results in volatility and unpredictability of the supply side.

This is the point of weakness and prevents wide investment

on the renewable power generation and increases the number

of M/NGs. As a result, the power system has a low load factor

and is underutilized most of the time, while it is necessary to

increase the generation capacity to supply the high demand at

a short time peak demand [4].

To sustain the RERs and benefit from these green resources,

it is necessary to provide an effective joint supply and demand

sides energy management strategy between the prosumers

(producer-consumer) capable of local direct energy sharing.

There are various research directions for the energy consump-

tion scheduling and trading approaches [5]–[18].

A. Related Work

A dynamic pricing and energy consumption scheduling

program in the micro-grid was investigated in [5], where the

service provider acts as a broker between the utility company

and customers by purchasing electric energy from the utility

company and selling it to the customers. In order to overcome

the challenges of implementing such program under various

sources of uncertainties, reinforcement learning algorithms

was developed. Wang and Huang studied the interactions

among interconnected autonomous micro-grids in [6], and de-

veloped a joint energy trading and scheduling strategy. Another

energy trading framework based on the repeated game was

proposed in [7], that enables each micro-grid to individually

and randomly choose a strategy with probability to trade the

energy in an independent market so as to maximize his/her

average revenue. In [8]it is shown that the on-site wind power

generation of high-rise buildings can potentially support all

the electric vehicles in the city. Considering that the charging

demand of EVs usually does not align with the uncertain wind

power, the coordination of electric vehicle charging with the

locally generated wind power in a micro-grid of buildings

using a Markov decision process was investigated.

In [9], energy trading between smart grid prosumers and a

grid power company was studied. The problem was formu-

lated as a single-leader, multiple-follower Stackelberg game

between the power company and multiple prosumers. A de-

centralized energy trading algorithm that can be executed by

the entities in a real-time fashion was presented in [10]. To

deal with uncertainty issues, a probabilistic load model and
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a robust framework for renewable generation were proposed

in this work. Designing adaptive learning algorithms to seek

the Nash equilibrium (NE) of the constrained energy trading

game among individually strategic players with incomplete

information was discussed in [11]. In this game, each player

used the learning automaton scheme to generate the action

probability distribution based on his/her private information

for maximizing his own averaged utility. In [12], a decen-

tralized energy trading framework was implemented enabling

the independent system operators to incentivize the entities

toward an operating point that jointly optimize the cost of load

aggregators and profit of the generators, as well as the risk of

shortage in the renewable energy generation. To address the

uncertainties in the renewable resources, they applied a risk

measure called conditional value-at-risk (CVaR) with the goal

of limiting the likelihood of high renewable energy generation

shortage with a certain confidence level.

Bahrami et al. studied the users’ long-term load scheduling

problem in [13] developing an online load scheduling learning

algorithm based on the actor-critic method to determine the

users’ Markov perfect equilibrium (MPE) policy. The authors

of [14] investigated auction mechanisms for energy trading in a

smart multi-energy district, in which the district manager sells

electricity, natural gas, and heating energy to users as well as

trading with outer energy networks. According to feed-in-tariff

of photovoltaic (PV) energy, a system model of energy sharing

management (ESM) was introduced in [15], which included

the profit model of micro-grid operator (MGO) and the utility

model of PV prosumers. In [16] an energy-sharing model with

price-based demand response was analyzed for micro-grids

of peer-to-peer PV prosumers. A dynamical internal pricing

model was formulated for the operation of energy-sharing

zone, which was defined based on the supply and demand

ratio (SDR) of shared PV energy.

An energy storage (ES)-equipped ESM was developed in

[17] to facilitate the energy sharing of multiple PV prosumers.

In this work, the autonomous PV prosumers were formed as

an energy-sharing network, and the energy-sharing activities

were categorized as direct and buffered sharing. A day-ahead

scheduling model of the ESM was built using stochastic

programming to increase the operation profit and improve the

net power profile of the energy-sharing network considering

various types of uncertainties. The authors of the paper [18]

formulated a micro-grid energy trading game, in which each

micro-grid trades energy according to the predicted renewable

energy generation and local energy demand, the current battery

level, and the energy trading history. They presented a rein-

forcement learning based energy trading scheme that applied

the deep Q-network (DQN) to improve the utility of the micro-

grid for the case with a large number of the connected micro-

grids. In [19], the consensus alternating direction method of

multipliers (ADMM) algorithm is used to apply a novel cost

allocation policy in peer-to-peer electricity markets. In this

work the market participants have knowledge about the ISO

charges prior to the negotiation process enabling them to

anticipate on the network trade cost.

B. Our Contributions

However, there is still a lack of jointly designing energy

management and trading (EMT) mechanism to effectively

balance the uncertain supply fluctuations of the uncertain load

demands. To the best of our knowledge, this paper is the first

one in providing an EMT mechanism for the M/NG concern-

ing with maximizing the usage of local RERs, autonomous

direct energy trading with high efficiency, and minimizing the

power transmission losses, while characterizing the M/NGs’

equipment in detail. The main contributions are:

Establishing a joint energy consumption and trading

management: To promote sustainable development, i.e., using

the available generating capacity more efficiently, we enhance

the demand side management (DSM) technique, a tool for

load shaping that can redistribute (shifting some amount

of) the energy demand over a certain period, to match the

renewable power generation pattern. A novel supply-bidding

price function mechanism is designed which couples the

prosumers’ actions, encouraging them to cooperatively take

optimal decisions in the online EMT. A post-decision state

(PDS) reinforcement learning mechanism is developed as the

best response to the formulated distributed game-theoretic

DSM, to tackle the uncertainty in the resources for the system

operation.

Designing a novel hybrid iterative double-auction: In

different time, the prosumers may behave as sellers or buyers

depending on the electricity trading price and their net power

profiles. Sellers make profit by selling their surplus of energy

stored in storage devices such as electric vehicle batteries.

Buyers can save on their energy bill by buying energy from

their neighbors, instead of the grid, at a lower price, which

also decreases the load on the grid. As in the proposed

autonomous EMT framework the electricity trading price have

no predetermined1 standard value and is affected by many

circumstances at a specific time (e.g., amount of supply and

demand and the prosumers’ preferences), an auction model

has been used to clear the electricity market. A self-interested

simple, flexible, and scalable market auction has been designed

to guarantee the individual benefit and the global system

efficiency simultaneously. The proposed double-auction mech-

anism is practical as it has all the necessary features, i.e.,

incentive compatibility (IC), individual rationality (IR), and

budget balance (BB) [21].

Formulating a distributed optimal power allocation: Dur-

ing the local energy trading, substantial reverse power flow

from the prosumers to the substation can cause the voltage

magnitude of some of the households to exceed the upper

limit of the allowed voltage variation. This is referred to

as the voltage-frequency rise problem. The probability of

facing this problem increases when more users decide to

inject their excess generation via the main feeder into the

grid. This increases the loss and reduces the power quality

[22]. Therefore, the ability of users to route their excess

power directly to their neighbors reduces the probability of

voltage-frequency rises. At the final stage of the proposed

1Determining a predetermined fixed sell/buy price can reduce the interest
in the power trading among the M/NGs [20].
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EMT mechanism, an optimal power allocation is formulated

by which the prosumers deliver/receive energy to/from the

nearest neighbor in order to minimize the energy transmission

cost.

Notation: Throughout the paper, | · | denotes the cardinality

operator, [a]+ = max{a, 0}, E[·] denotes the expectation

operator, I(·) is the indicator function equal to one if is the

case and equal to zero otherwise, and Cartesian product of the

set is denoted by ×.

II. SYSTEM MODEL

Consider a smart grid with a set K of |K| = K

M/NG prosumers. Here, a prosumer can be a single resi-

dential/commercial/industrial entity (nano-grid), or a group

of components that act as a single demand response entity

(micro-grid) operating at both grid-connected and islanded

modes. Each prosumer k ∈ K potentially comprises of set

Ak of |Ak| = Ak power consumers (appliances), set Jk of

|Jk| = Jk distributed storage (DS) units (e.g., backup-battery-

banks (BBBs) and plug-in electric vehicles (PEVs)), and set

Mk of |Mk| = Mk conventional (fossil fuel) generators and

RER facilities (e.g., wind turbines, PV panels, and tidal en-

ergies) as well as an appropriate two-way power transmission

and communication lines connected with the other prosumers

and the main grid. Further, each prosumer has an energy man-

agement unit (EMU) responsible for managing, controlling,

and monitoring the operation of all the prosumer’s assets and

sharing the energy resources with the other prosumers or the

main grid, if needed. Also, there is an independent system

operator (ISO) responsible for coordination, monitoring, and

supervision of the prosumers’ interactions together and with

the main grid.

The overall energy consumption management and power

trading horizon (scheduling window) is denoted by H ,

{1, 2, · · · , H}, where H = |H| is the number of time-

slots with equal lengths2. We assume that the sequence of

time-slots h, ∀days = {0, 1, 2, · · · } is predetermined in

a deterministic manner and repeated every day, i.e., h =
mod(day, H), ∀days ≥ 0. To avoid ambiguity, hereafter, we

use index h ∈ H for a time-slot in general and use index τ

specifically for the current time slot at which the operations

are made. The main challenges of the EMU to take optimal

decisions are the uncertainty about the load demand, electricity

market prices, and renewable generation in the upcoming time

slots h > τ . So, to improve the performance, at the beginning

of the current time slot τ , each EMU updates its belief on the

state of the load demand and generated power of its own assets

(represented in Section III) and the price behavior (through

the learning mechanism formulated in Section IV) with the

gradual revealed demand/generation/price information over the

period Hτ = {τ, · · · , H} ⊆ H. At first, the EMU of each

prosumer k ∈ K should characterize its assets as follows:

2The duration of a period can be 5, 15, or 60 mins, based on the time
resolution at which the energy dispatch or the demand response decisions are
made.

A. Power Consumers (Appliances)

In general, the power consumers of prosumers k are clas-

sified into four categories Ak = Anf
k ∪ Alf

k ∪ Amf
k ∪ Ahf

k ,

namely, non-flexible Anf
k , low-flexible Alf

k , mid-flexible Amf
k ,

and high-flexible Ahf
k appliances. This classification is based

on the ability/flexibility to set the time and power consumption

rate of the electrical appliances and the total energy demand to

finish the obligated task. The non-flexible appliances (such as

refrigerator and television) are not schedulable as they need

to work with their nominal schedule with a predetermined

power/time of consumption. So, there is no authority to

manage their operations and they must consume the power

immediately. Low-flexible appliances have less strict operation

schedule in the sense that one can only manage the start point

of their operation time. On the other hand, for the mid-flexible

appliances, both the power consumption rate and the operation

time can be altered and interrupted. Unlike previous appliances

which need essential fixed energy demand for their task, in the

high-flexible class of appliances the tasks can be performed

with less energy or the whole task can be postponed to another

scheduling window.

For each appliance a ∈ Alf
k ∪ Amf

k ∪ Ahf
k of prosumer

k, we denote its power consumption at slot h by xk,a(h)
and its consumption profile through one scheduling window

H by xk,a , [xk,a(1), · · · , xk,a(H)]. Further, the operation

state at slot τ is denoted by sτk,a , (rk,a(τ), dk,a(τ)), where

rk,a(τ) is the number of remaining time slots to complete

the current task and dk,a(τ) = (βk,a − rk,a(τ)) − τ is

the number of time slots for which the current task can be

delayed, both updated at slot τ − 13. Each appliance a ∈ Ak

should accomplish its work within its own allowed scheduling

window Hk,a , {αk,a, · · · , βk,a} ⊆ H, where αk,a is the

declared time for operation of the appliance and βk,a is the

deadline by that the task of the appliance a must be finished.

The total load demand of the non-flexible appliances (called

the base-load) of prosumer k at slot h is denoted by l
nf
k,b(h).

However, depending on the preferences of the prosumer, an

appliance can be put into the non-flexible category in one day

and as other categories in another day.

Low-flexible appliances: Washing and drying machines are

examples of low-flexible appliances. Delaying their operations

incurs significant dissatisfaction level, which is modeled by an

incommodity cost with a non-decreasing and convex function

f lf (·). These appliances consume a fixed amount of energy

at each slot. Further, once the operation of these appliances

are started, they must continuously work until their tasks

is finished. The incommodity obtained from scheduling the

operation of these appliances depends on the operation time

and defined as C
lf
k,a(xk,a) =

∑βk,a

h=αk,a
δ
lf
k,a(h)f

lf (xk,a(h) −

xdes
k,a(h)), with the desired power consumption xdes

k,a(h) de-

clared for slot h before the scheduling program and time

dependent non-negative non-decreasing coefficients δ
lf
k,a(h).

Mid-flexible appliances: These kinds of appliances (such

as water pump) are more flexible in the sense that they

may consume a fixed or regulated power and their opera-

3See [13], [23] for the detailed description of updating the state of different
appliances over time.
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tion can be interrupted. For these appliances, both delaying

the operation time and the number of interruptions impose

some inconveniences. So, we propose the incommodity cost

C
mf
k,a (xk,a) =

∑βk,a

h=αk,a
δ
mf
k,a (h)f

mf (xk,a(h) − xdes
k,a(h)) +

δ́
mf
k,a g

mf (
∑βk,a

h=αk,a
γk,a(h)), where fmf (x) and gmf (x) are

some non-decreasing convex functions. The auxiliary variable

γk,a(h) captures the number of interruptions (i.e., γk,a(h) = 1

if appliance a of prosumer k is turned on at slot h.), δ
mf
k,a (h)

is a time dependent non-negative non-decreasing coefficient,

and δ́
mf
k,a is a fixed coefficient.

High-flexible appliances: These kinds of appliances (such

as pool pump) have regulated power consumption and

non-vital energy need. The incommodity C
hf
k,a(xk,a) =

δ
hf
k,af

hf (Emax
k,a −

∑βk,a

h=αk,a
xk,a(h)) obtained via the operation

of these appliances depends only on the total power con-

sumption at the end of the deadline βk,a, where δ
hf
k,a is a

fixed coefficient and Emax
k,a is the maximum desired energy

the prosumer needs to be consumed by appliance a.

To schedule the appliances of prosumer k, his EMU is faced

with the following constraints:

xk,a(h) = 0, ∀ h /∈ Hk,a, a ∈ A
lf
k ∪ A

mf
k ∪ Ahf

k ,

xmin
k,a ≤ xk,a(h) ≤ x

max
k,a , ∀ h ∈ Hk,a, a ∈ A

mf
k ∪ Ahf

k ,

xk,a(h) = xratk,a · γk,a(h), ∀ h ∈ Hk,a, a ∈ A
lf
k ∪ A

mf
k ,

βk,a
∑

h=αk,a

γk,a(h) = 1, ∀ a ∈ Alf
k ,

βk,a
∑

h=αk,a

γk,a(h) ≥ 1, ∀ a ∈ Amf
k ,

βk,a
∑

h=τ+1

xk,a(h) = Edes
k,a − E

τ
k,a, ∀ a ∈ A

lf
k ∪ A

mf
k ,

Emin
k,a − E

τ
k,a ≤

βk,a
∑

h=τ+1

xk,a(h) ≤ E
max
k,a − E

τ
k,a, ∀ a ∈ A

hf
k

(1)

where Eτ
k,a =

∑τ
h=αk,a

xk,a(h), x
min
k,a and xmax

k,a are respec-

tively minimum and maximum power rate of high-flexible

(and possibly mild-flexible) appliances, xratk,a is the rated power

consumption of low-flexible (and possibly mid-flexible) ap-

pliances, Edes
k,a is the desired fixed amount of energy the

appliance a ∈ Alf
k ∪ A

mf
k must consume before the deadline

βk,a, which for appliances a ∈ Ahf
k it is in the tolerable range

[Emin
k,a − E

max
k,a ].

The first line of (1) implies that none of the appliances

can consume power out of its scheduling windows Hk,a,

the fourth line ensures that the low-flexible appliances have

a continuous working period, and the fifth line allows the

mid-flexible appliances to have discrete power consumption

pattern. At slot τ , the possibility of applying the DSM

policies on the appliances is determined based on the state

sτk,a(rk,a(τ), dk,a(τ)) of each appliance a updated through the

two last lines of (1). To evaluate the potential possibility of

DSM, the EMU divides all the appliances into two groups

denoted by the sets Aact
k and Apas

k according to their states. For

example, all the non-flexible appliances are always in group

Apas
k , while low/mid/high-flexible appliance are in group Apas

k

when βk,a − τ < rk,a(τ) + 1 (i.e., dk,a(h) < 1) or when a

mid-flexible appliance start working, it moves to this list. By

updating the state sτk,a(rk,a(τ), dk,a(τ)) of each appliance a,

the EMU rearranges the appliances which can be scheduled

in group Aact
k and the load must be supplied into group Apas

k .

Further, those challenging appliances which are not sent their

state signal are considered to be in the set of off appliances

Aoff
k for capturing the uncertainty of the load demand.

B. DS Units

Devices with storing capability have an important role in the

EMT program. The DS units do not only help to balance the

operation of networks with high RER penetration, but also they

contribute to an overall improvement of the system efficiency

and smoothing of the frequency and voltage fluctuations [24].

To use the potential of each DS unit j ∈ Jk in the EMT

program, the EMU is subject to the following constraints:

βk,j
∑

h=τ+1

(

ηck,jx
c
k,j(h) +

xdk,j(h)

ηdk,j

)

= Edes
k,j − (Ek,j(τ) + E0

k,j),

Ek,j(τ) = Ek,j(τ − 1) + ηck,jx
c
k,j(τ)−

xdk,j(τ)

ηdk,j
,

Emin
k,j ≤ Ek,j(h) ≤ E

max
k,j , ∀ h ∈ Hk,j , E

lb
k,j ≤ E

des
k,j ≤ E

ub
k,j ,

xck,j(h) · x
d
k,j(h) = 0, ∀ h ∈ Hk,j ,

xck,j(h) + xdk,j(h) = 0, ∀ h /∈ Hk,j (2)

where Ek,j(τ), E
0
k,j , Emin

k,j , and Emax
k,j are the energy level at

the end of slot τ , initial energy level, minimum acceptable

energy level, and the storage capacity, respectively. Hk,j ,

[αk,j , · · · , βk,j ], with αk,j and βk,j denoting the first and last

slots the DS unit j is available4 to the EMU of prosumer

k, and coefficients ηck,j , η
d
k,j ∈ (0, 1] denote charging (with

rate xck,j(h) ≥ 0) and discharging (with rate xdk,j(h) ≥ 0)

efficiencies, respectively. Usually, there is a desirable energy

level Edes
k,j each unit needs to consume before becoming

unavailable to the EMU. For example, a PEV owner needs

his PEV to have some level of energy for his trip before the

departure at slot βk,j , or sometimes it is necessary for the

BBB to have some initial backup energy level before starting

the next scheduling horizon. Such requirements are satisfied

through the first dynamic equation in (2). The energy level

evolution of the DS unit follows the second line of (2) and the

energy level bounds and the tolerable deviations are provided

in the third line. Further, the fourth and fifth lines imply that

the DS unit cannot be charged and discharged at the same

time and cannot be charged/discharged when is unavailable to

the EMU, respectively. In particular, if we are going to use

a DS unit only as a power resource (like the RERs), we can

just let Edes
k,j = 0 and we have xck,j(h) = 0 and xdk,j(h) > 0. In

this case, the second line of (2) denotes that the part
xd
k,j(τ)

ηd
k,j

is subtracted from the energy level Ek,j(h) of the DS unit at

each slot h. we can consume all the energy stored in the DS

unit according to the first dynamic equation in (2) by letting

Emin
k,j = 0.

4For appliances such as PEVs which also have their own individual tasks,
βk,j is the deadline similar to that in Section II-A.
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To maximize the lifetime of DS unit, it is necessary

to consider a cost function Cds
k,j(x

c
k,j(h), x

d
k,j(h), Ek,j(h)) =

ψr
k,jf

ds
(

xck,j(h)+x
d
k,j(h)

)

+ψf
k,jg

ds
(

Ek,j(h)−Ek,j(h−1)
)

+cfixk,j

for its operation, with some non-decreasing convex functions

fds(·) and gds(·), and some non-negative weights ψr
k,j and ψf

k,j .

The first term is the cost due to the charging/discharging rate,

the second term is the cost due to the fluctuation of energy

level, and cfixk,j is the fixed investment and maintenance cost.

C. Power Resources

The future generation of RERs on the M/NG level will

rely on the wind turbines and photovoltaic technologies [24].

So, we assume the prosumers have access to such energy

sources somehow, and there is possibility for some prosumers

to reserve diesel generators.

Diesel generator: The output of generator m ∈Mdg
k ⊆Mk of

prosumer k for slot h is denoted by P dg
k,m(h) with the following

minimum Pmin
k,m and maximum Pmax

k,m generation limit:

Pmin
k,m ≤ P

dg
k,m(h) ≤ Pmax

k,m (3)

The common cost function for the conventional generators is

the quadratic cost function Cdg
k,m(P dg

k,m(h)) = am(P dg
k,m(h))2 +

bmP
dg
k,m(h) + ck,m, with non-negative coefficients am and bm,

and a fixed operational cost ck,m [25].

Photovoltaic panel: The PV power generators of the pro-

sumer k are denoted by m ∈Mpv
k ⊆Mk. Assuming operation

at maximum power point tracking (MPPT), the output power

P pv
k,m(h) of the PV unit m of prosumer k is [26]:

P pv
k,m(h) = ηpvk,m ·A

pv
k,m ·R

pv
k,m(h) (4)

where ηpvk,m is the PV panel efficiency, Apv
k,m is the panel

area, and Rpv
k,m(h) = Ici(h) · Rmax

si is the solar irradiation at

slot h, with the clearness index Ici(h) and the extraterrestrial

solar radiation Rmax
esi . The extraterrestrial solar radiation is

approximated as Rmax
esi = Isc(1 + 0.033 cos(360t/365)) sinα(h),

with sinα(h) = sinφ sin γ + cosφ cos γ cosω(h), where Isc
is a solar constant, t is the day of a year, α(h) is the

altitude of the sun, φ is the latitude, γ is the declination

of the sun, and ω(h) is the hour angle [27]. The clearness

index Ici(h) at each slot h denotes an index that any ex-

traterrestrial solar radiation tolerates by the natural factors

such as cloud and temperature. Using Beta distribution, the

probabilistic fluctuation of the clearness index is described as

pci(Ici(h)) =
(

Γ(a+b)/Γ(a)Γ(b)
)

[Ici(h)]a−1[1−Ici(h)]b−1, with

a =
(

(µsr)2(1 − µsr)/(σsr)2
)

− µsr, b = a(1 − µsr)/µsr, and

gamma function Γ(·), where µsr and σsr are the mean value

and standard deviation of solar radiation supply computed

according to the weather historical data, respectively [27].

Wind turbine: Let Mw
k ⊆ Mk denote the set of all wind

turbines belonging to prosumer k. The power output of each

turbine m ∈ Mw
k is calculated based on the wind speed

and the wind turbine power coefficient obtained from the

basic expression Pw
k,m(h) = ρ/2 · ηwk,m · A

w
k,m · [vk,m(h)]3,

where ρ is the air density, ηwk,m is the power coefficient,

Aw
k,m is the swept area of the wind rotor, and vk,m(h) is

the wind speed (m/s) at the site of turbine m [26]. Since

the wind generation output varies with wind speed, a prob-

abilistic fluctuation analysis of wind speed can effectively

handle the uncertainty of the wind generation. The wind speed

fluctuations can be characterized using Weibull distribution

pw(vk,m(h)) = (a/b)(vk,m(h)/b)a−1 exp(−(vk,m(h)/b)a), with

a = (σw/µw)−1.086 and b = µw/Γ(1 + a−1), where, µw and

σw are the mean value and standard deviation of wind speed

based on the observed value, respectively [27]. Accordingly,

the output power of wind turbine m corresponding to its rated

power P rat
k,m (kW) is described as:

Pw
k,m(h) =















fw(vk,m(h)), vink,m ≤ vk,m(h) ≤ vratk,m

P rat
k,m, vratk,m < vk,m(h) ≤ voutk,m

0, otherwise

(5)

where fw(vk,m(h)) = P rat
k,m[(vk,m(h))3 − (vink,m)3]/[(vratk,m)3 −

(vink,m)3] is the cubic function which yields the wind power

[28], or we can let fw(vk,m(h)) = P rat
k,m(vk,m(h)/vratk,m)3 ac-

cording to [8], where vink , voutk , and vratk are the cut in, cut

out, and rated speed (m/s) of wind turbine m of prosumer k,

respectively.

III. PROBLEM FORMULATION

In the online deterministic formulation of the EMT problem,

there are three uncertainty sources; 1) the upcoming load de-

mand of appliance a ∈ Aoff
k of the prosumer and its scheduling

capability (i.e., if they are in group Aact
k or group Apass

k ), 2) the

total generated power from the RERs at the upcoming slots,

and 3) the electricity market selling/buying price which are

challenging problems. In this section, we handle 1) and 2) and

formulate the global social welfare maximization problem, and

provide a game-theoretic reinforcement learning mechanism to

tackle 3) in the next section.

At slot τ , the EMU of prosumer k has no information about

the type and state of appliances a ∈ Aoff
k , since the actual load

of these appliances and their operation time are not known

in advance. So, it is impossible to deterministically group

the appliances a ∈ Aoff
k into non-schedulable group Apas

k or

schedulable group Aact
k . To address the lack of information,

one can collect the operation time/amount historical data

record of each appliance for estimating the probability papk,a(h)

that each appliance a ∈ Ak sends the state signal at each

time slot h > τ . The conditional probability papk,a(h|τ) that the

appliance a ∈ Aoff
k goes on in an upcoming time slot h > τ ,

given that it has been off before the current time slot, τ , is

[10]:

papk,a(h|τ) =
papk,a(h)

1−
∑τ

t=1 p
ap
k,a(t)

(6)

The most conservative decision results from considering the

worst-case scenario, in which the electric appliances that send

a demand signal in the upcoming time slots h > τ , are all

located in group Apass
k , i.e., must consume power immediately.

Accordingly, the total base-load of prosumer k at slot h is

updated as lk,b(h) = lnf
k,b(h) + lpask,b (h) + loffk,b (h), where lpask,b (h)

is the load caused by moving appliance a from group Aact
k to

group Apas
k (when dk,a(h) = 0), and the expected worst-case
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electric demand loffk,b (h) is calculated as:

loffk,b (h) =
∑

a∈A
off
k

xratk,a

[ h
∑

t=max{τ+1,h−̟k,a+1}

papk,a(t|τ)

]

(7)

where parameter ̟k,a = rk,a(0) and xratk,a are the operation

duration and the rated power consumption of the appliance a ∈

Aoff
k that goes on in upcoming time slot h > τ and operate im-

mediately with the probability
∑h

t=max{τ+1,h−̟k,a+1} p
ap
k,a(t|τ)

[10].

To tackle the RER generation uncertainty, using PV model

(4), wind generation model (5), and the historical data records,

we can forecast the joint uncertainty power output bound

[Pmin
k,rer(h), P

max
k,rer(h)] of all the RER units of prosumer k at each

slot h. However, providing an EMT strategy by taking into

account all possible scenarios P rer
k (h) =

∑

m∈M
pv
k
P pv
k,m(h) +

∑

m∈Mw
k
Pw
k,m(h) ∈ [Pmin

k,rer(h), P
max
k,rer(h)] is very conservative

and possibly inefficient. One can consider an adaptive robust

model by defining the uncertainty space for the joint genera-

tion profile P
rer
k (τ) = [P rer

k (τ), · · · , P rer
k (H)] of the RER units

of prosumer k at slot τ through the upcoming slots Hτ as [29]:

Prer
k (τ) = {P rer

k (τ)|P rer
k (h) ∈ [Pmin

k,rer(h), P
max
k,rer(h)],

h ∈ Hτ ,
∑

h∈Hτ

Pmax
k,rer(h)− P

rer
k (h)

Pmax
k,rer(h)− P

min
k,rer(h)

≤ ∆k(τ)}
(8)

where [0 (least-conservative) ≤ ∆k(τ) ≤ |H
τ | (most-conservative)]

is the confidence level parameter which should be optimized

by prosumer k [10]. To encourage the prosumers to have

good power generation evaluations and reasonable offers to the

system by implementing the robust model (8), the ISO charges

them by the unit price ρgs(h) ($/MW) for the generation

shortage in time slot h. According to the cost imposed by

prosumer k due to the power shortage becomes5:

Crer
k (P rer

k (τ)) =
∑

h∈Hτ

ρgs(h)[P
rer
k (h)− P̆ rer

k (h)]+ (9)

where P̆ rer
k (h) is the actual renewable generated power. It is

clear from (9) that the least-conservative decision, ∆k(τ) =

0 (i.e., offering P rer
k (h) = Pmax

k,rer(h)), can impose the most

possible penalty to prosumer k.

So, the aggregate cost imposed on prosumer k at slot h is

defined as:

Ck(h) =
∑

a∈A
lf
k

Clf
k,a(xk,a) +

∑

a∈A
mf
k

Cmf
k,a (xk,a)

+
∑

a∈A
hf
k

Chf
k,a(xk,a) +

∑

j∈Jk

Cds
k,j(x

c
k,j(h), x

d
k,j(h), Ek,j(h))

+ Cdg
k,m(P dg

k,m(h)) + Crer
k (P rer

k (h)) (10)

Further, prosumer k is subject to the following power balance

constraints to maintain the stability of the power system at

each slot:

xslk (h) + xbyk (h) = lapk (h) + ldsk (h)− Pk(h) (11)

where xslk (h) < 0 and xbyk (h) ≥ 0 are the total power to be sold

(due to the power surplus) and to be bought (due to the power

5Without loss of generality, we have not considered the investment, oper-
ation, and maintenance costs of the RERs.

deficit), respectively. The aggregate power consumption by all

appliances a ∈ Ak of prosumer k is denoted by lapk (h), the net

charge (≥ 0) or discharge (< 0) profile of all the DS units

j ∈ Jk by ldsk (h), and the aggregate generated power from all

the available sources m ∈Mk by Pk(h). Accordingly, the total

revenue prosumer k acquires from the energy trading is:

Rk(h) = ρsl(h)[Pk(h)− l
ds
k (h)− lapk (h)]+

− ρby(h)[l
ap
k (h) + ldsk (h)− Pk(h)]

+ − Ctr
k (h) (12)

where ρsl(h), ρby(h), and Ctr
k (h) are the selling price, the buy-

ing price, and the transmission cost, respectively. Accordingly,

the global social welfare maximization problem can be defined

as:

max
∑

h∈H

W iso(h) =
∑

h∈H

∑

k∈K

(

Rk(h)− Ck(h)
)

,

subject to: (1)− (3), (11), and P
rer
k (h) ∈ Prer

k (τ), ∀ k ∈ K,

variables: {xk,a(h), γk,a(h), x
c
k,j(h), x

d
k,j(h), x

sl
k (h), xbyk (h),

P dg
k,m(h), P rer

k (h), ρgs(h), ρby(h), ρsl(h)}, ∀ k ∈ K (13)

The EMT problem in (13) is a mixed-integer nonlinear non-

convex NP-hard optimization problem. Centrally solving this

problem by the ISO bears major challenges such as; 1)

imposing a huge communication and computational burden

to the ISO, 2) putting into danger the prosumers’ privacy as

all the prosumers’ information must be available to the ISO,

3) reducing the reliability of the system due to creating the

critical single point of failure6, 4) reducing the incentives for

the prosumer to participate in the EMT program as the ISO

decides on the traded power and selling/buying prices with the

possibility of cheating and reducing the prosumers’ revenue.

IV. PROPOSED DISTRIBUTED-HIERARCHICAL

FRAMEWORK

To tackle the existing challenges, we decompose problem

(13) into three hierarchical sub-problems, i.e., the DSM prob-

lem (as the internal problem) and the energy trading and power

allocation problems (as external problems).

A. Optimal DSM

To separate the internal DSM part of problem (13), it is

necessary for the ISO to provide the prosumers with some

supply-function bidding, representing the lower and upper

bound of the transactions selling/buying prices. To encourage

the prosumer for maximum possible local energy trading, it

is reasonable to consider the highest/lowest buying/selling

price for procuring/selling power from/to the main grid. Ac-

cordingly, it is expected that the lowest transaction cost is

achieved when all the prosumers’ load demands are satisfied

locally. The supply function as a strategic variable allows

to adapt better to changing the market conditions (such as

uncertain and stochastic load demand and renewable power

generation) than committing to keeping a price or quantity

fixed. That is because no matter what the value of the supply

6A single point of failure (SPOF) is a part of system that, if it fails, will
stop the entire system from working. So, in the centralized solution, if the
ISO (which is the SPOF) fails, the whole system stops working.
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deficit/surplus is, the ISO can apply the supply function bid to

the prosumers to clear the deficit/surplus [30]. It also respects

practical informational constraints in the power network, as a

properly-chosen parameterized supply function controls the in-

formation revelation [31]. Our model also prevents prosumers

from selling more power at slots with very low demand by

reducing the selling price and vice versa. So, each prosumer

can approximate his individual effectual price ρeffk (h) as:

ρeffk (h) = ρk(h) + fwsp(
∑

k∈K

xslk (h) +
∑

k∈K

xbyk (h)),

ρk(h) = [υk(h)/x
net
k (h)]ρmcp(h) + [(1− υk(h))/x

net
k (h)]

[ρbyiso(h)I(x
by
k (h)) + ρsliso(h)I(x

sl
k (h))] (14)

where fwsp(·) is a supply-function bidding, υk(h) is the portion

of energy directly traded with the other prosumers, ρmcp(h) is

the local electricity trading price (called the market clearing

price (MCP)), and ρbyiso(h) and ρsliso(h) are the prices of buying

and selling power from/to the ISO, respectively. We know

that if
∑

k∈K x
sl
k (h) =

∑

k∈K x
by
k (h), then, there is no need

for the ISO to trade power with the wholesale market, which

subsequently affects the prosumers’ payments. The actual

value of ρeffk (h) is not known to prosumer k in advance

and depends on the scheduling and trading decisions of all

the prosumers and the realizations of random events (e.g.,

the power generation from RERs and the load demand). For

example, when the RER power generation is high and most

of the prosumers have surplus energy, two factors reduces

the chance of selling power with high price for all the

prosumers as xslk (h) < 0 increases. 1) The supply-function

bidding fwsp(·) reduces. 2) The chance of trading power with

high MPC price ρmcp(h) reduces and the chance of trading

power with low prices ρbyiso(h) and ρsliso(h) increases as υk(h)

reduces. These factors encourage the prosumers to store the

surplus energy in their DS units as much as possible and

sell it in another time. This behavior helps smoothing the

power consumption/trading curves and alleviating the voltage

and frequency fluctuation problems. So, the natural choice to

model these interactions is the game theory. As in the game-

theoretic model the best response is the dominant strategy

(or strategies) which produces the most favorable outcome

for the prosumers [32], we assume that each prosumer k has

access to information x
net
−k (h) =

∑

n∈K/k

(

xsln (h)+xbyn (h)
)

and

decides to best respond to it, resulting to an equilibrium [33].

Accordingly, we can define the DSM objective function of

each prosumer k at slot h as:

Cdsm
k (Sk(h)) = ρeffk (h)[xslk (h)+xbyk (h)+x

net
−k (h)]+Ck(h) (15)

where Sk(h) ∈ S
h
k is the state of prosumer k at slot h de-

termined according to [sτk,a(rk,a(τ), dk,a(τ))]a∈Ak
and x

net
−k (h),

the state of the charge of the DS units, the power produced

from the power resources, and the prosumer attitude (e.g.,

belief on the worthiness of price ρmcp(h)). The feasible state

set S
h
k = Ak × Jk × Mk × Pk is constructed of Ak (feasible

state of appliances according to constraints in (1)), Jk (feasible

state of the DS units according to constraints in (2)), Mk

(feasible state of the power resources according to constraint

(3), (11), and P
rer
k (h) ∈ Prer

k (τ)), and Pk (feasible state of

the effectual price (14) according to the personal historical

data of the customer k’s payment). To take the best response,

the constraints in (1) and (2) temporarily couple the prosumer

decision through the scheduling horizon H. So, the challenge

is to understand how a current action/state will affect the

future profits, meaning that, for scheduling the equipment, the

prosumer must infer (trade-off) that consuming/buying/selling

power in the current slot is more profitable or the next slots.

On the other, the decision making only depends on the belief

of the effectual price ρeffk (h) and the state Sk(h), while it is

independent of the time slot index. We propose using post-

decision state reinforcement learning for each prosumer to

foresee the change of the effectual price, learn his action, and

determine the best response over the time [5]. A good way

to model this task is with Markov decision processes (MDP),

which is the dominant approach in the reinforcement learning

theory [34].

As a decision maker, each prosumer chooses an energy

consumption function E
h
k at each time-slot h among the set

of energy consumption functions Ehk = {Ek,1, Ek,2, · · · , Ek,Ek
}.

Then, the actual energy consumption profile of prosumer k

which is constructed of concatenating all the decision variables

{xk,a(h), γk,a(h), x
c
k,j(h), x

d
k,j(h), P

dg
k,m(h)}, i.e., Xk(h), is cal-

culated based on the energy consumption function E
h
k and the

prosumer’s state Sk(h), i.e., Xk(h) = E
h
k (S h

k ).

The prosumer k decides its energy consumption function

E
h
k based on the observation of its state S

h
k ∈ S

h
k . We denote

prosumer k’s stationary policy that maps its state sets S
h
k to

the action sets Ehk by πk : S
h
k → Ehk , i.e., E

h
k = πk(S

h
k ).

Accordingly, the prosumer aims to solve the following MDP

learning problem which aims to minimize the expected long-

term (discounted) cost in the upcoming time slots [35]:

min
πk:S

h
k
→Eh

k

E

[

∞
∑

h=τ

γh
kC

dsm
k (S h

k )
]

(16)

where the discount factor 0 ≤ γh
k ≤ 1 can be used to

characterize a wide range of the prosumers’ behavior and

the expectation is with respect to the demand and generation

uncertainties in the upcoming time slots. When γh
k is close

to zero, the prosumers are myopic, i.e., they aim to minimize

their short-term cost without considering the consequences of

their short-term policy on their future cost and vice versa.

In the previous section, we provided a mechanism for the

prosumers to estimate (and update) their load demand and

generated power for the next slots. In order to exploit this

available information for improving the learning accuracy and

speed, we develop PDS learning algorithm to exploit the

available information about the system which is revealed slot-

by-slot [5]. We define prosumer k’s PDS as the state where

the known information is reflected based on prosumer k’s

decision on E
h
k , but the unknown information is not reflected.

Accordingly, we denote prosumer k’s PDS at time-slot h by

S̄ h
k (Xk(h + 1), h + 1, E h

k ) ∈ S
h
k . To solve the MDP problem

(16), the state transition probability from S
h
k to S

h+1
k is:

p(S h+1
k |S h

k , E
h
k ) =

∑

S̄h
k
∈Sh

k

pkn(S̄ h
k |S

h
k , E

h
k )pun(S

h+1
k |S̄ h

k )

(17)
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where pkn(·) and pun(·) denote the known and unknown prob-

abilities, respectively [5]. The optimal PDS policy π̄k
∗(S̄ h

k )

can be well defined by using the optimal action-value function

Q∗ : S
h
k × E

h
k → R, which satisfies the Bellman optimality

equation7:

Q∗(S h
k , E

h
k ) = r(S h

k , E
h
k ) + γ

∑

Śh
k
∈Sh

k

p(Ś h
k |S

h
k , E

h
k )V ∗(Ś h

k )

(18)

where V ∗(Ś h
k ) = min

Eh
k
∈Eh

k
Q∗(Ś h

k , E
h
k ), ∀S h

k ∈ S
h
k is the

optimal state-value function and r(S h
k , E

h
k ) is the reward

observed for the current state S
h
k [36]. As the action-state

space in our stochastic MDP problem is potentially huge

(continuous), to guarantee the convergence, one can apply

a recursive equation with a suitable learning rate (step-size)

αk(h) to approximate the value of Q function as follows [37]:

Q(S h
k , E

h
k )← (1− αk(h))Q(S h

k , E
h
k ) +

αk(h)
[

r(S h
k , E

h
k ) + γh

k max
Éh
k
∈Eh

k

Q(Ś h
k , É

h
k )

] (19)

where max
Éh
k
∈Eh

k

Q(Ś h
k , É

h
k ) is an estimate of the optimal

future value. A detailed analysis for choosing optimal (step-

size) αk(h) for different MDPs are drawn in [38]. Using the

Bellman optimality equation and (19), the state value functions

of prosumer k’s state, the PDS, and the optimal PDS policy

becomes:

V̄ ∗(S̄ h
k ) = γh

k

∑

Śh
k
∈Sh

k

pun(Ś h
k |S̄

h
k , E

h
k )V ∗(Ś h

k )

V ∗(S h
k ) = min

Eh
k
∈Eh

k

[

Cdsm
k (S h

k ) +

∑

S̄h
k
∈Sh

k

pkn(S̄ h
k |S

h
k , E

h
k )V̄ ∗(S̄ h

k )
]

π̄k
∗(S̄ h

k ) = argmin
Eh
k
∈Ek

[

Cdsm
k (S h

k ) +

∑

S̄h
k
∈Sh

k

pkn(S̄ h
k |S

h
k , E

h
k )V̄ ∗(S̄ h

k )
]

(20)

where, as we show in Section V, by exploitation of the

known parts of probability pkn(·) and updating the information

about S
h
k the learning accuracy and speed are improved

compared to the conventional Q-learning algorithm [37]. In

the adopted learning method, the exploration parameter ǫ of

ǫ-greedy is adaptively chosen corresponding to the temporal-

difference error observed from value-function backups, which

is considered as a measure of the prosumer’s uncertainty about

the environment. Balancing the ratio between exploration and

exploitation, i.e., choosing appropriate ǫ, is one of the most

challenging tasks in the reinforcement learning with great

impact on the prosumer’s learning performance. In one hand,

too long exploration prevents the prosumer from maximizing

short-term reward because the selected exploration actions

may yield negative reward from the environment. On the

7It is a necessary condition for optimality associated with the dynamic
programming methods. It writes the value of a decision problem at a certain
point in time in terms of the payoff from some initial choices and the value
of the remaining decision problem that results from those initial choices. This
breaks a dynamic optimization problem into simpler sub-problems [36].

other hand, exploiting uncertain environment knowledge pre-

vents maximization of long-term reward since the selected

actions may remain suboptimal. This problem is well known

as the dilemma of exploration and exploitation [34]. The

desired behavior is to have the prosumers more explorative

in situations where the knowledge about the environment is

uncertain, i.e. at the beginning of the learning process, which

is recognized by large changes in the value function. Then,

the exploration rate should be reduced as the prosumer’s

knowledge becomes certain about the environment, which

can be recognized as very small or no changes in the value

function. As an alternative we can adopt an adaptive value-

difference-based ǫ-greedy exploration, according to a Softmax-

Boltzmann distribution of the value-function estimates similar

to that in [39].

B. Optimal Energy Trading

After scheduling the internal energy consumptions (i.e., the

DSM part), the prosumers with xnet
k (h) = xslk (h) + xbyk (h) < 0

and xnet
k (h) > 0 participate in the energy trading stage as

the sellers and buyers, respectively. The ISO as an auctioneer

classifies them into set S of S = |S| sellers and set B of

B = |B| buyers. At this stage, each potential seller s ∈ S sends

the quantity of energy xsls (h) that it intends to supply and its

reservation bid ρsls to the auctioneer (ISO). The reservation

bid sent by the potential sellers corresponds to the minimum

price at which the seller is willing to sell its offered amount of

energy. On the other side, each potential buyer b ∈ B proposes

a bid ρbyb and the quantity it requests, denoted by xbyb (h) to the

auctioneer. As the MPC price ρmcp(h) and its lower and upper

bounds [ρbyiso(h) − ρ
sl
iso(h)] depend on the prosumers’ actions,

for optimally determining the parameters ρsls and ρbyb , one can

develop a game-theoretic competition among the prosumers

similar to [23]. However, the proposed trading structure must

have the following necessary economic properties to be a

legitimate double auction mechanism:

1) Truthfulness or incentive compatibility (IC): The bidders

cannot benefit from bidding different from their true valuation,

i.e., cheating always harms. 2) Individual rationality (IR):

Bidders get non-negative utilities, i.e., the sellers are paid

no less than what they ask for and buyers do not pay more

than their bids. 3) Budget-balance (BB): The total amount

paid to the sellers is no more than the total amount received

from the buyers. This prevents the auctioneer, who runs the

auction, from losing money. 4) Efficiency or social welfare:

The aggregate profit acquired by the prosumers from partici-

pating in the energy trading market. To achieve the maximum

efficiency, the power should be sold to the buyers at the lowest

price and bought from the sellers at the highest price, while

minimizing the number of losers. In [21], it is shown that

it is impossible for an auction mechanism to maximize the

social welfare whilst being IR, IC, and BB at the same time.

So, for the auctioneer to maintain the BB property in an

IR and IC mechanism, it is necessary to compromise on the

optimality of the social welfare as the IR and IC properties are

essential. Thus, in this paper, we aim to retain features IR, IC,

and BB, while achieving high (but not maximum) efficiency.
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To satisfy the mentioned properties, we develop our hybrid

double-auction mechanism as follows:

1) The sellers are ordered in an increasing order of their

reservation price ρsl1 < ρsl2 < · · · < ρslS ; 2) the buyers are

ordered in a decreasing order of their reservation bids ρby1 >

ρby2 > · · · > ρbyB ; 3) if two sellers (respectively, buyers) have

equal reservation prices (bids), they are aggregated into one

single virtual seller (or buyer); 4) we consider the ISO as a

virtual buyer/seller with the lowest buy ρbyiso(h) and the highest

sell ρsliso(h) prices, make the balance in the energy trading

marker (e.g., trade with the losers and supply the aggregate

excess demand if
∑

b∈B x
by
b (h) +

∑

s∈S x
sl
s (h) > 0 or buy the

aggregate surplus of energy if
∑

b∈B x
by
b (h)+

∑

s∈S x
sl
s (h) < 0)

by procuring/selling some power from/to the wholesale market

at the deficit/surplus of energy.

Following this sorting process, the supply curve (sellers’

bids [ρsls ]s∈S as a function of their energy amounts [xsls (h)]s∈S)

and the demand curve (buyers’ bids [ρbyb ]b∈B as a function

of their load demands [xbyb (h)]b∈B) can be generated. These

two curves intersect at a point that corresponds to a given

seller L and buyer M with bids ρbyM ≥ ρslL . This intersection

point is easily computed using routine numerical and graphical

techniques [40]. Once we determine the seller L and a buyer

M at the supply and demand intersection point, double auction

theory implies that L − 1 and M − 1 buyers will practically

participate in the market and directly trade with each other (as

they are the winners). Here, as shown in [41], we must exclude

seller L and buyer M from the market so as to guarantee

that the total supply and demand will match while ensuring a

strategy proof and truthful auction mechanism. To determine

the trading price (i.e., the MCP), once the intersection is

identified, one can select any suitable point (payment rule)

within the interval [ρslL , ρ
by
M ] [41]. In our case, one can simply

set ρmcp(h) = (ρslL + ρbyM )/2 [20]. Once the trading price and

the winners are found, different approaches can be applied to

find the quantity of energy traded between each of the L − 1

participating sellers and M − 1 participating buyers [40]. We

propose to apply the technique of [41], in which the entire

traded volume is divided in a way to maintain the truthfulness

of the auction. Using this approach, the total amount qs(x
sl
s (h))

sold by any seller s, for a given strategy vector is:

qs(x
sl
s (h)) :=

{

xsls (h), if
∑L−1

s=1 |x
sl
s (h)| ≤

∑M−1
b=1 xbyb (h)

[xsls (h)− σs]
+, if

∑L−1
s=1 |x

sl
s (h)| >

∑M−1
b=1 xbyb (h)

(21)

where σs = [
∑L−1

s=1 |x
sl
s (h)| −

∑M−1
b=1 xbyb (h)]+/(L − 1) repre-

sents the fraction of the oversupply that is allotted to seller

s. The mechanism in (21) implies that whenever the total

demand at the auction’s outcome exceeds the supply, then

every seller would sell all of the energy that it introduced

into the market. However, when the total supply exceeds

the total demand, all the sellers receive an equal share of

the oversupplied amount. Nonetheless, if for a seller s1, we

have σs1 > |xs1
sl(h)|, the seller does not sell any energy as

per the second case in (21). So, for other sellers we have

σs = [
∑L−1

s=1 |x
sl
s (h)| −

∑M−1
b=1 xbyb (h)− |xs1s (h)|]+/(L− 2). This

scheme will be repeated as long as each seller sells a non-

negative quantity [42]. Further, the fraction σs of each winner

seller and all the power xsls (h) of the loser sellers (e.g., sellers

with index s ≥ L) is sold to the virtual buyer (i.e., the ISO)

at the price ρbyiso(h) < ρmcp(h). For the buyers, we have the

same procedure, except the fraction σb and the power of all

the losers (e.g., buyers with index b ≥M) is bought from the

ISO at the price ρsliso(h) > ρmcp(h).

Remark 1. It is worth mentioning that, when the surplus/deficit

energy of some prosumers are not significant (especially the nano-

grids), one can easily develop a coalition among them, similar to

work in [43]. Further, when the number of the M/NGs in the market

is very large, one can split up the main market into several smaller

sub-markets with still the same efficiency and features (IC, IR, BB,

and high efficiency) according to the analysis in [44].

Proposition 1. The proposed auction mechanism has all the prop-

erties IC, IR, BB, and high efficiency. The proof is removed due to

the space limitation, while it is routine and the same as the works in

[20], [40], [45].

C. Optimal Power Allocation

Once the trading amounts (from Section IV-A) and their

corresponding prices (from Section IV-B) are determined, each

seller will be indifferent to who buys his energy because his

profit only depends on the energy quantity sold and the settled

price. So, we can let the ISO determine who sells energy to

whom in an efficient manner to minimize the transmission

cost (e.g., power transmission loss). So, let qsb(h) denote the

amount of energy provided by seller s ∈ S to buyer b ∈ B at

slot h. Accordingly, we define the number of transmitter units

(the inter-connector hops8) between seller s to buyer b by ℓsb

and we denote the multi-hop transmission cost per each hop

by chp
9. Let ptc denote the fixed transmission cost per kWh

of energy. Then, the global transmission cost minimization

problem at each slot h becomes:

min
qsbs ,s∈S,b∈B

Ctrans(h) =
∑

s∈S

∑

b∈B

ptcqsb(h)ℓ
sbchp

s.t. 0 ≤ qsb(h) ≤ x
sl
s (h),

∑

s∈S

qsb(h) = xbyb (h),

∑

b∈B

qsb(h) = xsls (h) (22)

where, the ISO is located in both sets S and B, as it is the

virtual buyer/seller. The first constraint ensures that the power

allocated to sell by seller s to each buyer b cannot exceed

the total surplus power xsls (h), the second constraint ensures

that the buyer b receives all his needed energy, and the third

constraint ensures that the seller s sells all his surplus energy.

The linear optimization problem (22) can be easily solved by

some well-known optimization techniques [47]. However, if

the number of prosumers is very large, one can develop a game

theoretic mechanism between the sellers, by which, each seller

8Each hop reflects a transition of energy value and its associated information
from one node to another [46].

9In our framework we can consider chp as the cost of sell power to a buyer

through other intermediate prosumers’ infrastructures (with ℓsb be a function
of number of intermediate prosumers.) or the ISO’s infrastructure (with ℓsb

be a function of distance between the seller and the corresponding buyer).
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Algorithm 1 The EMT Mechanism: Repeat for h = 1, · · · , H .

1: I. Load Demand and RER Generation Estimation: Executed by each

prosumer k
2: Estimate the state of appliances a ∈ A

off
k and put them into non-

schedulable Apas
k or schedulable Aact

k groups according to (7).
3: Define the uncertainty space for the joint RER generation profile as

(8) using (4), (5), and the historical data records.
4: II. The DSM Stage: Executed by each prosumer k
5: Receive x

net
−k (h) from the ISO.

6: Use (14) to approximate effectual price ρeffk (h).
7: Set discount factor γh

k .
8: Choose the exploration parameter ǫ (e.g., similar to that in [39]).
9: Choose optimal step-size αk(h) (e.g., similar to that in [38]).

10: Determine the state Sk(h) ∈ Shk according to appliances’ states and
constraints, load demand, power resources, and the effectual price.

11: Update the PDS S̄ h
k (Xk(h+ 1), h+ 1, E h

k ) ∈ Shk using new data
about the state Sk(h) revealed at each slot h.

12: Approximate the value of Q function using (19).
13: Use (18), the value of Q function and (20) to determine the optimal

stationary policy πk : Shk → Eh
k .

14: Determine the energy consumption function E h
k ∈ Eh

k based on

Sk(h) and E h
k = πk(S

h
k ).

15: Determine consumption profile Xk(h) = E h
k (S h

k ) accordingly.
16: Calculate xnet

k (h) and declare it to the ISO.
17: If xnet

k (h) 6= 0 go to the energy trading stage,
18: Else Stop the algorithm.
19: III. The Energy Trading Stage:

20: The ISO as an auctioneer classifies prosumer k into set S of sellers if
xnet
k (h) < 0 or set B buyers if xnet

k (h) > 0.

21: All the sellers s ∈ S send their quantity of energy xsl
s (h) that they

intend to supply and their reservation bid ρsls to the ISO.

22: All the buyers b ∈ B send their quantity of energy xby
b (h) that they

intend to buy and their proposed bid ρbyb to the ISO.
23: Develop the hybrid double-auction mechanism in Section IV-B to

determine the trading price (i.e., the MCP) ρmcp(h) = (ρslL + ρbyM )/2.

24: Determine the total amount of sold power qs(xsl
s (h)) by any seller s

using (21).

25: Determine the total amount of purchased power qb(x
by
b (h)) by any

buyer b similar to (21).
26: The fraction σs (σb) of each winner seller (buyer) and all the power

xsl
s (h) (xby

b (h)) of the loser sellers (buyers) is sold to the ISO at the

price ρbyiso(h) < ρmcp(h) (ρsliso(h) > ρmcp(h)).
27: IV. The Power Allocation Stage: Executed by the ISO

28: The ISO solves (22) and determines qsb(h).
29: The rest of energy transactions are done directly with the ISO.

s can determine qsb(h), ∀ b ∈ B in a decentralized manner,

similar to the work in [48].

Eventually, the whole energy management and trading

process are performed as; 1) Each prosumer k predicts and

schedules the energy consumption/production time/amount of

its equipments through the optimal DSM mechanism Section

IV-A and determines xnet
k (h). 2) If xnet

k (h) > 0(< 0), the

prosumer enters to the optimal energy trading mechanism

Section IV-B as a seller(buyer) and infers the effectual price

ρeffk (h) at which he will sell(buy) energy. 3) By the optimal

power allocation mechanism Section IV-C, it is independently

determined which seller s sell how much energy to which

buyer b, i.e., qsb(h). This process is elaborated in Algorithm

1, and the whole smart micro/nano-grid model is depicted in

Fig. 1.

V. NUMERICAL RESULTS

For evaluating the learning capability of the prosumers, we

have considered 10 M/NGs each having 100 appliances ran-

domly chosen between low/mid/high-flexible appliances and

market clearing price of Pennsylvania-New Jersey-Maryland

Interconnection (PJM) electricity market similar to the data in

[49]. Each low/mid-flexible appliance has two possible actions

(on and off) and the power consumption of each high-flexible

appliance is quantized into 10 consumption (action) levels. The

states of the appliances and the DS units are also assumed

to have 100 different conditions which are updated at each

slot (15 min) according to constraints (1) and (2). For the cost

function of the equipment and ISO, simple quadratic functions

are adopted, e.g., f lf (x) = fmf (x) = gmf (x) = fhf (x) =

fds(x) = gds(x) = fwsp(x) = x2. As a benchmark, we

assume that when there is no EMT mechanism in the system,

the prosumers consume power once needed, sell/buy power

only to/from the main grid, and cannot effectively manage

the charge/discharge schedule of the DS units. Each seller is

assumed to has a surplus between 50 kWh and 150 kWh

that can be sold. The reservation prices of the sellers are

chosen randomly from a range of [20, 60] cents per kWh,

while the reservation bids of the buyers are chosen randomly

from a range of [10, 70] cents per kWh. The demand of

each buyer is chosen randomly within a range of [45, 200]

kWh. The cost per energy sold is set to ptc = 5 cents, ℓsb is

chosen randomly from 1 to 10, and chp is chosen randomly

from 5 to 10 cents for all s ∈ S. All statistical results are

averaged over all possible random values for the different

parameters (prices, bids, demand, etc.) using a large number

of independent simulation runs.

For analyzing the DSM part of the proposed EMT program,

the behavior of a randomly chosen prosumer is depicted

in Fig. 2. For the learning mechanism, we have considered

the discount factor γ = 0.9, the step-size α = 0.2, and

the exploitation-exploration rate ǫ = 0.1 for iteration (19).

As we can see, the prosumer tries to consume low power

at slots with high effectual prices (14) and self-generated

powers, and consume more power at slots with low effectual

prices and high self-generated powers. Further, the prosumer

discharges the DS unite to sell power at the peak load demand

at which the selling price is high, and charge them at the

low-demand slots at which the buy price is low. In another

simulation with 20 sellers and 20 buyers, the consequences

of this consumption behavior are shown in Figs. 3(a) and (b).

In these results, the aggregate cost and the utility level of

each prosumer for one time-slot after the convergence of the

learning algorithm are normalized to one. Fig. 3(a) presents

the negative costs (profits) and utility levels of 20 sellers. As is

clear, participating in the proposed EMT framework increases

the profit of all the sellers compared to those when there is no

EMT program. However, as denoted, the utility levels of all

the sellers are reduced. This is due to shifting the consumption

time/amount of some appliances to other time-slots, which

imposes some discomfort to the end users. The same rule is

always applied to the buyers’ behavior. According to Fig. 3(b),

the buyers should make a trade-off between reducing their

payment and their utility level.

The effects of changing the parameters of the proposed

learning framework on the convergence speed and level are

analyzed in Fig. 4(a) for tuning the exploitation-exploration

rate ǫ of a buyer b ∈ B, and Fig. 4(b) for tuning the discount
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Fig. 1. Block diagram model of the proposed energy management and trading framework.
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Fig. 2. The prosumer power consumption pattern with/without the EMT and
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factor γ of a seller s ∈ S. In Fig. 4(a), we can see that as the

buyer sets smaller ǫ at each slot, the PDS algorithm adopts

random actions with smaller probability and achieves a lower

average payment by more searching the Q-function (19). That

means, adopting smaller values for ǫ lets the PDS algorithm

use the available and updated information more efficiently.

The discount factor γ determines the importance of the future
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Fig. 3. Comparison of the aggregate costs and utility levels of the prosumers
with/without applying the proposed EMT mechanism; a) Sellers evaluation,
b) Buyers evaluation.

rewards. A factor of 0 makes the prosumer myopic (or short-

sighted) by only considering the current reward, while a factor
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Fig. 5. Comparison between the performance of; a) The proposed PDS
reinforcement learning and, b) The conventional Q-learning.

approaching 1 makes it strive for a long-term high reward. In

Fig. 4(b), we can see that when the seller is myopic (sets lower

γk), he achieves a lower average reward. This is because the

seller does not consider the impact of his current actions on

the future states of the equipment and the acquired rewards.

To justify using the PDS learning instead of the conventional

Q-learning techniques, Figs. 5(a) and (b) are depicted. As

illustrated by these figures, the PDS learning mechanism

converges much faster and achieves a higher average utility

level compared with the conventional Q-learning methods. So,

although the PDS learning method imposes a more computa-

tional burden on the system, it is worth using that, as the

proposed framework is online and fully distributed.

Given the outcome of the DSM part, Figs. 6(a) and (b)

show the competition between 8 sellers and 6 buyers. In Fig.

6(a), the intersection point demonstrates that seller 4 and buyer

3 determine the trading price (MCP). The total amount sold

by the participating sellers (seller 1 to 3) must be equal to

the one bought by the participating buyers (buyer 1 and 2)
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at the MCP. As the total procured power by the winning

sellers is 203 kWh and the total demand of the winning buyers

is 126 kWh, each seller must sell his over-supply fraction

(203 − 126)/3 = 25.6667 kWh to the ISO with a lower price

than the MCP ρmpc(h). The revenue of the sellers for selling

power with a higher MCP price and the frugality of the buyers

for buying power with a lower MPC price compared with

the ISO’s high selling price ρsliso(h) and low buy price ρbyiso(h)

are demonstrated in Fig. 6(b). Clearly, other losing prosumers

acquire no revenue/frugality, since they trade all their energy

with the ISO. Therefore, we can conclude that the acquired

benefit from local energy trading is proportional to the number

of market participants and the traded amount, as denoted in

Fig. 7. From the results of this figure, we can see that the

most profitable scenario for a seller is the condition with the

least sellers and the most buyers. The reason for this is that

the competition extremity between the sellers for supplying

power is reduced.

The cost of transmitting power from some sellers to their

buyers are illustrated in Fig. 8 for both with/without the EMT-

optimal power allocation scenarios. The results reveal that

by letting the ISO decide which seller sells power to which

buyers, the power loss and transmitting costs are reduced

significantly. This is because the ISO dispatches the surplus

power of each seller to his nearest buyer neighbors to also

reduce the destructive effects such as voltage-frequency rise
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Fig. 8. Comparison between the two scenarios (without EMT and with
EMT-optimal power allocation) in terms of the average dispatching cost.

problems.

Finally, the performance comparison results between the

three different mechanisms for energy consumption manage-

ment and trading framework is depicted in Fig. 9. As is

clear from the operation time results, the centralized method

in solving (13) is not practical in the real-time real world

applications. This is because in a practical smart grid model

we may have thousands of prosumers sending their private

information to the central controller which can violate the

privacy of the prosumers as well as increasing the operational

time significantly. However, the aggregate cost imposed on the

prosumers as the results of the DSM program is the lowest for

the centralized method. This is because the centralized solu-

tions (i.e., Centralized and Cen-Auc) converge to the global

optimal point, while our mechanism converges to the vicinity

of this point as it is autonomous and distributed. In terms of the

transaction revenue, Cen-Auc is the most attractive scenario

for the prosumers. In this case the DSM program is run at

the central controller effectively and then the prosumers are

allowed to trade directly with the other participants who have

higher trading prices than the ISO (i.e., the centralized case).

This can reduce the prosumers motivation for participating in

the EMT program as they have to sell/buy energy to/from the

ISO with a pre-determined values.

In terms of transmission cost, our proposed framework

has the lowest expense factor as it tries to trade energy

as locally as possible. However, in the centralized method

all the energy are sold/bought directly from the ISO with

increase in the transmission cost significantly. Cen-Auc has

lower transmission cost than the centralized method as the

prosumers are allowed to trade directly after the DSM program

ends. But still the cost is higher than that of our method as the

third stage (i.e., optimal power allocation) is not performed in

this case. In terms of motivations for implementing the RER

facilities, our method is the best one and acquires the highest

revenue for the prosumers. This is because in the proposed

method the prosumers can manage the RER power generation

and autonomously decide whether they want to produce and

sell the power with a preferred price or store it for a better

(higher) price at the later slots. In the other cases they have no

right to act autonomously. However, in the case of Cen-Auc,

the RER utilization factor is slightly higher than the centralized

case as the prosumers are allowed to declare their bides and
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Fig. 9. Performance comparison between the centralized solution of (13),
the centralized solution of (13) with auction ability (i.e., Cen-Auc case), and
the proposed EMT framework.

have a chance to trade directly.

VI. CONCLUSIONS

A detailed characterization and formulation of the M/NGs’

components have been provided in this paper. For the first

time, a novel distributed hierarchical online method has been

proposed by which the M/NGs can schedule their power con-

sumption, efficiently manage their produced power, and trade

the surplus/deficit energy with their neighbors and the ISO to

make the profit. Further, an optimal power allocation has been

introduced to reduce the power loss and the destructive effects

(e.g., voltage and frequency rise problems) of the local energy

trading as much as possible. Extensive numerical simulations

have been carried out and verified that all the prosumers benefit

from participating in it.
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