
Things almost never go exactly as we
plan or hope; deviations from the
ideal are a fact of life. As Heraclitus

noted almost 2500 years ago, “only
change endures.” Though Heraclitus was
silent on whether the inevitable change
will be good or bad, Murphy’s Law tells us
to expect the worst. Given the pervasive
and often perverse nature of the unex-
pected, it is not surprising that humans
are adept at dealing with it—we would not
have survived and flourished otherwise.
This facility with the unexpected may
account for our annoyance when our
automated systems break in situations
that we could deal with easily. It is then
we need to remember that such failures
account for much of the progress in AI,
since—as this special issue attests—these
annoying surprises goad us into insights
and thus to improvements in the underly-
ing algorithms.

But one can also view this phenomenon
in another light. Instead of our having to
rebuild the algorithms when—in an unan-
ticipated situation—they make “stupid”
mistakes that we could easily have dealt
with, why not build them to do what we
do: deal with the mistakes on their own?
This is a tall order, and not a new one: it
requires addressing the so-called brittle-
ness problem (see Brachman [2006]). In
this article, we present our own approach
to this problem. First we describe the con-
ceptual focus—which we call the metacog-
nitive loop (MCL)—that is guiding our

work; then we present a number of
domain-specific implementations of
MCL, which we think provide significant
evidence that MCL is a general-purpose
methodology for building flexible
(nonbrittle) programs in specific domains;
and finally we discuss our current efforts
toward a domain-independent implemen-
tation of MCL.

MCL Systems
Our starting point is to ask what mecha-
nisms humans use when dealing with the
unexpected. Our contention is that peo-
ple learn what to expect, notice when an
expectation fails, and then decide what to
do about it.1 More specifically humans
tend to (and machines ought to):

N: Note when an anomaly occurs

A: Assess it

G: Guide a response into place

Looping through this NAG cycle—the
basic form of MCL—leads to remarkably
positive results when people do it, from
noting that a successful behavior in one
domain (for example, swinging a cricket
bat) utterly fails in another (baseball) and
is best jettisoned and a new one learned
from scratch rather than tweaking the old,
to noting and correcting a misunder-
standing in conversation, to trying a new
approach to a problem (for example, on
the final exam in light of failures on the
midterm). Moreover, asking for help or

Articles

SUMMER 2008 67Copyright © 2008, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

A Self-Help Guide
for Autonomous Systems

Michael L. Anderson, Scott Fults, Darsana P. Josyula,
Tim Oates, Don Perlis, Matt Schmill,

Shomir Wilson, and Dean Wright

� Humans learn from their mistakes.
When things go badly, we notice that
something is amiss, figure out what went
wrong and why, and attempt to repair the
problem. Artificial systems depend on
their human designers to program in
responses to every eventuality and there-
fore typically don’t even notice when
things go wrong, following their program-
ming over the proverbial, and in some cas-
es literal, cliff. This article describes our
past and current work on the metacogni-
tive loop, a domain-general approach to
giving artificial systems the ability to
notice, assess, and repair problems. The
goal is to make artificial systems more
robust and less dependent on their human
designers.

AI Magazine Volume 29 Number 2 (2008) (© AAAI)

giving up are in fact among the most important
things in the human repertoire of repairs, for, as
the saying goes, if you find yourself in a hole, the
first thing to do is stop digging. Our work suggests
that MCL can at the very least give machines the
same simple wisdom that would have been quite
useful to the DARPA Grand Challenge robot that
continued to push against a fence it could not see,
burning out its motors; or to the NASA satellite
that, having obeyed instructions to turn away to
point at another part of the sky, was thus rendered
unable to receive further instructions and so stayed
in that useless position until natural orbital forces
reoriented it.

Noticing that there is a difference between what
actually happened and what was expected to hap-
pen—that something has gone wrong—is the key
step required to get MCL started. So, central to our
approach is building systems that don’t simply do
things but know what they are supposed to be
achieving. That is, they should have specific expec-
tations for their own performance and the out-
comes of their actions. Knowing may be half the
battle, but it is only half; the next steps are also
crucial. Rather than simply recognize problems,
report them, and wait for human system designers
to fix them, MCL systems are also self-diagnosing
and self-repairing. Repairs can be as simple as try-
ing a failed action again; or trying a new plan for
the same goal, dynamically learning new opera-
tors; or using trial and error; or taking advice from
a human; or embarking on self-training; and so on.

It is perhaps this aspect of our approach that is
most distinct from the relevant prior work on
which we are building, including case-based rea-
soning in general and introspective reasoning and
learning from expectation failure in particular (Fox
and Leake 1995, Gil 1994, Hammond 1986,
Schank and Leake 1989). For instance, MCL sys-
tems don’t just use expectation failures to trigger a
single learning strategy, such as the refinement of
planning operators, but can choose this option
from among several; nor are MCL systems limited
to selecting among multiple learning strategies (as
with Cox and Ram [1999]), but can implement any
of multiple disparate options for addressing
anomolies. In addition, MCL systems don’t just
wait for a response plan to complete and then
remeasure performance on the original task; rather
they monitor the response just as they would any
other action taken by the system and can inter-
vene if the repair itself appears to be failing. Final-
ly, the MCL systems we envision don’t just work in
a single domain with specialized knowledge but
across many different domains, using ontologies
capturing general coping strategies.

Imagining such systems is quite different from
building them. To test the viability and domain
generality of this approach, we have added MCL

components to a number of otherwise self-igno-
rant systems. This work has convinced us that
MCL is indeed a powerful approach for endowing
automated systems with the flexibility needed to
deal with surprise. While these implementations
are domain-dependent and differ significantly in
various respects, they share some common features
that serve to characterize the key aspects of MCL.2

We can briefly indicate some of these common
features. Noting an anomaly amounts to noting a
mismatch between an expectation Exp(E) and an
observed outcome Obs(¬E). This is the basis for the
Note stage in all our implementations and
domains.3 The Assess stage identifies the anom-
alous E and ¬E (in some current context C) as being
of some type T: Type(E, ¬E, C, T). Here T might
turn out to be highly domain specific (for example,
sensor error, if the domain and context are suffi-
cient to determine that) or very general (for exam-
ple, simple logical contradiction). In addition, the
Assess stage has, for each anomaly-type T, a priori-
tized list of possible responses. Finally, the Guide
stage enacts responses from that list; if a given
response fails, another is selected. Response failure
can also lead to recursion if the NAG cycle is trig-
gered by an anomaly in the attempt to guide a
response. There is the danger here of nontermi-
nating recursion, with repairs applied to failed
repairs ad infinitum. However, as these repairs to
repairs accumulate, the expected time to comple-
tion of the original task will move farther into the
future, forcing MCL ultimately to fall back on a
response such as asking for help (which may be
costly but powerful) or simply giving up and mov-
ing on to something else. One final point: expec-
tations themselves can be learned, as well as mod-
ified, by experience, and this is one of the most
powerful aspects of MCL. Thus, not only is a par-
ticular instance of an anomaly dealt with by an
MCL-endowed system, but the system’s future
expectations may change as a result. MCL can deal
with learned expectations that are unreliable by
either gathering more data to further refine them
or by simply abandoning them altogether.

We have implemented these ideas in highly var-
ied domains, including natural language human-
computer dialogue, robot navigation, nonmonot-
onic reasoning, reinforcement learning, and a tank
game. Three of these systems are described below,
after which we will describe our efforts to imple-
ment domain-general MCL.

MCL-Enhanced Reinforcement Learning
Reinforcement learning (RL) is an established
methodology that works very well in many set-
tings, notably ones in which the reward structure
is static or nearly static. But when that structure is
changed suddenly and significantly, the perform-
ance of RL degrades severely and recovers excruci-

Articles

68 AI MAGAZINE

atingly slowly. In essence, RL algorithms need to
“unlearn” what they have learned, step by step,
since they have no way to recognize that the
reward structure has changed, let alone assess what
can be done about it. Yet it is clear that, given a
drastic change that makes previous learning use-
less, the best policy is simply to throw it out and
start over.

Using a variety of reinforcement learning algo-
rithms (Q-learning, SARSA, and prioritized sweep-
ing) we experimented with a simple 8 by 8 grid
world with rewards in cells (1, 1) and (8, 8). The
learner was trained for 10,000 steps, then the
rewards were switched, and learning continued for
another 10,000 steps. We compared the perform-
ance of standard RL algorithms to MCL-enhanced
versions of the same algorithms. The MCL-
enhanced RL algorithms maintained and moni-
tored expectations about such things as average
reward per step, value of future rewards, and aver-
age time to next reward. When these expectations
were violated, the enhanced algorithms assessed

the nature of the violation and, using a simple
decision tree, chose one of the available repairs
(which included ignoring the problem, adjusting
the learning parameter, or throwing out the cur-
rent action policy and starting over).

A typical result is shown in figure 1. The hori-
zontal axis is the step number, and the vertical axis
is the average reward. Performance rises sharply
and levels off until step 10,000 when the reward-
switching occurs. At that point, performance falls
dramatically and then begins to recover. However,
the standard RL algorithms (in this case, Q-learn-
ing, seen as the lower curve) recover far more slow-
ly and far less completely than the MCL-enhanced
versions (the higher curve) of the same algorithms.
Though given enough experience both variants
will asymptote to the same point, in our experi-
ments we found that the greater the degree of
change in reward (such as swapping rewards for
penalties, and vice versa), the greater and longer
lasting were the transient benefits of MCL (Ander-
son et al. 2006).

Articles

SUMMER 2008 69

Figure 1: Learning Curves for a Standard Q-Learner Versus an MCL-Enhanced Q-Learner
in the Face of Changes to the Reward Structure.

0

MCL

non -MCL

av
er

ag
e

re
w

ar
d

step

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

MCL-Enhanced
Human-Computer Dialogue
Another application area for MCL is natural lan-
guage human-computer dialogue. Natural lan-
guage is complex and ambiguous, and therefore,
communication always contains an element of
uncertainty. To manage this uncertainty, human
dialogue partners continually monitor the conver-
sation, their own comprehension, and the appar-
ent comprehension of their interlocutor. Human
partners elicit and provide feedback as the conver-
sation continues and make conversational adjust-
ments as necessary. We contend that the ability to
engage in this metadialogue is the source of much
of the flexibility displayed by humans when they
engage in conversation (Perlis, Purang, and Ander-
sen 1998). We have demonstrated that enhancing
existing dialogue systems with a version of MCL
that allows for metadialogic exchanges improves
performance.

In one specific case tested, a user of TRAINS-96

(Allen et al. 1996), a simulation of a national train
network that is controlled by natural language tells
the system to “Send the Boston train to New York.”
If there is more than one train in Boston, the sys-
tem may well choose the wrong one to send—the
user may have in mind the train that runs regular-
ly between Boston and New York and so might
respond: “No, send the Boston train to New York!”
Whereas the original TRAINS-96 dialogue system
responds to this apparently contradictory
sequence of commands (Send, Don’t send, Send)
by once again sending the very same train, our
MCL-enhanced version of TRAINS notes the
anomaly (that is, the contradiction in commands)
and, by assessing the problem, identifies a possible
explanation in its choice of referent for “the
Boston train.” The enhanced system then chooses
a different train the second time around, or if there
are no other trains in Boston, it will ask the user to
specify the train by name. The details of the imple-
mentation, as well as a specific account of the rea-

Articles

70 AI MAGAZINE

Figure 2: A Bolo Tank Approaching a Neutral Pillbox beyond the Trees
with a Refueling Station behind the Walls to the Left of the Tank.

soning required for each of these steps, can be
found in Traum et al. (1999).

More recently we have built another dialogue
system, ALFRED,4 that uses the MCL approach to
resolve a broader class of dialogue anomalies. The
system establishes and monitors a set of dialogue
expectations related to time, content, and feed-
back. For example, if the user says “Send the Metro
to Boston,” ALFRED notices that it doesn’t know
the word Metro (a failure of the expectation that it
will find input words in its dictionary). Alfred’s first
response is to try to determine what it can about
the unknown word. Since Alfred knows the com-
mand “send” and its possible arguments, it is able
to determine that Metro is a train. If it cannot deter-
mine from this which train the user is referring to,
it will request specific help from the user, saying:
“Which train is Metro?” Once the user tells the sys-
tem that Metro is another word for Metroliner, it is
able to correctly implement the user’s request
(Josyula 2005).

A Bolo Player
Bolo is a multiplayer tank game that takes place in
a world that contains various terrain types (roads,
swamps, walls, and so on), refueling bases, and pill-
boxes. There are three types of pillboxes: neutral
pillboxes fire on all tanks, friendly pillboxes fire
only on other players’ tanks. and dead pillboxes
pose no threat and can be captured to make them
friendly. An important strategy in Bolo is to cap-
ture pillboxes, make them friendly, and then use
them either offensively or defensively. Figure 2
shows a Bolo tank approaching a neutral pillbox.

Bolo can be played by humans, but it can also
be played by programs. Such artificial Bolo players
tend to play quite poorly and are easily fooled
when unexpected complications arise (change of
terrain, more dangerous pillboxes, and so on).
Thus Bolo provides a good challenge domain in
which to test MCL.

Our MCL-enhanced Bolo player is controlled by
a simple hierarchical task network (HTN) planner
with primitive actions that ground out in con-
trollers. It maintains a variety of expectations, the
primary one being that the tank it controls will not
be destroyed.5 The initial HTN allowed the player
to locate and capture dead pillboxes. However, the
player did not have a plan to deal with hostile pill-
boxes, which fire on the tank, and so it was
destroyed in its first such encounter. At this stage—
when an expectation fails—MCL has a suite of
actions to choose from, including means-ends
analysis and operator refinement (Gil 1994, Wang
1995). In one scenario, our MCL-enhanced Bolo
player was able to discover that firing on pillboxes
offered a solution to the problem, even though it
had no previous knowledge of the effect of that
particular action. More precisely, the MCL compo-

nent searched through its past experience to try to
locate salient differences in the conditions under
which it succeeded in taking pillboxes, and those
in which it failed. It found that only pillboxes with
intact armor destroyed the tank, so the next step
was to see if it had any actions that could reduce
the armor of a pillbox. If it had known about an
action that would do that, it would have tried the
action immediately. In the case we tested, it had no
such knowledge. Thus, it used a heuristic to rank
all its actions according to how likely they were to
have the desired effect, and then tested them until
it found one that worked. Note how MCL turns
failure into opportunity: in each case the system
learned more about what effects its actions did and
did not have, and in a way organized to support its
ongoing mission.

Toward a Single
Domain-Independent
MCL Implementation

Humans are good at dealing with surprise (employ-
ing the NAG cycle) not only in a few specific
domains, but generally. This, together with the
successes we have seen with executing MCL in
highly varied domains, suggests to us that a single,
generalized MCL implementation might also be
able to negotiate surprise across domains.

The idea of a domain-general MCL is this: there
can be a general-purpose MCL-based implementa-
tion such that any given automated host system S
that (as is typical) exhibits considerable brittleness
can be interfaced with that implementation, allow-
ing the latter to monitor and (when needed) guide
S into significantly improved performance with
respect to unanticipated situations, without the
usual human recoding.

To achieve this goal, we are now building such a
general-purpose MCL that encodes domain-gener-
al knowledge about anomalies in three ontologies,
as shown in figure 3. There is one ontology for
each phase of the NAG cycle.6

The Note phase of the NAG cycle uses an ontol-
ogy of indications, which are sensory or contextual
cues that something is wrong. Within this ontol-
ogy, host-specific nodes at the lowest levels encode
expectations about the behavior of sensor, state,
and other values. Violations of these expectations
activate domain-general nodes that characterize
anomalies. For example, a reinforcement learning
host system may maintain expectations about
receiving rewards in certain states that, when vio-
lated, will trigger a domain-general indication such
as MISSING DATUM.

Figure 4 shows fragments of the MCL failure (on
the left) and response (on the right) ontologies,
which are used by the Assess and Guide phases of
the NAG cycle, respectively. In the former, dashed

Articles

SUMMER 2008 71

arrows are interontological links coming from the
indications ontology. That is, indications are
linked to the types of failures they suggest. To con-
tinue our example of an RL host system, a MISS-
ING DATUM could be due to a SENSOR FAILURE
or a MODEL ERROR (that is, the expectation itself
is wrong). These failure types can be generalized or
specialized by moving up or down links within the
failure ontology.

Failure nodes are linked to candidate courses of
action in the response ontology, again denoted
with dashed arrows. For example, if there is in fact
a MODEL ERROR, and the model in question is a
predictive model, one possible response is to MOD-
IFY PREDICTIVE MODELS. This response is
abstract, so it must be made concrete in terms of
the host system by following downward links in
the ontology. In the case of an RL host based on a
Q-learning algorithm, a Q-table represents expec-
tations about future rewards and can be adapted by
increasing exploration, increasing the learning
rate, or, if all else fails, reseting the Q-table and
starting from scratch. The host-specific response
node (the shaded nodes in the response ontology
in the figure) with the highest expected utility is
chosen and implemented.

Related Work
As has been noted already, the brittleness problem
is not new, and autonomous systems have always
needed mechanisms to deal with the unexpected.
Systems as early as Shakey (Fikes 1971) were able to
replan in light of failures or unmet preconditions.
In recent years there has been a great deal of work
in such areas as reactive computing, machine
learning, planning and replanning, and fault
detection, isolation, and recovery (FDIR); see
Mitchell (1990); Williams and Nayak (1996); van

der Krogt, de Weerdt, and Witteveen (2003); and
Stroulia and Goel (1997) for just a brief sampling,
and [2] for a general overview of metacognitive
approaches to reasoning and learning.
One thing that is distinctive about our approach

is its insistence on the general applicability of the
NAG cycle, along with an architecture that encap-
sulates the metacognitive components, engaging
them only when an expectation has been violated.
This has advantages over some approaches—for
instance, many reactive/adaptive systems (such as
reinforcement learners) deal with change by con-
tinually training. This requires continual explo-
ration, or deviation from the optimal action poli-
cy, whereas MCL systems can act optimally until
they notice that something is wrong and then take
remedial actions focused on the problem at hand.

For instance, although FDIR is clearly motivated
by the same concerns as MCL—and has the same
tripartite structure as the NAG cycle: (FD), (I), (R)—
it typically takes an expert-systems or model-based
approach to the issue that imposes significant lim-
itations on the types and range of available diag-
noses and repairs, often limiting the options to
specific solutions known in advance to fix specific
problems. By including the possibility of generat-
ing novel hypotheses about the causes of its per-
formance and learning new models, operators, or
action policies to deal with failures, MCL greatly
increases the range of possible responses the sys-
tem could implement. This is in line with our gen-
eral preference (which we admit may not be appro-
priate for every domain) for increasing the agency
and autonomy of our systems, and especially their
freedom of action in responding to problems,
rather than limiting it and hoping that circum-
stances do not stray from the anticipations of the
system designer. Again, this increased freedom is
highly focused, coming into play only when

Articles

72 AI MAGAZINE

Figure 3: The Three MCL Ontologies: Indications, Failures, and Repairs.

Abstract

Expectations Corrections
Concrete

Indications Failures Responses

anomalies are noted that directly affect the per-
formance of the system, about which expectations
are maintained and monitored. MCL systems are
self-aware, self-guided learners, able to decide
whether, what, when, and how to learn; this com-
bination of reasoning and learning, in which each
can guide the other under the direction of the sys-
tem itself, is one of the distinctive elements of the
MCL approach.

Conclusion
Humans confront the unexpected every day, deal
with it, and often learn from it. AI agents, on the
other hand, are typically brittle—they tend to
break down as soon as something happens that
their creators didn’t plan for. Brittleness may be the
single most important and most difficult problem
facing AI research. It is difficult because it is impos-
sible to prepare an AI system for every possible
contingency. It is important not only because brit-
tle systems become unproductive when they fail,
but also because if the goal is human-level intelli-
gence, then systems must exhibit humanlike flexi-
bility.

We believe that it is possible to replicate human-

like behavior by furnishing AI systems with one of
the methods that humans use to deal with the
unexpected, namely the Note-Assess-Guide cycle.
In order to do this, we must enable AI systems to
help themselves; they must establish expectations
and monitor them, note failed expectations, assess
their causes, and then choose appropriate respons-
es.

We have, in fact, implemented this method in
several distinct types of systems: a reinforcement
learner, a human-computer dialogue agent, a tank
game, a robot navigation system, and a common-
sense (nonmonotonic) reasoner. In each case, the
performance of the system was enhanced by MCL
mechanisms. This, we believe, is promising
enough to warrant our next step: domain-general
MCL. Our vision of this single, domain-indepen-
dent implementation of MCL is that it can be
interfaced with any brittle automated system and
thereby improve its performance in unexpected
situations.

Notes
1. This intuitive characterization of human problem solv-
ing is also supported by work in cognitive psychology.
See Nelson et al. (1994) and Kendler and Kendler (1962,
1969) for more information.

Articles

SUMMER 2008 73

Figure 4: Fragments of MCL’s Failure and Response Ontologies Used by the Assess
and Guide Phases of the NAG Cycle, Respectively.

knowledge
error

sensor
not

reporting

sensor
failure

sensor
malfunction

expressivity
failure

model fit
error

predictive
model
failure

procedural
model
failure

model
error

modify:
cope

modify
predictive

models

modify
procedural

models

activate
learning

change
parameters

rebuild
models

increase
ε

parameter

. . .

reset
Q values

increase
α

parameter

2. For a more in-depth look at MCL and the motivation
behind it, see Anderson and Perlis (2005).

3. In the case of logic-based domains, an anomaly often
takes the form of a direct contradiction, E and ¬E. This is
the case, for instance, not only in the nonmonotonic rea-
soning domain, but also in the natural language domain
discussed in this article. For these, we employ active log-
ic (Elgot-Drapkin and Perlis 2006), a time-sensitive infer-

ence engine specifically designed to allow an automated
agent to reason in real time about its own ongoing rea-
soning, noting direct contradictions rather than inadver-
tently using them to derive all sentences.

4. Active logic for reason enhanced dialogue.

5. When the tank is destroyed, it reappears at a random
location on the map.

Articles

74 AI MAGAZINE

A Too-Clever
Ranking Method

Tim Oates

Iwas a graduate student at a time when C4.5 ruled the machine-learning roost. I developed what I
thought was an extremely clever method for detecting “bad” training instances. Each instance was
scored, and those with the lowest scores could be removed before running C4.5 to build a decision tree

with the remainder. I ran an experiment in which I removed the bottom 10 percent of the instances in a
University of California, Irvine (UCI) data set. The resulting tree was smaller and more accurate (as meas-
ured by 10-fold CV) than the tree built on the full data set. Great! Then I removed the bottom 20 percent
of the instances and got a tree that was smaller than the last one and just as accurate. At that point I had
the feeling that this was going to make a great paper for the International Conference on Machine Learn-
ing (ICML).

So I kept going, removing an additional 10 percent of the instances at each step, getting smaller trees
with no loss in accuracy. However, when I removed 80 percent of the instances, and was still getting the
same result, I realized I had a problem. There was no way that 80 percent of the instances in any of the
revered UCI data sets were “bad.” After some time I realized I should run a control condition. What hap-
pens if I remove randomly selected training instances? Shockingly, I got the same results. The more ran-
domly selected training instances I removed, the smaller was the resulting tree, with no loss in accuracy.
My extremely clever ranking method was no better than a random number generator! After getting over
the initial shock, I decided, with David Jensen, to pursue this more carefully with a larger sample of data
sets. We found that this phenomenon was pervasive, both with respect to data sets and decision tree prun-
ing mechanisms. We wound up writing papers on this topic that were published at the ICML, AAAI, and
Knowledge Discovery in Datamining conferences, all because a surprising negative result made us look
hard at what was going on.

Tim Oates is an associate professor in the Department of Computer Science and Electrical Engineering at the Universi-
ty of Maryland Baltimore County, and he is director of the university’s Cognition, Robotics, and Learning Laboratory.
He received his Ph.D. from the University of Massachusetts Amherst in 2001 and spent a year as a postdoc in the MIT
AI lab. His research interests include the sensorimotor origins of knowledge, language learning, grammar induction,
automated development of representation.

6. Although the ontology-based view of MCL described
here is still in the process of being implemented, it clean-
ly captures the more ad hoc implementations of the var-
ious MCL-enabled systems that we have developed.

References
Allen, J. F.; Miller, B. W.; Ringger, E. K.; and Sikorski, S.
1996. Robust Understanding in a Dialogue System. In
Proceedings of the Thirty-Fourth Annual Meeting of the Asso-
ciation for Computational Linguistics, 62–70. San Francis-
co: Morgan Kaufmann Publishers.

Anderson, M. L., and Oates, T. 2007. A Review of Recent
Research in Metareasoning and Metalearning. AI Maga-
zine 28(1): 12–16.

Anderson, M. L.; Oates, T.; Chong, W.; and Perlis, D.
2006. The Metacognitive Loop: Enhancing Reinforce-
ment Learning with Metacognitive Monitoring and Con-
trol for Improved Perturbation Tolerance. Journal of Exper-
imental and Theoretical Artificial Intelligence 18(3):
387–411.

Anderson, M. L., and Perlis, D. R. 2005. Logic, Self-Aware-
ness, and Self-Improvement: The Meta Cognitive Loop
and the Problem of Brittleness. Journal of Logic and Com-
putation 15(1): 21–40.

Brachman, R. J. 2006. (AA)AI, More than the Sum of Its
Parts. AI Magazine 27(4): 19–34.

Cox, M. T., and Ram, A. 1999. Introspective Multistrate-
gy Learning: On the Construction of Learning Strategies.
Artificial Intelligence 112(1–2): 1–55.

Elgot-Drapkin, J., and Perlis, D. 2006. Reasoning Situated
in Time I: Basic Concepts. Journal of Experimental and The-
oretical Artificial Intelligence 2(1): 75–98.

Fikes, R. E. 1971. Monitored Execution of Robot Plans
Produced by Strips. Technical Report 55, AI Center, SRI
International, Menlo Park, CA 94025, April.

Fox, S., and Leake, D. B. 1995. Using Introspective Rea-
soning to Refine Indexing. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, 391–
399. San Francisco: Morgan Kaufmann Publishers.

Gil, Y. 1994. Learning by Experimentation: Incremental
Refinement of Incomplete Planning Domains. In Pro-
ceedings of the Eleventh International Conference on Machine
Learning, 87–95. San Francisco: Morgan Kaufmann Pub-
lishers.

Hammond, K. J. 1986. Learning to Anticipate and Avoid
Planning Problems through the Explanation of Failures.
In Proceedings of the Fifth National Conference on Artificial
Intelligence, 556–560. Menlo Park, CA: AAAI Press.

Josyula, D. P. 2005. A Unified Theory of Acting and
Agency for a Universal Interfacing Agent. Ph.D disserta-
tion, Department of Computer Science, University of
Maryland, College Park, MD.

Kendler, H. H., and Kendler, T. S. 1962. Vertical and Hor-
izontal Processes in Problem Solving. Psychological Review
69(1): 1–16.

Kendler, H. H., and Kendler, T. S. 1969. Reversal-Shift
Behavior: Some Basic Issues. Psychological Bulletin 72(3):
229–232.

Mitchell, T. M. 1990. Becoming Increasingly Reactive. In
Proceedings of the Eighth National Conference on Artificial
Intelligence, 1051–1058. Menlo Park, CA: AAAI Press

Nelson, T. O.; Dunlosky, J.; Graf, A.; and Narens, L. 1994.
Utilization of Metacognitive Judgments in the Allocation
of Study during Multitrial Learning. Psychological Science
5(4): 207–213.

Perlis, D.; Purang, K.; and Andersen, C. 1998. Conversa-
tional Adequacy: Mistakes Are the Essence. International
Journal of Human-Computer Studies 48(5): 553–575.

Schank, R. C., and Leake, D. B. 1989. Creativity and
Learning in a Case-Based Explainer. Artificial Intelligence
40(1–3): 353–385.

Stroulia, E., and Goel, A. K. 1997. Redesigning a Problem-
Solver’s Operations to Improve Solution Quality. In Pro-
ceedings of the Fifteenth International Joint Conference on
Artificial Intelligence, 562–567. San Francisco: Morgan
Kaufmann Publishers.

Traum, D. R.; Andersen, C. F.; Chong, W.; Josyula, D.;
Okamoto, Y.; Purang, K.; O’Donovan-Anderson, M.; and
Perlis, D. 1999. Representations of Dialogue State for
Domain and Task Independent Meta-Dialogue. Electronic
Transactions on Artificial Intelligence 3(D): 125–152.

Van Der Krogt, R.; De Weerdt, M.; and Witteveen, C.
2003. A Resource Based Framework for Planning and
Replanning. Web Intelligence and Agent Systems 1(3–4):
173–186.

Wang, X. 1995. Learning by Observation and Practice: An
Incremental Approach for Planning Operator Acquisi-
tion. In Proceedings of the Twelfth International Conference
on Machine Learning. San Francisco: Morgan Kaufmann
Publishers.

Williams, B. C., and Nayak, P. P 1996. A Model-Based
Approach to Reactive Self-Configuring Systems. In Pro-
ceedings of the Thirteenth National Conference on Artificial
Intelligence, 971–978. Menlo Park, CA: AAAI Press.

Michael L. Anderson (michael.anderson@fandm.edu) is
an assistant professor in the Department of Psychology at
Franklin & Marshall College and a visiting assistant pro-
fessor at the Institute for Advanced Computer Studies at
the University of Maryland, College Park, where he is also
a member of the graduate faculty in the Program in Neu-
roscience and Cognitive Science. He earned a B.S. in pre-
medical studies from the University of Notre Dame, a
Ph.D. in philosophy from Yale University, and did his
postdoctoral training in computer science at the Univer-
sity of Maryland. Anderson is author or coauthor of over
50 publications in artificial intelligence, cognitive sci-
ence, and philosophy of mind. His primary areas of
research include an account of the evolution of the cor-
tex through exaptation of existing neural circuitry (the
“massive redeployment hypothesis”); the role of behav-
ior, and of the brain’s motor-control areas, in supporting
higher-order cognitive functions; and the role of self-
monitoring and self-control in maintaining robust real-
world agency.

Scott Fults graduated in 2006 from the University of
Maryland with a Ph.D. in linguistics. His dissertation was
concerned with how humans talk about and understand
comparisons. He is currently a research scientist at the
University of Maryland and works with Don Perlis on
MCL and its application to natural language processing.
He also does work in human semantic parsing.

Darsana P. Josyula is an assistant professor of computer

Articles

SUMMER 2008 75

science at Bowie State University, Bowie, MD, and is a
member of the ALMECOM group at the Institute of
Advanced Computer Studies, University of Maryland.
She completed her Ph.D. in 2005 from the University of
Maryland, College Park. Her research interests include
logical reasoning, natural language understanding,
metacognition, and BDI models.

Tim Oates is an associate professor in the Department of
Computer Science and Electrical Engineering at the Uni-
versity of Maryland Baltimore County, and he is director
of the university’s Cognition, Robotics, and Learning
Laboratory. He received his Ph.D. from the University of
Massachusetts Amherst in 2001 and spent a year as a
postdoc in the MIT AI lab. His research interests include
the sensorimotor origins of knowledge, language learn-
ing, grammar induction, automated development of rep-
resentation.

Don Perlis is a professor of computer science at the Uni-
versity of Maryland and a member of the artificial intel-
ligence group there. He studies various aspects of com-
monsense reasoning, including the related areas of

cognitive modeling and philosophy of mind and lan-
guage. An ongoing project of his research team is the use
of time-situated metacognitive computation for
enhanced flexibility and generality of reasoning.

Matthew Schmill is a researcher at the University of
Maryland, Baltimore County. He received his PhD from
the University of Massachusetts in 2004. His research
interests include development, metacognition, building
robust AI architectures, and computational finance.

Shomir Wilson is a Ph.D. student at the University of
Maryland. He earned bachelor’s degrees in computer sci-
ence, mathematics, and philosophy from Virginia Tech
in 2005. His research interests include cognitive model-
ing, commonsense reasoning, and natural language
understanding and generation.

Dean Wright is a Ph.D. student at the University of
Maryland Baltimore County. He holds an M.S. in com-
puter science and an M.B.A. from Hood College.

Articles

76 AI MAGAZINE

New Proceedings!

Available from AAAI Press (www.aaai.org/Press/)

