
https://doi.org/10.1007/s10489-022-03886-6

A self-interpretable module for deep image classification on small
data

Biagio La Rosa1 · Roberto Capobianco1,2 ·Daniele Nardi1

Accepted: 10 June 2022
© The Author(s) 2022

Abstract
Deep neural networks are the driving force of the recent explosion of machine learning applications in everyday life.
However, they usually require a lot of training data to work well, and they act as black-boxes, making predictions without
any explanation about them. This paper presents Memory Wrap, a module (i.e, a set of layers) that can be added to deep
learning models to improve their performance and interpretability in settings where few data are available. Memory Wrap
adopts a sparse content-attention mechanism between the input and some memories of past training samples. We show that
adding Memory Wrap to standard deep neural networks improves their performance when they learn from a limited set of
data, and allows them to reach comparable performance when they learn from the full dataset. We discuss how the analysis
of its structure and content-attention weights helps to get insights about its decision process and makes their predictions
more interpretable, compared to the same networks without Memory Wrap. We test our approach on image classification
tasks using several networks on three different datasets, namely CIFAR10, SVHN, and CINIC10.

Keywords Interpretable deep learning · eXplainable Artificial Intelligence · Memory augmented neural networks ·
Small data

1 Introduction

In the last decade, Artificial Intelligence has seen an explo-
sion of applications thanks to advancements in deep learn-
ing. Despite their success, these techniques suffer from
some important problems: they require a lot of data to work
well [73], and they act as black-boxes, taking an input
and predicting an output without providing any explana-
tion about the decision process. The lack of transparency
limits the adoption of deep learning in important domains
like health-care [12] and justice, while the data requirement

� Biagio La Rosa
larosa@diag.uniroma1.it

Roberto Capobianco
capobianco@diag.uniroma1.it

Daniele Nardi
nardi@diag.uniroma1.it

1 Department of Computer, Control, and Management
Engineering Antonio Ruberti, Sapienza University
of Rome, Rome, Italy

2 Sony AI, Zurich, Switzerland

makes its generalization to real-world tasks harder. To over-
come the data requirements, researchers propose several
solutions that typically exploit additional resources like pre-
trained models (e.g., transfer-learning [73]), unlabeled data
(e.g., semi-supervised learning [19]), or prior knowledge
(e.g., few-shot learning [82]). Conversely, the eXplainable
artificial intelligence (XAI) community studies the trans-
parency problem, developing methods that can explain the
decision process of AI agents or developing a more inter-
pretable AI. While there is an extensive literature on each
topic, few works explore methods that can be used both on
small data settings and that are more interpretable.

In this paper, we take a step in this direction, focusing
on the domain of computer vision and image classification
tasks, and proposing Memory Wrap, a self-interpretable
module (i.e., a set of layers) that can be attached to deep
learning models. We show that it improves the performance
of the model to which it is attached without using any
additional resources and it provides, at the same time, a way
to inspect its decision process (Fig. 1).

In classical supervised learning settings, deep models use
the training set only to adjust their weights, discarding it
at the end of the training process. Instead, we hypothesize
that, in small data settings, it is possible to strengthen

/ Published online: 5 August 2022

Applied Intelligence (2023) 53:9115–9147

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03886-6&domain=pdf
http://orcid.org/0000-0002-4071-170X
mailto: larosa@diag.uniroma1.it
mailto: capobianco@diag.uniroma1.it
mailto: nardi@diag.uniroma1.it

Fig. 1 Overview of Memory Wrap. The encoder takes as input
an image and a memory set, containing random samples extracted
from the training set. The encoder sends their latent representations

to Memory Wrap, which outputs the prediction, an example-based
explanation, and a counterfactual, exploiting the sparse content-based
attention between inputs encodings

the learning process by re-using samples from the training
set during inference. Taking inspiration from Memory
Augmented Neural Networks [69], we propose to store
a bunch of past training samples (called memory set)
and combine them with the current input through sparse
attention mechanisms [23] to help the neural network
decision process. Since the network actively uses these
samples during inference, we propose a method based
on inspection of sparse content-based attention weights
(Section 3.2) to extract insights and explanations about its
predictions.

We test our approach on image classification tasks using
CIFAR10 [36], Street View House Number (SVHN) [58],
and CINIC10 [15] as datasets, obtaining promising results.
Our contribution can be summarized as follows:

• we present Memory Wrap, a module for deep neural
networks that uses a memory containing past training
examples to enrich the input encoding;

• we extensively test its performance, using different
backbone deep models on several small data settings,
and show that it improves the accuracy of the backbone
models in almost all the settings;

• we discuss how its structure makes the predictions more
interpretable. In particular, we show that not only it is
possible to extract the samples that actively contribute
to the prediction, but we can also measure how much
they contribute;

• we show how, by analyzing the samples that Memory
Wrap actively uses at inference time, it is possible to
inspect which features are important for the current
prediction and to interpret and diagnose the model
behavior;

• we study the main characteristics of the memory
samples used by our approach, and divide them
as candidates for example-based and counterfactual
explanations. Moreover, we show some explanatory
usage scenarios as an example.

The manuscript is organized as follows: Section 2 reviews
existing literature, focusing on works that use similar meth-
ods and discuss the state-of-the-art in network explainabil-
ity; Section 3 introduces our approach; Section 4 presents
some experiments and their results for both performance
and interpretability side; Section 5 analyzes the module and
its components; and, finally, Section 6 discusses conclu-
sions, limitations, and future directions.

2 Background

2.1 Memory augmented neural networks

Our work takes inspiration from current advances in
Memory Augmented Neural Networks (MANNs) [23,
37, 69]. MANNs use a memory module to store and
retrieve data during input processing through attention
mechanisms. While initially designed to mitigate the
problem of catastrophic forgetting on sequential tasks,
researchers also apply them to different problems, like
visual question answering [51], image classification [8],
and meta-learning [65]. In the context of computer vision,
MANNs are mainly applied to two types of problems:
those that can be cast as sequential [5], like semantic
segmentation [5], visual question answering [51], or video
summarization [20], and few-shot learning. The latter aims
at classifying never-seen objects into novel categories, given
a pre-trained model on a set of different classes, which act as
prior knowledge. In this case, MANNs can store examples
of the novel classes to aid the network in the task [8, 65, 67,
78].

Few-shot learning includes several works that share
our idea of using a memory set to strengthen the
learning process, like Matching Networks [78], Prototypical
Networks [67], Relation Networks [71] and Relational
Embedding Network (RENet) [30]. They differ in how they
exploit the samples in the memory set. Matching Networks

9116 B. La Rosa et al.

[78] use them for conditioning the encoding of both the
input and the memory set through two LSTM networks.
Additionally, they use the linear combination of the
samples’ labels to predict the class. Prototypical Networks
[67] suggest avoiding the usage of LSTM networks because
they introduce fictitious temporal dependencies. Hence,
they compute prototypes for each class and perform the
classification based on the distance between the prototypes
and the current input. Finally, Relation Networks [71]
and RENet [30] use feature maps of convolutional
layers to enrich the input encoding. While the former
concatenates the feature maps of both the input and the
samples in the memory set, the latter enriches the input
encoding by extracting correlations patterns between these
feature maps. Finally, the enriched encoding is fed to a
small convolutional network, which returns the prediction.
Standard image classification settings are underexplored in
the MANN literature, and represent an open problem for
further research. The few published works on the topic, to
the best of our knowledge, only target specific domains,
such as bioimages classification [16] and defect pattern
classification [29], lacking in generalizability. Typically,
these works employ ad-hoc training procedures and learning
paradigms tested only on shallow networks, making its
generalizability and effectiveness on deep neural networks
unclear.

Conversely, our contribution is a module that can
be attached to any deep neural network and works on
standard training procedures. As in the works on few-shot
learning, Memory Wrap uses a memory set to aid the
inference process, but, crucially, its architecture enables
the interpretability of its behavior. In particular, differently
from existing approaches, our module preserves the
independence of the memory sample and input encodings,
and uses only a subset of the memory set during the
inference process. These features, alongside the module
architecture, make the interpretation of the predictions
easier, a feature not supported by the previous works.

2.2 eXplainable Artificial Intelligence

The field of eXplainable Artificial Intelligence aims at
developing methods to help users in understanding the
inner working mechanisms of black-box AI agents. [47]
distinguishes between transparent models, where one can
unfold the chain of reasoning (e.g., decision trees), and
post-hoc explanations, which explain predictions without
looking inside the box. Additionally, in the context of deep
learning, some recent works propose the so-called self-
interpretable deep learning models, which can be placed
in between these categories. While they are not fully
transparent models yet, they provide elements that can help
users understand the decision process.

Examples of this category are architectures that learn and
use prototypes, those that add constraints on the learning
process of the latent space, and attentive models. The
former learn sets of prototypes, which can then be used
for interpretability purpose [44]. The typical workflow
consists of first learning a set of prototypes that satisfy
some constraints, then comparing the input with them, and
finally computing the prediction based on the activated
prototypes. By associating concepts to the prototypes and by
analyzing the closest ones to the input, users can understand
which parts of the inputs are important for the current
prediction, thus extracting insights about feature attribution.
ProtoPNet [10], NP-ProtoPNet [66], and TesNet [80]
represent the last advancements of this category. The second
set of architectures forces the network to learn more
interpretable representations in the form of disentangled or
concept aligned representations [11, 35, 77]. In this way, a
user can understand by inspection what factors influence the
decision process, since each activation captures only a given
property. Attentive models include attention modules into
their structure, making the elements on which the model is
focusing more evident [43, 89]. We place our work in the
last category, since it uses the attention mechanism and the
structure of the model to provide insights into its decision
process. Additionally, our approach presents some of the
features of prototype-based explanations but replaces the
learned prototypes with samples extracted from the dataset.

2.2.1 Example-based explanations

Example-based explanations are representative instances
extracted from given data that help the user to understand
how the network works [4]. Ideally, the instances should be
similar to the input and, in classification settings, predicted
in the same class. In this way, by comparing the input and
the examples, a human can extract both similarities between
them and features that the network uses to make predictions.

These explanations are usually connected to case-
based reasoning and prototype learning. Prototype-learning
includes the architectures that learn a set of prototypes, as
described in the previous section. The prototypes are fixed
latent representations against which the model compares
the input and performs its computations [45]. By inspecting
the prototypes, it is possible to understand which parts
of the inputs have a strong influence on the decision
process [10]. Additionally, by using techniques like K-
Nearest Neighbours (K-NN) [14], one can retrieve similar
samples to the prototypes over the latent space and use them
as global example-based explanations.

Case-based reasoning approaches use a proxy model to
explain the black-box by learning a mapping between them.
An example is the usage of K-NN over the last latent space
or enhanced versions [32] that assign different weights to

9117A self-interpretable module for deep image classification on small data

each dimension based on the features values [60] or their
attributions [31].

As in the first set of methods, Memory Wrap uses
the comparison between the input and some examples to
increase the interpretability of its decision process. By
design, samples used during the inference process and
associated with the same prediction can be seen as good
candidates for example-based explanations. Identifying
these samples can aid the users in better understanding the
decision process. While prototype learning provides global
example-based explanations, Memory Wrap replaces the
learned prototypes with dataset samples that are different
each time, thus providing local explanations. Note that
the model chooses these samples not because they are the
optimal set of example-based explanations but because they
are the most useful for computing the current prediction.
In fact, they do not represent an alternative to post-hoc
methods, which one can still apply on top of Memory Wrap,
but a fast and cheap way to inspect its decision process.

2.2.2 Counterfactuals

Counterfactuals are specular to example-based explana-
tions: in this case, the instances should be similar to the
current input but classified in another class. By comparing
the input to counterfactuals, it is possible to highlight differ-
ences and extract edits that one should apply to the current
input to obtain a different prediction.

While it is feasible to get counterfactuals for tabular data
by changing features and at the same time respect domain
constraints [56], the task is more challenging for images
and text. The difficulty is caused by the lack of formal
constraints and the huge number of features involved. The
possible solutions are adopting search methods that select
some data samples as counterfactuals or generating them
through generative models or perturbations. While the first
approach has scalability problems on large state, the latter
must deal with the generation of unrealistic samples or
out-of-distribution samples [50, 79].

Both generative and perturbation-based approaches are
based on the idea of minimizing a cost function that should
take into account several factors, like the predictions on the
perturbed instance, the desired outcome [79], the closeness
of features [39], and the closeness to prototypes [50]. For
example, [79] propose to guide the perturbation process by
using a loss function that minimizes the difference between
the predictions on the perturbed instance and the the desired
outcome and the L1 norm of the perturbations. Recently,
[50] improve the previous approach by adding a term that
penalizes perturbations distant from a set of prototypes.
One of the problems of perturbation-based methods and
iterative process is their high latency due to the large
search space. Liu et al. [49] try to mitigate this problem

by combining Generative Adversarial Networks (GANs)
and editing mechanisms in place of iterative processes. The
results are promising, but – since GANs are black-boxes
themselves – it is difficult to understand why a particular
counterfactual is a good candidate or not. While our module
shares the idea of the above-mentioned methods, i.e., using
samples that are similar to the input but predicted in
a different class as counterfactuals, our goal is not to
select the optimal set of counterfactuals but to provide a
more transparent decision process. Hence, as in the case
of example-based explanations, Memory Wrap chooses
candidate counterfactuals only among the samples actively
used by the network during its decision process. When
available, these samples can be treated as fast candidates for
counterfactuals and used to inspect the module’s behavior,
achieving the double objective of improving the training
process and providing insights about it (Section 4.3.2).

2.3 Image classification

Deep image classification is the task of learning a mapping
between images and labels using a deep neural network.
Its results are often used for improving the performance of
related tasks such as detection [9], segmentation [21], image
coloring [42], and text recognition [84, 86].

In the last ten years, the field has seen a considerable
performance improvement, thanks to the explosion of
deep learning techniques that replaced the hand-crafted
filters used before. In particular, Convolutional Neural
Networks [26, 28, 57, 64, 72, 74, 87, 88] are the most
popular architectures, learning and applying filters through
the chain of operations performed at each convolutional
layer. Thanks to the availability of bigger and bigger
datasets, the networks have grown in size, reaching millions
of parameters, like in the case of the emerging class of
architectures based on the Transformers [18]. However, the
usage of large-scale datasets and the massive size of these
networks require more and more resources and training
time, thus making the development and the adoption of these
networks harder [12].

The research community is actively working to solve
this issue, proposing solutions that can be adopted
on tasks that involve small data or low resources.
Examples of such approaches are pre-trained models
(e.g., transfer-learning [73]), unlabeled data (e.g., semi-
supervised learning [19]), custom training paradigms, or
novel blocks for specific architectures [76]. The first
category includes transfer learning techniques and few-shot
learning. Transfer learning consists of training a model
on a large dataset, like ImageNet [63], and then using
the learned weights as a starting point for the training
of the same network on a smaller dataset. Instead, few-
shot learning [82] aims at learning entirely novel classes

9118 B. La Rosa et al.

using only a few samples, starting from a pre-trained model
on different classes that acts as prior knowledge. The
second type of approach is applicable when unlabeled data
are available and the distribution of data follows certain
assumptions [19]. For instance, in the semi-supervised
learning paradigm, the network can use its predictions to
assign soft labels to the unlabeled data and use them during
the training process. Finally, some works propose to modify
the training process, introducing novel regularizers [6], or
losses [3, 34, 41]. In contrast, we propose a module that
can be directly attached to a deep neural network and does
not use any pre-trained model, larger datasets, or prior
knowledge. The module can be used without changing the
training process in settings where we have no additional
resources or information about the dataset. With respect to
the approaches that modify the training process, our module
is complementary, and thus future works could explore their
practical combination.

While the domain of image classification includes
several other subcategories, like hyperspectral image
classification [27, 46] and medical imaging [55], in this
paper, we focus on the case of natural image classification,
which includes the most common benchmarks used in the
settings considered in this paper. However, the structure of
the proposed module could potentially be also used on other
classification problems, adapting it to the new domains
(Section 5.3).

3Memory wrap

This section presents the proposed module, describing
the elements on which it is based (Section 3.1), its
structure (Section 3.2), and how to identify example-based
explanations and counterfactuals for its predictions among
the samples that impact the decision process (Section 3.3).

3.1 Preliminaries

3.1.1 Problem formulation

Given a training set of input-output pairs

X = {(x, y)}ni=1 (1)

where n is the number of data points included in the training
set, the objective is to learn a function f that maps a novel
input x to its expected output y:

f : x → y, x ∈ R
p, y ∈ {0, 1}c (2)

where c denotes the number of classes and p is the
dimension of the inputs.

In this paper, we assume that n is small (i.e., n =
{1000, 2000, 5000}), and f is a deep neural network that has
to learn the mapping using only the given n available data.

Most deep neural networks f can be represented as the
composition of two functions:

f1 : x → z (3)

f2 : z → y (4)

f : f1 ◦ f2 = f2(f1(x)) (5)

where the ◦ symbol denotes the composition of two
functions, f1 is the encoder that transforms the input from
the input space to the latent space, and it is commonly
referred to as feature extractor, and f2 is the classifier that
performs the classification based on the values of the latent
representation of x.

We assume that the network f is a black-box, i.e., it does
not provide natively any way to inspect its decision process.

3.1.2 Content-based attention

Content-based attention has been introduced by [23], which
named it content-based addressing, and it is defined as the
weighted softmax φ1 over the cosine similarity between a
vector and a matrix. Formally, given the function D that
computes the cosine similarity, a vector k of dimension d1,
and a matrix M of dimensions d2 × d1, the content-based
attention mechanism associates a score to each row r of the
matrix using the following equation:

C(M,k, β)[r] = φ1(D(k,M), β)

= exp(D(k,M[r,·]])β∑
s exp(D(k,M[s,·]])β

(6)

where β ∈ [0, 1] is a learned parameter that weighs
the given module’s importance in the context of multiple
attention heads.

3.1.3 Sparsemax

Content-based attention, like most attention mechanisms, is
based on the usage of softmax to compute the relevance
of each input. Recent works highlight that using sparse
functions in place of the softmax may improve performance
and interpretability of attention modules [52, 54]. These
functions assign zero probability to irrelevant input tokens,
mitigating the problem of input dispersion [83].

Among the solutions proposed in literature, for flexibility
reasons, we focus on the algorithm proposed by [13]. This
approach, which is based on bisection methods [7, 48],
finds the probability distribution that satisfies the following
equation:

φ2(xj) = arg min
p∈�n−1

pT x + Ht
α(p) (7)

9119A self-interpretable module for deep image classification on small data

where �n−1is the probability simplex, α is a hyperparame-
ter that controls the smoothness of the function, and HT

α is
the Tsallis entropy [75], as described in (8).

Ht
α(p) =

{
1

α(α−1)

∑
j (pj − pα

j) α �= 1

− ∑
j pj log pj α = 1

(8)

By combining (8) and (7) we obtain the objective optimized
by the softmax function and the resulting probability
distribution does not contain zero values. Increasing the α

leads to an increment of the sparseness until the maximum
value of α = 2, which corresponds to the sparsemax
function.

To compute weights for α �= 2, we can use the following
equation, which gives us the solution to the system:

φ2(xj) = ReLU([(α − 1)x − τ1] 1
α−1 (9)

where τ is the Lagrange multiplier corresponding to
the

∑
i pi = 1 constraint. For further details about the

algorithm and the proof of the derivation, please refer to the
work of [13].

3.2 Proposedmodule

The goal of the proposed module is to make the decision
process of the network f more transparent and improve its
performance in small data settings. To achieve this goal,
we design Memory Wrap to be a self-interpretable module
that replaces the classifier f2 in the black-box f . During
the training process, Memory Wrap learns a function fMW

that takes as input the latent representations of two vectors
and computes the prediction yi . The input is composed of
the latent representation of the current network input xi

and a set of latent representations of m samples randomly
extracted from the training samples Si = {xi

m1
, xi

m2
, .., xi

mm
}

called memory set, which act as memories of the training
process.

yi = fMW(f1(x), f1(S)) (10)

The modified deep neural network becomes:

f : f1 ◦ fMW = fMW(f1(x), f1(S)) (11)

Since fMW takes as input the latent representations
produced by the encoder, the structure of the latter has
an impact on the performance, so we expect that a better
encoder architecture could improve further the performance
of the module.

Memory Wrap uses a sparse version of the content-based
attention mechanism and a classifier to combine the input
representation and the memory set.

Our sparse content-based attention replaces the soft-
max φ1 with the sparsemax function φ2 [53], obtaining:

SC(M,k, β)[r] = φ2(D(k,M), β)

= ReLU([(D(k,M) − τ1] (12)

where we set α = 2 to use the sparsemax function and
remove the β parameter (or equivalently set it to 1), since
Memory Wrap includes just one attention module.

Now we will describe the entire workflow of the network
f (Fig. 2). First, the encoder f1(x) encodes both the input
and the memory set, projecting them in the latent space:

exi
= f1(xi) (13)

MSi
= {mi

1, . . . ,m
i
m} = {f (xi

m1
), . . . , f (xi

mm
)} (14)

where exi
is the encoder representation of the input xi ,

and MSi
is a matrix ∈ R

m×p containing m samples,
each of which of dimension p that depends on the output
dimensions of the encoder. Then, these representations
are fed to the sparse content-based attention module. The
attention mechanism allows Memory Wrap to compute a
score for each sample mi

k in the memory set using the
equation:

w = ReLU([(D(exi ,Msi)) − τ1] (15)

At this point, similarly to [23], Memory Wrap computes
the memory vector vSi

as the weighted sum of memory set
encodings, where the weights are the sparse content-based

Fig. 2 Sketch of a deep neural network that includes Memory Wrap.
The encoder maps the input and the memory set into the latent space.
Then, Memory Wrap generates a memory vector based on the sparse
content-based attention between them. Finally, the classifier takes both
the memory vector and the input encoding, and it computes the output

9120 B. La Rosa et al.

attention weights computed before:

vSi
= MT

Si
w. (16)

Since the memory vector is computed using the sparsemax
function, it includes information from a few memory
samples. In this way, each sample contributes significantly,
thus helping us to achieve output explainability. Conversely,
the softmax would produce a vector representing all
samples, but their contributions are flatter, making the
importance estimation harder.

Finally, the classifier clf takes the concatenation of the
memory vector and the encoded input, and computes the
final output:

oi = g(xi) = clf ([exi
, vSi

]). (17)

In our case, we use a multi-layer perceptron with one hidden
layer containing a number of units obtained by doubling
the dimension of the input (Section 5.2). The role of the
classifier is to exploit the memory vector to enrich the
input encoding, using the additional features extracted from
similar samples, possibly missing on the current input. On
average, considering the whole memory set and thanks to
the cosine similarity, strong features of the target class will
be more represented than features of other classes, helping
the network in the decision process.

3.3 Getting explanations

We aim at two types of explanations: example-based
explanations and counterfactuals. The idea is to exploit the
memory vector and content attention weights to extract
explanations about model outputs, in a similar way to [38].
To understand how, let’s consider the current input xi , the
current prediction f (xi), and the encoding matrix MSi

of
the memory set, where each mi

j ∈ MSi
is associated with a

weight wj .
We can split the matrix MSi

into three disjoint sets:

MSi
= Me ∪ Mc ∪ Mz (18)

where: Me = {f1(xi
mj

) | f (xi) = f (xi
mj

)} contains
encodings of samples predicted in the same class f (xi) by
the network and associated with a weight wj > 0; Mc =
{f1(xi

mj
) | f (xi) �= f (xi

mj
)} contains encodings of samples

predicted in a different class and associated with a weight
wj > 0; and Mz contains all the other samples, which are
associated with a weight wj = 0 (Fig. 3).

Note that Mz does not contribute at all to the decision
process, and it cannot be considered for explainability
purposes. Conversely, since Me and Mc have positive
weights, they can be used to extract example-based
explanations and counterfactuals. Let’s consider the sample
xi
mj

∈ MSi
associated with the highest weight. A high

weight of wj means that the encoding of the input xi and the

Fig. 3 An illustration to highlight how to interpret the samples
included in the memory. Assuming that the current input is predicted
as a member of class 1, we can distinguish between: the set Me of
candidates for example-based explanations as the samples predicted in
the same class and associated with a weight greater than zero (green),
the set Mc of candidates for counterfactuals as the samples predicted
in a different class and associated with a weight greater than zero (red),
and the set Mz of samples that have no impact on the decision process
(white)

encoding of the sample xi
mj

are similar. If xi
mj

∈ Me, then
it can be considered as a good candidate for an example-
based explanation because it is an instance highly similar
to the input and predicted in the same class, as defined in
Section 2.2. Conversely, if xi

mj
∈ Mc, then it could be

considered as a counterfactual, because it is highly similar
to the input but predicted in a different class.

The key observation is that, since it has the highest
weight, it will be heavily represented in the memory
vector that will actively contribute to the inference, being
used as input for the last layer. This means that common
features between the input and the sample xi

mk
are highly

represented, and so they constitute a good example-based
explanation. Moreover, because xi

mk
is partially included in

the memory vector, if it is a counterfactual, it is likely that
it will be the second or third predicted class, giving also
information about “doubts” of the neural network. In the
next sections, we show how the identification and analysis
of these important samples help us to diagnose and interpret
the model behavior and its decision process.

4 Results

This section first describes the experimental setup, then
it presents and analyzes the obtained performances, and
finally, it shows how it is possible to interpret the decision
process based on the memory samples used by Memory
Wrap.

9121A self-interpretable module for deep image classification on small data

4.1 Setup

We train from scratch several deep neural networks and com-
pare their performance with and without our proposed mod-
ule on subsets of three popular datasets, Street View House
Number (SVHN) [58], CINIC10 [15] and CIFAR10 [36].
We apply the protocol described in the Algorithm 1, training
each network on a subset of each dataset.

Algorithm 1 Experimental protocol.

Require: datasets, networks list of datasets and deep
networks

Ensure: results variable to collect results
1: num samples [1000,2000,5000]
2: results []
3: for model in networks do:
4: for data in datasets do:
5: for samples in num samples do:
6: accuracies []
7: for run in range(1,15) do:
8: reduced dataset extract(data[train],

samples)
9: f train(model, reduced dataset)
10: accuracy eval(f, data[test])
11: accuracies.append(accuracy)
12: end for
13: results.append([f, d, samples, accuracies])
14: end for
15: end for
16: end for
17: return results

In each experiment, we randomly split the training set to
extract smaller datasets in the ranges {1000, 2000, 5000}.
These sets correspond to the 1%, 2% and 5% of the
labeled samples in CINIC10 and 2%, 4% and 10% of
the labeled samples in the other datasets, thus simulating
small data settings. Then, we train from scratch the chosen
configuration of the deep neural network using the extracted
subset, and we evaluate its performance on the test dataset.
We consider the mean and the standard deviation of the
accuracy over 15 experiments as the final result for each pair
model-subset.

We test Memory Wrap on ResNet18 [26], Effi-
cientNetB0 [74], MobileNet-v2 [64], GoogLeNet [72],
DenseNet [28], ShuffleNet [88], WideResnet 28x10 [87],
and ViT [18]. These networks are commonly used as back-
bone networks on the considered datasets, and their variants
are among the top performers on the considered settings of
training from scratch without extra data and prior knowl-
edge1.

1https://paperswithcode.com

The implementation of the networks relies upon the
repositories by Kuang Liu2, Oscar Knagg3 and Omiita4.
Memory Wrap can be installed as a Python package at
https://pypi.org/project/memorywrap/.

Training procedure To train the models, we follow different
training procedures based on the repository they belong
to and the training procedure suggested by the authors of
the papers. Specifically, WideResnet [87] is trained using
the procedure explained in the reference paper, ViT [18]
is trained for 200 epochs following the training procedure
employed in the repository to which it belongs, while
for all the other models, we use the official setup for
CINIC10, and the settings of Huang et al. [28] for SVHN
and CIFAR10. Hence, we train these models for 40 epochs
in SVHN and 300 epochs in CIFAR10. In both cases, we
apply the Stochastic Gradient Descent (SGD) algorithm,
starting from a learning rate of 1e-1 and decreasing it by a
factor of 10 after 50% and 75% of epochs. The images are
normalized and, in CIFAR10 and CINIC10, we also apply
an augmentation based on random horizontal flips. We do
not use the random crop augmentation to avoid isolating
a portion of the image containing only the background. In
these cases, the memory retrieves similar examples based
only on the background, thus pushing the network to learn
useless shortcuts. Indeed, in preliminary experiments, we
find that these biased shortcuts improve the performance
of Memory Wrap on the lowest settings but nullify its
impact in some configurations where the training dataset
is larger and the effect of augmentation is more extensive.
We acknowledge that this configuration is neither optimal
for baselines nor for Memory Wrap and we can reach
higher performance in both cases by choosing another set of
hyperparameters tuned in each setting. However, this setup
makes the comparison across different models and datasets
quite fair.

4.2 Performance comparison

We start our investigation by comparing Memory Wrap
against two groups of methods: memory-based neural
modules and algorithms with a similar decision process in
terms of interpretation of their results (i.e., variants of K-NN
and an ablated version of Memory Wrap).

Using ResNet18, MobileNet, and EfficientNet as back-
bones, we perform these first tests on the SVHN dataset.
The goal is to understand the advantages of Memory Wrap
and select the best methods to be used in the next set of
experiments.

2https://github.com/kuangliu/pytorch-cifar
3https://github.com/oscarknagg/few-shot
4https://github.com/omihub777/ViT-CIFAR

9122 B. La Rosa et al.

https://paperswithcode.com
https://pypi.org/project/memorywrap/
https://github.com/kuangliu/pytorch-cifar
https://github.com/oscarknagg/few-shot
https://github.com/omihub777/ViT-CIFAR

4.2.1 Memory-basedmodules

The first group includes Prototypical Networks [67] and
Matching Networks [78], which are two popular baselines
that, like Memory Wrap, replace the last layer with a
memory module. They can be applied to any network and
have an associated code available to the public. We also
include in the comparison the models themselves without
any additional layer (std).

Standard (Std) This baseline is the deep neural network
without the replacement of the last layer with Memory
Wrap. It is trained in the same manner as the network with
Memory Wrap.

Prototypical networks This is the module proposed by [67],
where we replace their shallow network with our backbone
models. In this case, the network computes the prototypes
for each class by taking the mean of the samples in the
memory set, and then it will use the distance between them
and the current input to compute the prediction.

Matching networks This is an adapted version of [78],
where we replace the encoder with the networks considered
in our work. It enriches the input embedding by using an
LSTM network and it performs the classification based on
a weighted linear combination of the labels in the memory
set, using the distance between its samples and the current
input as weights.

Note that the memory sets used in all the considered
methods contain samples randomly extracted from the
reduced training dataset. This prevents the network from
accessing additional resources during the training process,
thus violating the small data settings and making the
comparison unfair.

Performance Figure 4 compares the performance reached
by the methods when trained using 1000, 2000 and 5000
training samples respectively. The results allow us to
understand the differences when using the memory set in
different ways.

We can observe that Matching Networks reach the lowest
performance on all the configurations and Prototypical
Networks outperform them, confirming the results in the
work of [67]. However, the performance of Prototypical
Networks is still lower than the standard models and
Memory Wrap. We can explain the results by analyzing
the complexity of these approaches and the impact of each
sample of the memory set. Matching Networks adopt the
most complex type of encoding, since they use LSTMs to
encode both the input and the memory set. Hence, the power
of the approach depends on the goodness of the encoding
of the LSTMs, which in turn depends on the quality and
amount of training data. While this is not a problem in few-
shot learning settings, where LSTMs are trained using the
full dataset from a fixed set of classes, this is less effective
in the scenario of small data. The low amount of training
data can produce unstable or misaligned encoding, thus

Fig. 4 A comparison between different ways of using a memory set to aid the inference process on the SVHN dataset. We compare the baseline
models (std) against Matching Networks (MatchingNet), Prototypical Networks (PrototypicalNet) and Memory Wrap

9123A self-interpretable module for deep image classification on small data

impacting the performance of the model. Additionally, by
design, all the samples in the memory set influence the
encoding of both the set and the input. This means that the
wrong encoding of a few samples has a huge impact on the
behavior of the model itself. Prototypical Networks mitigate
the first problem and outperform Matching Networks by
encoding the input and the memory samples independently,
using the backbone architecture. However, they are still
affected by the second problem, since they compute the
prototypes as an average of the samples in the memory set.
This means that they depend on the quality of the memory
set, and they have difficulties when dealing with outliers,
since they can have atypical encoding. Moreover, when the
number of classes is greater than a few, the encoding of the
prototypes can be close, exacerbating the problem.

Memory Wrap outperforms all the others, reaching a
data efficiency of 1.5x for EfficientNet and MobilNet and
between 2x and 2.5x for ResNet. It achieves these results
by adopting the encoding strategy of Prototypical Networks
and mitigating the problems connected to the computation
of prototypes. Indeed, it adaptively selects a subset of the
samples in the memory set, ignoring misaligned points, and
completely removes the problem of the impact of wrong
encoding. Moreover, when the input is an outlier, a common
scenario in small data settings, the models compare it to, and
use information from, similar outliers rather than comparing
it with an aggregated average, potentially distant from its
encoding. Finally, since Memory Wrap does not use labels
and can choose by itself which samples to focus on, the
number of samples (and potentially of classes) has a lower
impact on the performance. Another important feature is
that, while Memory Wrap provides some possibilities to
analyze its decision process (Section 4.3), the alternatives
are close to black-boxes, especially when using LSTM to
enrich the encoding, thus making the interpretation of their
behavior hard.

4.2.2 Interpretable methods

The second group includes algorithms that perform the
classification similarly to Memory Wrap, and they are
comparable in terms of explanations that one can extract.
In the same settings of the previous section, we compare
Memory Wrap against: K-NN; a version of K-NN that
uses the sparsemax function; and an ablated version of
Memory Wrap. K-NN We consider the predictions obtained
by applying the K-NN algorithm on the latent space of
the standard baseline [17]. We pick 100 random samples
at each iteration from the current training dataset, and we
compute the distance between these and the current input.
We select the predictions based on the mode of the top-k
nearest neighbors. This baseline corresponds to the baseline
classifier used in [78].

Major voting This baseline works like K-NN but replaces
the K-NN algorithm with a sparsemax over the cosine
distance. The predictions are chosen based on the mode of
the samples that have the resulting weights greater than zero.
The starting models are the standard baselines, like in the
K-NN baseline.

Only Memory (OnlyMem) This is an ablated variant of
Memory Wrap that uses the memory vector alone as the
input to the classifier by removing the concatenation with
the encoded input. Therefore, the output is given by

oi = g(xi) = clf (vSi
) (19)

In this case, the input is used only to compute the sparse
content-based attention weights, which are then used to
build the memory vector, and the network learns to predict
the correct answer based on it. Because of the randomness
of the memory set and the absence of the encoded input
image as input of the last layer, the network is encouraged
to learn more general patterns and not exploit the given
image’s specific features.

Performance Interestingly, the baseline of K-NN is quite
competitive on several configurations, getting a more
interpretable classification while lowering the performance
of standard models by 1-2% of accuracy (Fig. 5). This is in
line with the excellent results of this baseline reported across
many tasks [78]. We can observe that the best performing
value of the hyperparameter k changes model by model
and configuration by configuration, thus making its tuning
difficult. The Major Voting algorithm avoids the problem
by using the sparsemax, which dynamically chooses the k

value at inference time. However, its performance is nearly
the same as the vanilla K-NN or even worse, likely due to
the noise introduced by the additional samples included by
the sparsemax function.

Memory Wrap and the variant OnlyMem combine
the positive aspects of these baselines: they exploit
similar examples to perform classification, thus making
the decision process of the underlying networks more
interpretable, and they use the sparsemax to dynamically
choose the samples to be used for each input. The crucial
difference is that they directly use the memory set and the
similarity with the input during the optimization process to
improve the learning process. In this way, the module allows
the underlying model to learn how to exploit the neighbors’
information. While both variants reach very good results,
the additional information carried on by the encoder in
Memory Wrap seems crucial to achieve the best possible
performance, especially when dealing with the lowest
number of samples, likely due to the additional shortcuts
accessible only from the given input (e.g., the combination
of rare features). Before analyzing the properties of Memory

9124 B. La Rosa et al.

Fig. 5 A comparison between different algorithms with a similar interpretable decision process on the SVHN dataset. We compare K-NN using
{1, 5, 10} as k value, a modified K-NN that uses a sparsemax (Major Voting), Memory Wrap and its ablated version (OnlyMem)

Wrap and the reasons behind the obtained results, we select
the top performers across the tests, namely the standard
baseline and the two variants of Memory Wrap, and show
the results for the rest of the settings.

4.2.3 Complete experiments

First, we extend the test on SVHN to GoogLeNet [72],
DenseNet [28], ViT [18], WideResnet [87], and Shuf-
fleNet [88] (Fig. 6). Then, we report in Figs. 7 and 8 the
results using all the encoders in CIFAR10 and CINIC10.
Analyzing these results, firstly, we can observe that the
amount of gain in performance depends on the underly-
ing deep network: MobileNet shows the largest gap in all
the datasets, while ViT shows the smallest one. Secondly,
results depend on the dataset since the gains in each SVHN
configuration are always more significant than the ones in
CIFAR10 and CINIC10. We think that this depends on the
structure of the dataset itself. Several features are in com-
mon between different classes in CINIC10 and CIFAR10
(e.g., material, color, etc.), and they are themselves com-
mon features in images. Therefore, for the memory module,
it is harder to exploit them to distinguish between classes.
Conversely, in SVHN, the intra-class variance is lower,
and the differences between classes can be more easily

exploited using the similarity with samples in the memory
set.

Moreover, we can observe that adding Memory Wrap to
a deep neural network reduces its variance of performance
across different runs, making the learning process more
stable. Regarding the ablated version Only Memory, it
outperforms the standard baseline, reaching nearly the same
performance as Memory Wrap in most settings. However,
its performance appears less stable across configurations.
In fact, they are lower than Memory Wrap in some SVHN
and CINIC10 settings, lower than standard models in some
configurations of DenseNet and ResNet, and sometimes
the fail (e.g., ViT on SVHN). These results confirm our
hypothesis that the additional information captured by the
input encoding allows the model to exploit other shortcuts
and to reach the best performance. Moreover, even though
it uses only the memory set to compute the prediction, its
interpretability is comparable to Memory Wrap (Appendix A).

4.3 Interpreting thememory wrap behavior

Now we are ready to discuss how Memory Wrap’s structure
helps us interpret its predictions. In this section, we consider
MobileNet-v2 as our base network for simplicity, but
the results are similar for all the considered models and

9125A self-interpretable module for deep image classification on small data

Fig. 6 Avg. accuracy and standard deviation over 15 runs of the standard model and two variants of Memory Wrap, when the training dataset is a
subset of SVHN. For each configuration, we highlight in bold the best result and results that are within its margin

Fig. 7 Avg. accuracy and standard deviation over 15 runs of the standard model and two variants of Memory Wrap, when the training dataset is a
subset of CIFAR10. For each configuration, we highlight in bold the best result and results that are within its margin

9126 B. La Rosa et al.

Fig. 8 Avg. accuracy and standard deviation over 15 runs of the standard model and two variants of Memory Wrap, when the training dataset is a
subset of CINIC10. For each configuration, we highlight in bold the best result and results that are within its margin

configurations. The first step is to check which samples in
the memory set have positive weights – the set Mc ∪ Me.
Figure 9 shows this set sorted by the magnitude of sparse
content-based attention weights for six different inputs of

the three datasets. Each couple shares the same memory set
as an additional input, but each set of used samples – those
associated with a positive weight – is different. In particular,
consider Fig. 9a, where the only difference among images

Fig. 9 Inputs (first rows) from SVHN (a), CIFAR10 (b), and CINIC10 (c), their associated predictions and an overview of the samples in the
memory set that have an active influence on the decision process – i.e. the samples on which the memory vector is built – (second row)

9127A self-interpretable module for deep image classification on small data

is a lateral shift made to center the numbers. Despite
their closeness in the input space, samples in memory are
different: the first set contains images of “5” and “3”, while
the second set contains mainly images of “1” and a few
images of “7”. We can infer that the network probably
focuses on the shape of the number in the center to classify
the image, ignoring colors and the surrounding context.
Conversely, in Fig. 9b the top samples in memory are
images with similar colors and different shapes, thus telling
us that the network is wrongly focusing on the association
between background colors and the object color. These
examples show that just the inspection of samples in the set
Mce = Mc ∪ Me can give us some insights into the decision
process. Finally, Fig. 9c gives us a hint of how the model
separates the classes: the samples used to predict the image
as an automobile include images of trucks, thus suggesting
that these two classes are close in the representation space
of the model.

Once we have defined the nature of the samples in the
memory set that influence the inference process, we have
to verify whether the sparse content-based attention weights
ranking is meaningful for Memory Wrap predictions. To
measure the reliability, we set the prediction matching
accuracy as a measure that checks how many times the

prediction obtained using as input the sample in the memory
set matches the prediction associated with the current
image. Intuitively, if a sample xi

mk
influences significantly

the decision process and if it can be considered as a good
proxy for the current prediction g(xi) (i.e a good example-
based explanation), then g(xi

mk
) should be equal to g(xi).

In Table 1, we compare the prediction matching accuracy
reached by using as input the sample ∈ Mce with the
highest weight (TopMce

), the sample ∈ Mce with the lowest
weight (BottomMce

), or a random sample. Additionally, we
compute the prediction matching accuracy for the standard
baseline, applying a similar mechanism. We extract 100
random samples from the training set, compute the cosine
distance in the latent space, apply a sparsemax over the
distances, and extract the samples with the highest and the
lowest weight.

We observe that, in the networks with Memory Wrap,
the sample with the highest weight reaches high accu-
racy, always greater than both the random selection and
the sample with the lowest weight. As a result, the sparse
content-based attention weights ranking is reliable and
extracts good proxies for the predictions. The results show
that the prediction matching accuracy of the bottom exam-
ple increases when the model improves its performance.

Table 1 Avg. prediction matching accuracy and standard deviation
comparison over 15 runs between the sample in the memory set
with the highest sparse content-based attention weight (TopMce), the

example with the lowest weight but greater than zero (BottomMce) and
a random sample (Random) for both MobileNet with Memory Wrap
and without it (Standard)

Prediction matching accuracy %

Model Example 1000 2000 5000

SVHN

Memory Wrap TopMce 84.24 ± 1.22 90.59 ± 0.52 94.47 ± 0.22

Standard TopMce 75.34 ± 3.77 84.45 ± 2.15 92.28 ± 1.07

Memory Wrap BottomMce 46.46 ± 1.77 57.39 ± 1.09 69.94 ± 1.37

Standard BottomMce 31.77 ± 4.89 44.00 ± 4.34 62.43 ± 3.36

Random 11.76 ± 0.30 11.66 ± 0.17 11.71 ± 0.13

CIFAR10

Memory Wrap TopMce 82.04 ± 1.14 87.75 ± 0.72 91.76 ± 0.22

Standard TopMce 72.39 ± 1.64 77.65 ± 1.76 85.56 ± 1.63

Memory Wrap BottomMce 46.01 ± 1.92 60.10 ± 1.29 69.94 ± 0.82

Standard BottomMce 32.42 ± 1.81 40.21 ± 2.77 52.61 ± 3.99

Random 10.22 ± 0.28 10.23 ± 0.20 9.80 ± 0.43

CINIC10

Memory Wrap TopMce 76.31 ± 0.73 78.50 ± 0.50 78.45 ± 0.62

Standard TopMce 69.75 ± 1.65 75.51 ± 1.27 74.11 ± 1.04

Memory Wrap Bottom Mce 37.01 ± 1.12 41.34 ± 0.73 37.55 ± 1.49

Standard BottomMce 29.66 ± 1.17 36.87 ± 1.45 30.73 ± 1.58

Random 10.47 ± 0.19 10.30 ± 0.11 10.16 ± 0.12

The bold entries represents the results of the model that reaches the highest accuracy

9128 B. La Rosa et al.

This finding is consistent with the results of Table 3, and it
is motivated by the fact that when Memory Wrap improves
its performance, it learns to select more and more often sam-
ples of only the same class and, as a consequence, the set
Mce includes more often only them, hence the increment
of the prediction matching accuracy of the sample with the
lowest weight. Finally, Table 1 also shows that the model
including Memory Wrap outperforms the standard baseline
in all the datasets in terms of predictions matching accuracy,
thus suggesting that including the memory set in the training
process and encouraging the model to exploit is beneficial
to obtain more precise example-based explanations.

4.3.1 Example-based explanations

In this section, we examine the samples in the set Me, which
are associated with a weight greater than zero and predicted
in the same class of the input. We show a usage scenario
on how to exploit them, and then we analyze their quality
when used as example-based explanations by comparing
them with post-hoc methods.

Usage scenario: bias detection In this test, we investigate
whether it is possible to detect when the model is biased
by exploiting the interpretability of the module. Therefore,
we train EfficientNet augmented with Memory Wrap on a
biased version of MNIST [40]. This dataset [2] includes
a bias that correlates the background of images with their
labels. We fix the correlation to 1 in the training set,
introducing a one-to-one mapping between classes and
background color. In this way, the model can achieve high
accuracy by exploiting the bias, and it has little motivation to
learn additional features of the images. At testing time, we
remove the correlation, randomly selecting the background

color for each image. Our goal is to train the model in a
such way that its predictions are biased and show how we
can use the memory set to detect the bias. Figure 10 shows
how we can visually detect that the model is highly biased
in a fast way: the samples in the set Me used to perform the
classification have the same background color as the input
image, although the digit in the middle is different. This
analysis tells us that the background is the main feature used
by the model to classify the digit.

Quality estimation Here, we estimate the quality of the
sample with the highest weight in the set Me when
used as an example-based explanation by comparing
it to the explanations extracted by post-hoc methods.
To measure the quality, we introduce and use the
input non-representativeness and the prediction non-
representativeness metrics. The first is the objective
implicitly optimized by [32], and it is the L1 loss between
the logits of the current prediction and the logits of
the selected explanation. Intuitively, a low score means
that the model acts similarly in both cases, returning
similar output distributions. Conversely, the prediction non-
representativeness measures the cross entropy loss between
the logits of the selected explanation and the predicted class
used as the target class. This metric is equivalent to the non-
representativeness metric proposed by the contemporary
pre-print of [59], but considering a set of one explanation.
We compare the best example-based explanation selected
among the samples in the memory by two post-hoc methods,
namely the CHP method [32] and the KNN* against which
they compare (i.e., inspired by the pre-print written by [61]),
a random selection among the samples associated with the
same prediction of the current input, and the sample xi ∈
Me associated to the highest weight.

Fig. 10 An example of a model
biased towards the background.
The figure shows how the
inspection of the memory
samples used by the network
makes clear the reasons behind
the bad performance of the
network

9129A self-interpretable module for deep image classification on small data

Figure 11 shows that, in terms of input non-
representativeness, the post-hoc methods are the best
choices to select the best sample. This is motivated by
the fact that these methods are optimized to minimize this
score. Memory Wrap achieves worse performance, but they
are still significantly better than the random baseline. Con-
versely, Fig. 12 shows that the samples selected by Memory
Wrap are slightly better than all the others in terms of
class prediction non-representativeness and, surprisingly,
sometimes the random baseline is better than the post-hoc
methods. To understand the results, we can analyze the
behavior of different methods on inputs where the model
is uncertain and the logits among the classes are close. In
these cases, CHP and KNN* extract samples where the
model is uncertain too, and, consequently, the input non-
representativeness score is low. The random baseline picks
a random sample predicted in the same class, and for this
reason, it is more difficult for it to extract one sample where
the model acts in the same way. At the same time, in these
inputs, the prediction non-representativeness scores of CHP
and KNN* are high since they tend to select samples where
the model is uncertain.

Conversely, in Memory Wrap, the final prediction is a
balance of the samples in Me and the counterfactuals in
the set Mc. The samples included in Me are representa-
tive of the predicted class, and they shift the prediction
towards it, while the samples included in Mc act in the
opposite direction. Hence, considering only the sample with
the highest weight in the former set, it will maximize
the prediction representativeness while having difficulties
representing the uncertainty, likely encoded by counterfac-
tuals or example-based explanations with lower weights.

4.3.2 Counterfactuals

This section examines the samples in the set Mc, which are
samples in the memory set associated with a weight greater
than zero and predicted in a different class with respect to
the input. We show an example of a usage scenario, and
then we compare them with counterfactuals generated by a
generative method [50]. Note that, since it is not guaranteed
that Memory Wrap returns a counterfactual at each time,
we consider only the cases when this is available in the
comparison.

Usage scenario: understanding prediction reliability In this
usage scenario, we want to know whether the model
predictions are reliable. The idea is to use the presence
of samples included in Mc to detect when the prediction
could be potentially unreliable. Intuitively, a high number
of counterfactuals in the set of activated memory samples
can be a sign of uncertainty of the model and a chance
that the model is predicting the wrong class. At the
same time, the relative position on the rank, obtained by
sorting the weights of these samples, can also encode
information about their importance in the decision process.
To verify whether this is the case, we compute the Pearson
product-moment correlation coefficients [68] between the
correctness of the prediction (i.e., one if it is correct,
zero otherwise) and two variables: the ratio between
the number of samples in the set Mc and in the set
Me, and the relative index of the first counterfactuals.
Table 2 shows that there is a significant positive correlation
between the position of the first counterfactuals and the
correctness of the prediction, hence the grater is the index,

Fig. 11 A comparison in terms
of input representativeness score
between the CHP method (gray),
KNN* (pink), the random
baseline (green), and the sample
with the highest weight in
memory (blue). Lower is better

9130 B. La Rosa et al.

Fig. 12 A comparison in terms
of prediction representativeness
score between the CHP method
(gray), KNN* (pink), the
random baseline (green), and the
sample with the highest weight
in memory (blue). Lower is
better

or equivalently the lower is its position in the rank, the more
reliable is the prediction. Conversely, there is a negative
correlation with the number of counterfactuals, hence the
more counterfactuals in memory, the lower the prediction’s
reliability.

Once we have proved the correlation between the
counterfactuals and the reliability of the predictions, we
are ready to apply a similar test to the one used for the
computation of prediction matching accuracy in Table 1.
This time we consider two cases: when the sample with the
highest weight is a counterfactual and when the memory set
does not contain counterfactuals.

As shown in Table 3, when the sample with the highest
weight is a counterfactual, then the model accuracy is much
lower and its predictions are often wrong. Hence, one can
use the presence of a counterfactual as the top contributor
of the memory set to alert the user that the decision
process could be unreliable. We also track their frequency
(coverage), since, ideally, we want that these cases would
be rare.

As in the case of prediction matching accuracy, we apply
the test to both Memory Wrap and the standard baseline,
configured as in the previous case. We can see (Table 3) that
both the frequency and the accuracy are lower on the models

augmented with Memory Wrap than the standard baseline,
thus telling us that the procedure is more precise in alerting
the user.

Conversely, when there are only example-based expla-
nations in the memory set, the model is sure about its
predictions and the accuracy is very high. We can observe
that both the accuracy of models with Memory Wrap
and the frequency of these cases are higher than the
standard baseline, and thus the model is reliable in a
higher number of cases and the procedure can detect them
better.

Finally, note that, as expected, the number of cases where
the model is detected as uncertain about its prediction
decreases when we provide more examples in the training
process, and at the same time, the number of cases where
the model is sure increases.

Quality estimation As in the example-based explanations
section, here, we estimate the quality of the counterfactuals
selection based on the weights of Memory Wrap. We
compare it to the counterfactuals generated by a recent
method based on permutations [50] and guided by
prototypes. Prototypes are computed as the mean of the
samples of each class in the dataset. We start the comparison

Table 2 Avg. and standard deviation of the Pearson product-moment correlation coefficients between the correctness of the predictions and the
number of counterfactuals (number) or the position of the first counterfactual (position)

Avg Pearson Coefficent

Model 1000 2000 5000

Position 0.39 ± 0.02 0.40 ± 0.01 0.41 ± 0.01

Number -0.42 ± 0.01 -0.45 ± 0.01 -0.46 ± 0.01

The score is computed as the mean over 15 runs using as encoder MobileNet-v2

9131A self-interpretable module for deep image classification on small data

Table 3 Accuracy reached by the model on SVHN when the sample with the highest weight in memory set is a counterfactual (Top Counter) and
when there are no counterfactuals at all (No Counter)

Avg Accuracy % (Coverage%)

Model Counter 1000 2000 5000

Memory Wrap Top 35.45 (19.32) 38.29 (12.06) 39.79 (7.56)

Standard Top 28.00 (24.62) 40.95 (15.60) 47.81 (7.72)

Memory Wrap No 95.20 (18.73) 97.00 (36.47) 97.84 (56.88)

Standard No 86.80 (4.51) 95.51 (18.69) 97.42 (45.82)

We compare models with and without Memory Wrap (Standard). The accuracy is computed as the mean over 15 runs using as encoder
MobileNet-v2

using the scores proposed by the same paper, namely the
IM1 and IM2 scores [50].

The IM1 score measures the ratio between the recon-
struction error of the counterfactuals using an autoencoder
trained to recognize the samples in the input class and an
autoencoder trained using only samples of the counterfac-
tuals class. The lower the score, the more interpretable the
counterfactual is. Table 4 shows that the scores are nearly
the same for both approaches. However, we should consider
that the score has been proposed for generative methods,
which start from the input and shift towards the coun-
terfactual class. In this case, it makes sense to reward a
counterfactual closer to the counterfactual class rather than
the input class.

Conversely, in our case, Memory Wrap already selects a
sample predicted in a different class, and the score should
reward samples closer to the input class. Hence, we propose
the Inverted IM1 score (IIM1) that switches the positions of
the numerator and denominator of the IM1 score. Therefore,

the IIM1 score is given by:

∥
∥xcf − AEi(xcf)

∥
∥

∥
∥xcf − AEcf (xcf)

∥
∥

(20)

where xcf is the counterfactual, AEi is the autoencoder
trained using only the samples of the input class of the
current input xi , and AEcf is the autoencoder trained using
only the samples of the counterfactual class. In this case
(Table 4), the scores are a bit worse than IM1 scores of the
post-hoc method, but this is understandable since Memory
Wrap is not optimized to find the optimal counterfactual.
Despite that, the difference is small, and counterfactuals
returned by Memory Wrap can be considered as a fast
approximation of good counterfactuals. Indeed, Memory
Wrap needs less than two minutes to compute them for
a dataset of 2000 samples, while a perturbation-based
method, like the one considered, requires more than 400
minutes.

Table 4 Avg. IM1, IM2 and IIM1 scores comparison on SVHN dataset between the candidate counterfactuals associated with the highest weight
and a post-hoc method based guided by prototypes

Counterfactuals Scores Avg.

Samples

Score Dataset MemoryWrap Proto [50]

1000 0.991 0.994

IM1 2000 0.985 0.997

5000 0.985 0.990

1000 1.703 2.623

IM2(x10) 2000 1.674 2.707

5000 1.698 2.770

1000 1.014 −
IIM1 2000 1.015 −

5000 1.013 −

The average is computed among the whole dataset of a random model for each configuration. Lower is better

9132 B. La Rosa et al.

Lastly, Table 4 also shows a comparison in terms of
IM2 score. This score measures the similarity between the
reconstructed counterfactual instances when using AEcf

and an autoencoder trained using all classes. A lower value
means that the data distribution of the counterfactual class
describes the counterfactual as well as the distribution over
all classes. Thus, a low value implies that the counterfactual
is interpretable. The scores of Memory Wrap are a lot
better than the generative method, and the situation does
not change if we compute it using AEi in place of AEcf .
The motivation behind the large margin is that the samples
returned by Memory Wrap are, by design, real samples
and so inside the training distribution. Even though the
returned counterfactuals are often edge cases, since they
can be placed between two classes, they are still closer to
the data distribution than the one produced by generative
methods. Beyond the good results, these counterfactuals do
not represent an alternative to post-hoc methods, especially
when users are interested in different properties, like
minimality, not supported by Memory Wrap.

4.3.3 Enhancing explanations

In this section, we list some possible ways to use the design
and characteristics of Memory Wrap to enrich and enhance
the explanations returned by classic methods.

Feature attribution Since the memory is actively used
during the inference phase, we can use an attribution method
to highlight the most important pixels for both the input
image and the memory set for the current prediction. The
only requirement is that the attribution method supports
multi-input settings. We apply the technique of Integrated
Gradients [70] using as a baseline a white image (Fig. 13).
Here, for both Fig. 13a and d, the model predicts the
wrong class. In Fig. 13d, the heatmap of the example-
based explanation tells us that the model wrongly focuses
on bird and sky colors, likely due to the unusual shape of the
airplane. Indeed, it is very different from previously known
shapes for airplanes, represented by the counterfactual with
low weight and a heatmap that focuses only on the sky.
Conversely, the example-based explanation is an image with
a similar color for both the background and the bird, and the
weight is much greater than the airplane, thus suggesting
that the model is wrongly focusing on the colors. In Fig. 13a
the model predicts the wrong class. Interestingly, in this
case, the counterfactual is a sample of a different third
class, thus meaning this input is challenging for the model.
We hypothesize that this is due to the heavy blur effect,
since the heatmaps of both the input and the example-based
explanation focus on the bottom part of the digit, which is
the most visible part of the current image.

On the opposite side, in Fig. 13c, the model predicts the
correct class, focusing the attention on the head shape, a
feature that is highlighted both in the input image and in the
explanations. Finally, sometimes (Fig. 13b) counterfactuals
are missing, and this means that the model is sure about
its prediction, and it uses only examples of the same class.
Note that the heatmaps are a bit noisy due to the lack of the
application of VarGrad [1] or similar techniques to smooth
them for computational reasons (Section 5.3).

Contrastive explanations Another method that can be
applied and enhanced in our approach is the recently
proposed contrastive explanations [22]. These explanations
typically start from the input and a random image and
extract the elements that make their predictions different
[22], or highlight the parts that discriminate between
the current prediction and another random class [81].
Memory Wrap has the potential to enhance these methods
by exploiting the fact that it naturally selects suitable
counterfactual classes and images, providing additional
information. We leave for future research a way to extend
these works to the multi-input settings and Memory Wrap.

5 Analysis

This section analyzes Memory Wrap, investigating the
impact of its components and hyperparameters, the com-
putational costs associated with its employment, its limita-
tions, and the potential applicability on tasks different from
image classification.

5.1 Ablation study

In this section, we study how the components of Memory
Wrap, its hyperparameters, and the design choices impact
the system’s behavior. We will use MobileNet, ResNet, and
EfficientNet for most experiments applied to SVHN, which
has a shorter training time, allowing us to perform more
experiments.

Representation power We start by applying the Major
Voting algorithm (Section 4.2) to the models that include
Memory Wrap. The results (Table 5) show that the training
of Memory Wrap improves the representation power of the
underlying encoder, helping it to separate the classes in
the embedding space better, thus strengthening the training
process. Additionally, this test helps weigh the contribution
of different components. By comparing Table 5 and Fig. 5,
we can see that ∼70% of the gain comes from the better
representation learned, while ∼30% is due to the impact of
the memory set at inference time.

9133A self-interpretable module for deep image classification on small data

Fig. 13 Integrated Gradients
heatmaps of the input, the
example-based explanation
associated with the highest
weight in memory, and
(eventually) the counterfactual
associated with the highest
weight. Each heatmap highlights
the pixels that have a positive
impact on the current prediction

Parameters We investigate whether these improvements
come from the higher number of parameters introduced
by Memory Wrap or the structure itself, comparing its
performance to deeper variants of ResNet, DenseNet,
and ShuffleNet. We consider ResNet34 (2.1M parameters

against 1.3M of Memory Wrap), ShuffleNet doubling its
size (1.2M parameters against 0.87M), and DenseNet-169
(2.6M against 2.1M) as deeper variants of the considered
networks. Figure 14 tells us that this is not the case
and that deeper variants often achieve worse performances

9134 B. La Rosa et al.

Table 5 Avg. accuracy and standard deviation over 15 runs reached
applying the major voting algorithm over the embedding space learned
by the encoders when trained using memory wrap

Major voting memory wrap avg. accuracy%

Samples

Encoder 1000 2000 5000

EfficientNet 65.97 ± 1.33 76.34 ± 1.13 84.34 ± 0.62

MobileNet 64.63 ± 3.05 78.77 ± 0.84 86.69 ± 0.56

ResNet18 37.43 ± 4.49 67.49 ± 4.15 81.53 ± 0.81

due to overfitting, thus suggesting that Memory Wrap
does not promote overfitting despite the higher number of
parameters.

Number of samples The number of samples to keep in
memory (i.e., 100) has been empirically chosen to be a
trade-off between the number of samples for each class
(10), the minimum number of data points in the training set
(1000) across all the configurations, the training time, and
the performance. The value is motivated by the fact that we
want enough samples for each class in the memory set to
get more representative samples for that class, but, at the
same time, we do not want that the current sample is often
included in the memory set and that the network exploits
it. We see that the lower the number of samples, the lower
the performance (Table 6). However, this comes at the cost
of training and inference time, and the gap tends to vanish
progressively. For example, an epoch of EfficientNetB0,
trained using 5000 samples, lasts ∼ 9 seconds, ∼ 16
seconds, and ∼ 22 seconds when the memory contains
respectively 20 samples, 300 samples, and 500 samples.

Distance In these tests, we compare the impact of the
distance used to measure how different the input from each
sample in the memory set is. We compare the performance
over five runs using the cosine similarity and the L2

distance. Figure 15 shows that cosine similarity is the best
choice in our setup, outperforming L2 in almost all the
configurations. Moreover, the gap between using the L2

distance in Memory Wrap and the standard baseline in some
configurations is significantly lower than cosine similarity,
thus suggesting that this is a crucial component of our
module and confirming the findings of related works that
use these similarities on memory networks [23, 78].

Sample selection Training time In this experiment, we test
alternative selection mechanisms to decide which samples
must be included in the memory set. We compare the
random selection to a balanced selection of samples for each
class, as well as a selection process inspired by the replay
buffer of Deep Reinforcement Learning models.

Fig. 14 Comparison between standard models (brown), Memory
Wrap (MW) models (red), and deeper versions of standard models
(blue) when the training dataset is a subset of SVHN

We consider two configurations for the latter: the Replay-
last configuration samples the memory set by extracting 100
random samples from the last batch, while the Replay-last-5
samples it from the pool of samples that include the previous
five batches. The idea is to store memory samples recently
used in the training process, keeping a limited size queue
and sampling from it. Note that alternative mechanisms
tailored to each input make the training process too slow
or the memory footprint too high, destroying our previously
described optimization (Section 4.1). For example, selecting
the top 100 samples closer to each input requires that

9135A self-interpretable module for deep image classification on small data

Table 6 Avg. accuracy and standard deviation over 5 runs of the configuration of Memory Wrap trained using a variable number of samples in
memory, when the training dataset is a subset of SVHN

Reduced SVHN Avg. Accuracy%

Samples

Encoder Memory 1000 2000 5000

EfficientNet 20 64.95 ± 2.46 75.80 ± 1.17 84.86 ± 0.99

100 67.16 ± 1.33 77.02 ± 2.20 85.82 ± 0.45

300 66.70 ± 1.58 77.97 ± 1.34 85.37 ± 0.68

500 66.76 ± 0.98 77.67 ± 1.17 85.25 ± 1.02

MobileNet 20 63.42 ± 2.46 80.92 ± 1.42 88.33 ± 0.36

100 68.31 ± 1.53 81.28 ± 0.69 88.47 ± 0.10

300 65.08 ± 0.30 82.05 ± 0.75 88.93 ± 0.37

500 69.88 ± 1.76 80.92 ± 1.74 88.61 ± 0.32

ResNet18 20 39.32 ± 7.21 72.54 ± 3.03 87.30 ± 0.41

100 40.38 ± 9.32 74.36 ± 2.69 87.39 ± 0.45

300 44.42 ± 10.97 74.63 ± 3.28 87.75 ± 0.62

500 40.59 ± 12.27 76.97 ± 2.48 87.55 ± 0.35

each of them is encoded along with its own memory set,
significantly increasing the memory footprint. Moreover,
performing the selection on the representation space at each
step increases the required time for training, thus making it
infeasible.

In Table 7, we can observe that there are no clear winners
and almost all configurations are equivalent. This means
that different selection mechanisms are not able to bring
enough benefits to be preferable to simple random selection.
We can compare the properties of Memory Wrap and the
benefits of alternative selection mechanisms to explain the
slight difference between them.

We start considering the replay buffer: the advantage
is that the model has been recently updated to recognize
the samples in the memory set, and it can provide a

Fig. 15 Comparison between different encoders trained using respec-
tively Cosine Similarity (solid lines) and L2 distance (dashed lines) on
a subset SVHN dataset

better representation. But, since the similarity is computed
with the current input, which is novel with respect to the
weights, the benefits are not so significant. While balanced
selection aims at providing, at each step, enough examples
for each class to the memory set, Memory Wrap can already
deal naturally with cases where it does not have enough
information. Indeed, because the sparsemax dynamically
selects the number of useful examples, it can also work with
very few candidates. Additionally, the input encoding sent to
the final layer can make up for cases where the memory set
does not contain enough useful samples. Finally, note that
these cases can be considered random noise in the training
process, which is helpful for regularizing it.

Inference time Once the model is trained, one can adopt
a different mechanism for selection at testing time. We argue
that the choice is context-dependent, and it should consider
several factors.
For example, in applications where there are concerns about
adversarial attacks, random selection could be a preferable
option over a fixed selection. Random selection has the
advantages of ensuring diversity (on average) and including
only in-distribution data, but due to the randomness, it can
produce two different example-based explanations for the
same input. A simple solution to stabilize the explanations
could be to compute a single centroid for each class,
and then use them as the memory set, similarly to the
Prototypical Networks. However, the fact that the memory
stores real samples and uses them as separated entities is
an essential factor for interpretability. When we compare
the inputs with the memory set, we have multiple example-
based explanations, and each of them is extracted from the
same data distribution of input and has a clear semantic.

9136 B. La Rosa et al.

Table 7 Avg. accuracy and standard deviation over 5 runs Memory Wrap using different selection mechanisms to select samples in the memory
set, when the training datasets is a subset of SVHN dataset

SVHN Avg. Accuracy %

Encoder Distance 1000 2000 5000

EfficientNet Random 67.22 ± 3.47 77.16 ± 0.97 85.32 ± 0.90

Balanced 65.80 ± 2.74 77.19 ± 1.27 85.80 ± 0.41

Replay-Last 66.53 ± 1.80 76.36 ± 1.09 85.80 ± 0.49

Replay-Last5 66.32 ± 1.70 77.56 ± 1.57 85.50 ± 0.54

MobileNet Random 68.34 ± 1.40 81.14 ± 0.69 88.36 ± 0.09

Balanced 67.19 ± 1.77 81.45 ± 1.30 88.36 ± 0.68

Replay-Last 66.92 ± 1.95 81.17 ± 1.35 88.51 ± 0.29

Replay-Last5 65.93 ± 1.98 82.09 ± 0.93 88.19 ± 0.26

ResNet18 Random 40.35 ± 9.31 74.24 ± 2.70 87.29 ± 0.39

Balanced 40.74 ± 8.98 75.07 ± 4.20 87.43 ± 0.25

Replay-Last 38.75 ± 11.90 78.56 ± 1.84 87.35 ± 0.85

Replay-Last5 38.73 ± 14.25 79.55 ± 1.16 87.70 ± 0.34

For each configuration, we highlight in bold the best result and results that are within its margin

Conversely, the average of a class in the dataset is a non-
real example, an out-of-distribution data point, and it is
harder to understand. Indeed, because it is an aggregation
of representations, we cannot easily visualize it, losing
interpretability.

While this problem can be solved using K-medoids [62],
this solution still uses only one sample for each class, thus
lacking diversity. Indeed, the extracted medoid represents
only a subspace of the input or latent space covered by the
whole class. Thus, our suggestion is to use an algorithm that
extracts several prototypes for each class [24, 33], ensuring
that it captures diversity as much as possible both in terms
of input space and latent space. In this paper, we opted for
random selection at testing time to not bias the scores and
to show the method’s robustness.

Full dataset Finally, a natural question is whether the
performance of Memory Wrap is better or worse than
standard models when they both learn from the entire

dataset (i.e., a more extensive dataset of 60000 samples).
In these cases (reported in Table 8), they reach comparable
performance most of the time. Hence, our approach is
practical also when used with the entire dataset, thanks
to the additional interpretability provided by its structure
(Section 3.3).

5.2 Computational cost

This section briefly describes the changes in the computa-
tional cost when adding the Memory Wrap module to a deep
neural network.

5.2.1 Parameters

The network size’s increment depends mainly on the output
dimensions of the encoder and the choice of the final layer.
Let p be the number of network parameters until the last
layer. In the standard baseline (without Memory Wrap), the

Table 8 Avg. accuracy and standard deviation over 15 runs of the baselines and Memory Wrap, when the training datasets are the whole SVHN,
CIFAR10 and CINIC10 datasets. For each configuration, we highlight in bold the best result and results that are within its margin

Full Datasets Avg. Accuracy %

Encoder Model SVHN CIFAR10 CINIC10

EfficientNet Standard 94.39 ± 0.24 88.13 ± 0.38 77.31 ± 0.35

Memory Wrap 94.67 ± 0.16 88.05 ± 0.20 77.34 ± 0.27

MobileNet Standard 95.95 ± 0.09 88.78 ± 0.41 78.97 ± 0.31

Memory Wrap 95.63 ± 0.08 88.49 ± 0.32 79.05 ± 0.15

ResNet18 Standard 95.70 ± 0.10 91.94 ± 0.19 82.05 ± 0.25

Memory Wrap 95.49 ± 0.11 91.49 ± 0.17 82.04 ± 0.16

9137A self-interpretable module for deep image classification on small data

last layer has dimensions (astd , c) where astd is the encoder
output dimension and c is the number of classes, and so the
total number of parameters is

pstd = p + (astd × c) (21)

Now, consider the case of Memory Wrap with an MLP with
2 layers of dimension (amw, h) and (h, c). Because Memory
Wrap takes as input both the input and the memory set
encoding, then amw = 2 × astd , thus going from astd × c to
amw × (h + h × c) parameters. Finally, we have to add the
bias terms bMW of the added neurons. Therefore, the total
number of parameters is

pmw = p + (astd × 2) × h + (h × c) + bMW (22)

Since we set h = 2 × amw to manage the additional
complexity of the memory set, the increment is mainly
caused by the a parameter. Table 9 shows the impact
on MobileNet, ResNet18, and EfficientNet. EfficientNet,
which has 320 units as the output layer, turns from a
size of ∼3.6M parameters to ∼4.4M by adding Memory
Wrap. Conversely, MobileNet, which has a larger output
dimension of 1280, grows from ∼2.2M to ∼15.4M
parameters.

The added parameters impact the space and time
complexity due to the additional gradients that depend on
the ratio between p and the added parameters. The impact
is more significant for smaller networks, while for large
networks, like Transformer, the impact is negligible.

Table 9 Number of parameters for the models with and without
Memory Wrap

Number of parameters

Model Dimension Parameters

EfficientNetB0 320 3 599 686

Only Memory - 3 808 326

Memory Wrap - 4 429 766

MobileNet-v2 1280 2 296 922

Only Memory - 5 589 082

Memory Wrap - 15 447 642

ResNet18 512 11 173 962

Only Memory - 11 704 394

Memory Wrap - 13 288 522

The column dimension indicates the number of output units of the
encoder

5.2.2 Space complexity

Regarding the space complexity, in an ideal setting, one
should provide a new memory set for each input during
the training process. However, this makes the training and
the inference process slower and the space requirements
too high. Indeed, let m be the size of memory and n the
dimension of the batch, the new input would contain m × n

samples in place of n. For large batch sizes and many
samples in memory, this cost can be too high. To reduce
its memory footprint, we simplify the process by providing
a single memory set for each new batch, maintaining
the space required to a more manageable m + n. The
consequence is that the testing batch size can influence
performance at testing/validation time: a high batch size
means a high dependency on random selection. To limit the
instability, we fix a batch size at testing time to 500, and
we repeat the test phase five times, extracting the average
accuracy across all repetitions.

In our case, as explained in the Section 4.1, m = c ×
10 where c is the number of classes. Hence, the space
complexity also depends on the number of classes, and for
high values of c the cost could easily become prohibitive for
standard workstations.

5.2.3 Time complexity

The training time added by the Memory Wrap modules
depends on the number of training samples included in the
memory set and the usage of a parallel structure. Indeed, in
a sequential scenario, the encoder should first encode the
input and then the memory set.

Let t be the number of seconds the encoder requires to
encode a batch of n samples. If the number m of samples in
the memory set is close (m ∼ n), the network will need at
least t × 2 seconds to encode both of them. The higher the
ratio m

n
, the higher the impact on the training time.

To compute the overall time to train the network, we
need to add the time required to backpropagate the error
and update the weights. Since we use a single loss to train
the neural network, we perform this operation only once
for each step. In general, the time of the back-propagation
is greater than the time needed for the forward call, thus,
the factor of t × 2 can be considered an upper bound of
the overall time, as shown in the Table 10. The table shows
the reference time for training EfficientNet, MobileNet, and
Resnet for 40 epochs on the SVHN dataset on a V100 GPU
card. We can observe that the training time of the models
with the Memory Wrap module is ∼ ×1, 5 slower than the
network without it, but it is faster than training the same
network using a double number of samples.

9138 B. La Rosa et al.

Table 10 Seconds needed to train each network for 40 epochs on the SVHN dataset

Training time (seconds)

Dataset samples

Model Variant 1000 2000 5000

EfficientNetB0 Std 55.21 108.31 266.98

+ Memory Wrap 77.92 168.16 456.67

MobileNet-v2 Std 48.66 87.43 223.45

+ Memory Wrap 76.89 156.86 400.08

ResNet18 Std 27.76 58.61 111.80

+ Memory Wrap 47.68 92.18 205.20

5.3 Limitations

Memory footprint and training time The main limita-
tion of Memory Wrap is that it increases the num-
ber of networks’ parameters (Section 5.2.1), the memory
footprint (Section 5.2.2), and the training process time
(Section 5.2.3), due to the additional gradients towards the
memory and the parameters needed to manage it. A possible
solution to reduce the number of parameters would be to add
a linear layer between the encoder and the Memory Wrap
that projects data in a lower-dimensional space and pre-
serves the performance as much as possible. However, one
must tune this solution differently for each network, and it
introduces a new hyperparameter. Despite the optimization
that we made (Section 5.2.2), for large batch size, it could be
problematic to keep the input, the memory set, and the gra-
dients in memory in low resource scenarios. For example, in
our application of Integrated Gradients, we avoid the usage
of VarGrad [1] to smooth the heatmaps due to the massive
requirement of memory needed to store gradients for input
and memory set of all the generated perturbed instances.
Moreover, the large memory footprint makes the training
of Memory Wrap on dataset containing many classes dif-
ficult. For example, keeping the proportion of 10 samples
for each class, the application on ImageNet [63] requires
10000 examples stored in the memory set, making its train-
ing difficult on standard workstations. Finally, the increased
training time is caused mainly by the double forward pass
of the encoder needed to parse both the input and the
memory set. When there are enough resources available,
one can recover the training time of standard models by
parallelizing the encoding of input and the memory set. In
this case, the only added time will be the one needed to com-
pute the sparse content-based attention weights and perform
the classification, but it is negligible with respect to the non-
parallel structure. Another option at inference time is to fix

the memory set a priori, computing its encodings only the
first time, and use this set for the following inferences.

Bias amplification Another limitation is that the memory
mechanism based on similarity could amplify the bias
learned by the encoder. As shown in Section 3.3, the
identification of such an event is straightforward, but
currently, there are no countermeasures against it. A new
adaptive or algorithmic selection mechanism of memory
samples or a regularization method could mitigate the bias
and improve the fairness of Memory Wrap.

5.4 Applicability to other tasks or domains

As explained in Section 3.2, at the implementation level,
there are no special requirements on the underlying
architecture. The only requirement is to access the latent
representations of both the input and the memory set. Its
application to other subcategories of image classification,
like medical and hyperspectral image classification, where
often data used for training deep learning systems is
insufficient [25], should be straightforward, especially if
they use variants of the networks tested in this paper [25].

Conversely, the extension to other domains, like audio
classification and text classification, is an open question
to investigate. While the experiments on ViT seem to
suggest the applicability on networks based on different
architectures, it is still unclear how the transformation
involved to embed different types of data can impact the
effectiveness of Memory Wrap. Moreover, the improved
representation power (Section 5.1) could be beneficial for
tasks that use high-level feature vectors in the pipeline, like
text recognition in images [84] or image captioning.

Finally, adjusting the selection mechanism of the
memory set, making it adaptive, or adding constraints into
the learning process [85] of Memory Wrap, are all possible

9139A self-interpretable module for deep image classification on small data

future research directions to explore for the translation of
Memory Wrap to different tasks.

6 Conclusion and future research

In this paper, we presented a module that improves the
performance of deep neural networks in small data settings
and aids the user to extract insights about the decision
process. We showed how the module uses the training data
to boost the performance and how to individuate and exploit
example-based explanations and counterfactuals.

While Memory Wrap is a first step in this direction,
we also encourage other researchers to focus on the topic
of interpretable deep learning on small data, which are
the most common setting in real-world scenarios but are
surprisingly under-studied in literature. We think that the
findings of this paper open up several future directions
worth investigation, both for explanations and performance
side. For example, future works could explore how to select
memory samples that lead to optimal explanations, how to
make an unbiased and fair inference process, or a way to
reduce the current limitations of the module (Section 5.3).

Appendix A: Tables of results

This section presents the results of Section 4 in a table form
(Tables 11, 12, 13, and 14) to better inspect the differences
among configurations.

Table 11 Avg. accuracy and standard deviation over 15 runs of the
baselines and Memory Wrap, when the training dataset is a subset of
SVHN

Reduced SVHN Avg. Accuracy%

Samples

Encoder Model 1000 2000 5000

EfficientNet Standard 57.70 ± 7.89 72.59 ± 4.00 81.89 ± 3.37

K-NNk=1 56.29 ± 8.89 72.01 ± 3.95 81.28 ± 3.51

K-NNk=5 56.47 ± 8.25 71.80 ± 3.95 81.09 ± 3.56

K-NNk=10 55.94 ± 8.17 71.20 ± 3.82 80.36 ± 3.58

Voting 56.17 ± 8.20 71.68 ± 3.92 80.95 ± 3.56

ProtoNet 44.66 ± 4.94 54.94 ± 6.12 68.06 ± 6.95

[67]

MatchNet 13.84 ± 1.84 18.98 ± 2.77 26.80 ± 5.87

[78]

OnlyMem 58.86 ± 3.30 75.79 ± 1.68 85.30 ± 0.52

Memory 66.78 ± 1.27 77.37 ± 1.25 85.55 ± 0.59

Wrap

Table 11 (continued)

Reduced SVHN Avg. Accuracy%

Samples

Encoder Model 1000 2000 5000

MobileNet Standard 42.71 ± 10.31 70.87 ± 4.20 85.52 ± 1.16

K-NNk=1 41.37 ± 10.50 69.63 ± 4.30 84.65 ± 1.32

K-NNk=5 41.66 ± 10.28 69.52 ± 4.23 84.40 ± 1.28

K-NNk=10 41.27 ± 9.78 67.85 ± 4.19 82.78 ± 1.58

Voting 40.78 ± 9.57 67.17 ± 4.37 82.70 ± 1.70

ProtoNet 25.89 ± 4.06 34.02 ± 3.51 35.50 ± 2.35

[67]

MatchNet 10.98 ± 0.57 16.18 ± 2.48 16.48 ± 7.57

[78]

OnlyMem 60.60 ± 3.14 80.80 ± 2.05 88.77 ± 0.42

Memory 66.93 ± 3.15 81.44 ± 0.76 88.68 ± 0.46

Wrap

ResNet18 Standard 19.32 ± 1.05 29.73 ± 13.54 77.84 ± 14.77

K-NNk=1 12.51 ± 1.35 22.25 ± 13.98 75.32 ± 16.60

K-NNk=5 14.26 ± 1.54 24.02 ± 14.08 75.65 ± 15.80

K-NNk=10 15.18 ± 1.65 24.69 ± 13.54 73.47 ± 14.72

Voting 16.48 ± 1.48 24.45 ± 11.86 71.34 ± 14.25

ProtoNet 20.29 ± 4.09 30.99 ± 3.41 47.62 ± 3.99

[67]

MatchNet 10.99 ± 0.72 10.77 ± 0.79 21.17 ± 5.34

[78]

OnlyMem 37.03 ± 4.61 72.69 ± 4.56 87.00 ± 2.07

Memory 40.14 ± 9.08 77.44 ± 3.21 87.39 ± 0.36

Wrap

For each configuration, we highlight in bold the best result and results
that are within its margin

Table 12 Avg. accuracy and standard deviation over 15 runs of the
standard model and two variants of Memory Wrap, when the training
dataset is a subset of SVHN

Reduced SVHN Avg. Accuracy%

Samples

Encoder Type 1000 2000 5000

GoogLeNet Standard 25.25 ± 9.39 61.45 ± 16.56 88.63 ± 2.60

OnlyMem 66.35 ± 6.93 87.10 ± 1.17 92.16 ± 0.28

Memory 74.66 ± 9.01 88.32 ± 0.78 92.52 ± 0.25

Wrap

DenseNet Standard 60.93 ± 9.21 83.47 ± 1.16 89.39 ± 0.60

OnlyMem 40.94 ± 12.06 79.12 ± 5.36 89.69 ± 0.63

Memory 73.69 ± 4.20 85.12 ± 0.62 90.07 ± 0.49

Wrap

9140 B. La Rosa et al.

Table 12 (continued)

Reduced SVHN Avg. Accuracy%

Samples

Encoder Type 1000 2000 5000

ShuffleNet Standard 27.06 ± 6.04 59.97 ± 8.75 83.08 ± 1.00

OnlyMem 32.22 ± 3.47 60.06 ± 3.32 85.56 ± 0.60

Memory 33.56 ± 4.66 67.27 ± 3.18 84.93 ± 0.75

Wrap

ViT Standard 76.22 ± 0.54 83.52 ± 0.60 91.15 ± 0.43

OnlyMem 28.84 ± 11.01 19.58 ± 0.01 19.57 ± 0.02

Memory 78.09 ± 0.88 85.32 ± 0.73 91.58 ± 0.34

Wrap

WideResnet Standard 76.50 ± 2.52 64.10 ± 27.13 82.61 ± 17.73

OnlyMem 74.47 ± 5.33 82.29 ± 2.38 86.36 ± 1.96

Memory 81.87 ± 1.57 83.91 ± 2.26 85.94 ± 1.89

Wrap

For each configuration, we highlight in bold the best result and results
that are within its margin

Table 13 Avg. accuracy and standard deviation over 15 runs of the
standard model and two variants of Memory Wrap, when the training
dataset is a subset of CIFAR10

Avg. Accuracy%

CIFAR10

Encoder Model 1000 2000 5000

EfficientNetB0 Standard 39.63 ± 2.16 47.25 ± 2.22 67.34 ± 2.37

OnlyMem 40.60 ± 2.04 52.87±2.07 70.82±0.52

Memory 41.45±0.79 52.83±1.41 70.46±0.78

Wrap

MobileNet-v2 Standard 38.57 ± 2.11 50.36 ± 2.64 72.77 ± 2.21

OnlyMem 43.15±1.35 57.43±1.45 75.56±0.76

Memory 43.87±1.40 57.12±1.36 75.33±0.62

Wrap

ResNet18 Standard 40.03±1.36 48.86 ± 1.57 65.95 ± 1.77

OnlyMem 40.35±0.89 51.11±1.22 70.28±0.80

Memory 40.91±1.25 51.11±1.13 69.87±0.72

Wrap

GoogLeNet Standard 51.91 ± 3.14 63.90 ± 2.21 79.09 ± 1.28

OnlyMem 54.25 ± 0.80 66.00 ± 1.27 79.65 ± 0.59

Memory 55.91±1.20 66.79±1.03 80.27±0.49

Wrap

DenseNet Standard 46.99±1.61 56.95±1.68 73.72 ± 1.41

OnlyMem 46.20±1.47 58.16±1.82 75.77±1.31

Table 13 (continued)

Avg. Accuracy%

CIFAR10

Encoder Model 1000 2000 5000

Memory 47.64±1.58 58.60±1.85 75.50±1.33

Wrap

ShuffleNet Standard 37.86±1.16 45.85 ± 1.26 65.92 ± 1.54

OnlyMem 38.15±1.14 48.91±2.12 70.05 ± 0.84

Memory 37.90±1.15 47.50±1.79 68.52±1.38

Wrap

WideResnet Standard 48.99±1.51 53.58±10.87 62.22 ± 4.90

OnlyMem 43.12 ± 1.72 51.45 ± 2.75 63.16±4.72

Memory 49.02±2.57 53.36±3.51 65.21±2.43

Wrap

Vit Standard 44.28 ± 0.57 50.86 ± 0.56 61.28 ± 0.64

OnlyMem 39.88 ± 0.84 45.56 ± 0.59 58.11 ± 0.63

Memory 44.85±0.65 51.75±0.75 62.55±0.52

Wrap

For each configuration, we highlight in bold the best result and results
that are within its margin

Table 14 Avg. accuracy and standard deviation over 15 runs of the
standard model and two variants of Memory Wrap, when the training
dataset is a subset CINIC10

Avg. Accuracy%

CINIC10

Encoder Model 1000 2000 5000

EfficientNetB0 Standard 29.50 ± 1.18 33.56 ± 1.26 45.98 ± 1.34

OnlyMem 30.46±1.17 36.17±1.54 44.97 ± 0.95

Memory 30.45±0.64 36.65±1.03 47.06±0.91

Wrap

MobileNet-v2 Standard 29.61 ± 0.89 36.40 ± 1.58 50.41 ± 1.01

OnlyMem 32.46±1.07 39.90±0.82 52.51±0.77

Memory 32.34±0.95 39.48±1.16 52.18±0.66

Wrap

ResNet18 Standard 31.18 ± 1.21 37.67±0.98 45.39 ± 1.07

OnlyMem 30.79 ± 0.83 37.30 ± 0.57 46.66±0.81

Memory 32.15±0.68 38.51±0.96 46.39±0.67

Wrap

GoogLeNet Standard 38.97 ± 1.16 47.83 ± 1.09 58.47±0.91

OnlyMem 40.77 ± 0.78 48.53 ± 1.05 57.86 ± 0.55

Memory 42.19±0.92 50.47±0.77 58.98±0.68

Wrap

9141A self-interpretable module for deep image classification on small data

Table 14 (continued)

Avg. Accuracy%

CINIC10

Encoder Model 1000 2000 5000

DenseNet Standard 36.33±0.84 41.78 ± 0.92 52.63 ± 0.95

OnlyMem 35.64 ± 1.18 42.77 ± 0.69 54.16±0.58

Memory 37.02±0.95 43.55±1.05 53.59±0.61

Wrap

ShuffleNet Standard 28.32±0.85 33.49 ± 0.93 46.36 ± 1.03

OnlyMem 28.68±0.93 35.33±1.09 48.25±0.90

Memory 28.94±1.06 34.30±0.85 47.33 ± 1.34

Wrap

WideResnet Standard 35.66±0.65 41.68±0.79 51.15 ± 0.93

OnlyMem 32.23 ± 1.02 39.91 ± 0.71 51.12 ± 0.63

Memory 35.28±0.79 42.20±0.77 53.01±0.39

Wrap

Vit Standard 33.69±0.80 38.94 ± 0.58 46.62 ± 0.39

OnlyMem 30.86 ± 0.95 35.86 ± 0.54 44.09 ± 0.72

Memory 34.40±0.90 39.63±0.50 47.50±0.29

Wrap

For each configuration, we highlight in bold the best result and results
that are within its margin

Appendix B: Results for the only memory
variant

Table 15 shows how the variant Only Memory is not able
to reach the same performance as standard models most of
the time when trained using the complete datasets. We think
this is due to this variant’s difficulty in learning specific
and rare patterns in images, caused by the lack of encoder

Table 15 Avg. accuracy and standard deviation over 15 runs of the
standard models and the Only Memory variant of Memory Wrap, when
the training datasets are the whole SVHN, CIFAR10 and CINIC10
datasets

Full Datasets Avg. Accuracy %

Encoder Model SVHN CIFAR10 CINIC10

EfficientNet Standard 94.39 ± 0.24 88.13 ± 0.38 77.31 ± 0.35

OnlyMem 94.63 ± 0.33 86.48 ± 0.29 76.19 ± 0.25

MobileNet Standard 95.95 ± 0.09 88.78 ± 0.41 78.97 ± 0.31

OnlyMem 95.59 ± 0.11 86.37 ± 0.21 74.60 ± 0.13

ResNet18 Standard 95.70 ± 0.10 91.94 ± 0.19 82.05 ± 0.25

OnlyMem 95.82 ± 0.10 91.36 ± 0.24 81.65 ± 0.19

For each configuration, we highlight in bold the best result and results
that are within its margin

Table 16 Avg. accuracy and standard deviation over 15 runs reached
applying the major voting algorithm over the embedding space learned
by the encoders when trained using the Only Memory variant

Major Voting Memory Wrap Avg. Accuracy%

Samples

Encoder 1000 2000 5000

EfficientNet 58.28 ± 3.25 74.73 ± 1.74 84.47 ± 0.59

MobileNet 59.08 ± 2.85 78.60 ± 2.17 87.07 ± 0.44

ResNet18 36.15 ± 4.06 65.84 ± 4.85 82.97 ± 3.43

input. Conversely, Tables 16 and 17 show that it has a similar
representation power and similar interpretability to Memory
Wrap in small data settings, making it a valid alternative in
these scenarios.

Table 17 Avg. predictions matching accuracy and standard deviation
comparison over 15 runs between the sample in the memory set
with the highest sparse content-based attention weight (TopMce), the
example with the lowest weight but greater than zero (BottomMce), and
a random sample (Random)

Predictions matching accuracy %

Dataset Example 1000 2000 5000

SVHN TopMce 81.43 ± 1.11 89.57 ± 0.98 93.83 ± 0.29

BottomMce 41.37 ± 2.09 56.04 ± 2.65 68.88 ± 1.20

Random 11.94 ± 0.60 11.76 ± 0.25 11.77 ± 0.18

CIFAR10 TopMce 77.56 ± 0.93 82.46 ± 0.68 89.30 ± 0.43

BottomMce 37.98 ± 1.48 45.19 ± 1.36 60.48 ± 0.88

Random 10.68 ± 0.34 10.33 ± 0.26 10.16 ± 0.23

CINIC10 TopMce 76.01 ± 0.73 78.34 ± 0.44 80.81 ± 0.91

BottomMce 36.79 ± 1.42 39.93 ± 0.63 39.15 ± 0.65

Random 10.91 ± 0.31 10.52 ± 0.18 10.35 ± 0.12

The scores are computed using the Only Memory variant on top of
MobileNet-v2

Appendix C: Baselines using different
training setup

In this section, we try to improve the performance of
the Matching Networks and Prototypical Networks using
the same hyperparameters used to achieve the best results
in their respective repositories. Our setup modifications
are a lower starting learning rate (1e-3) and a different
optimizer (Adam). Table 18 show that these settings
improve the performance of Matching networks and in some
configurations of Prototypical Networks applied to ResNet.
However, their accuracy is still lower than standard models
and Memory Wrap.

9142 B. La Rosa et al.

Table 18 Avg. accuracy and standard deviation over 5 runs of the standard models, Matching Networks (MatchNet) and Prototypical Networks
(ProtoNet) under different training configurations, when the training dataset is a subset of SVHN

Reduced SVHN Avg. Accuracy%

Samples

Encoder Model 1000 2000 5000

EfficientNet Standard 57.70 ± 7.89 72.59 ± 4.00 81.89 ± 3.37

ProtoNet [67]SGD 44.66 ± 4.94 54.94 ± 6.12 68.06 ± 6.95

ProtoNet [67]ADAM 27.82 ± 4.27 43.09 ± 6.90 62.34 ± 4.31

MatchNet [78]SGD 13.84 ± 1.84 18.98 ± 2.77 26.80 ± 5.87

MatchNet [78]ADAM 18.03 ± 2.42 21.59 ± 2.58 26.37 ± 4.74

MobileNet Standard 42.71 ± 10.31 70.87 ± 4.20 85.52 ± 1.16

ProtoNet [67]SGD 25.89 ± 4.06 34.02 ± 3.51 35.50 ± 2.35

ProtoNet [67]ADAM 21.26 ± 4.65 33.66 ± 5.89 35.27 ± 3.81

MatchNet [78]SGD 10.98 ± 0.57 16.18 ± 2.48 16.48 ± 7.57

MatchNet [78]ADAM 24.20 ± 2.14 28.53 ± 2.35 36.36 ± 5.01

ResNet18 Standard 19.32 ± 1.05 29.73 ± 13.54 77.84 ± 14.77

ProtoNet [67]SGD 20.29 ± 4.09 30.99 ± 3.41 47.62 ± 3.99

ProtoNet [67]ADAM 34.21 ± 9.56 37.65 ± 12.06 59.41 ± 7.05

MatchNet [78]SGD 10.99 ± 0.72 10.77 ± 0.79 21.17 ± 5.34

MatchNet [78]ADAM 20.27 ± 4.55 25.99 ± 4.68 29.46 ± 5.97

Acknowledgements This material is based upon work supported by
Google Cloud platform.

Funding Open access funding provided by Università degli Studi di
Roma La Sapienza within the CRUI-CARE Agreement.

Data Availability The datasets generated and analysed during the
current study are available in the following repositories: CINIC10,
https://github.com/BayesWatch/cinic-10; SVHN, http://ufldl.stanford.
edu/housenumbers/; CIFAR10, https://www.cs.toronto.edu/∼kriz/
cifar.html; MNIST, http://yann.lecun.com/exdb/mnist/ Seeds and
configurations used to generate the splits are available in the repos-
itory associated with the paper https://github.com/KRLGroup/
memory-wrap. Memory Wrap can be installed as a Python package at
https://pypi.org/project/memorywrap/.

Declarations

Competing interests All authors certify that they have no affiliations
with or involvement in any organization or entity with any financial
interest or non-financial interest in the subject matter or materials
discussed in this manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Adebayo J, Gilmer J, Muelly M et al et al (2018) Sanity
checks for saliency maps. In: Bengio S, Wallach H, Larochelle
H (eds) Advances in neural information processing systems,
Curran Associates, Inc, Vol 31

2. Bahng H, Chun S, Yun S, et al. (2020) Learning de-biased
representations with biased representations. In: III HD, Singh
A (eds) Proceedings of the 37th international conference on
machine learning, proceedings of machine learning research,
vol 119. PMLR, pp 528–539. https://proceedings.mlr.press/v119/
bahng20a.html

3. Barz B, Denzler J (2020) Deep learning on small datasets without
pre-training using cosine loss. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV)

4. Belle V, Papantonis I (2021) Principles and practice of
explainable machine learning. Front Big Data 4:688969.
https://doi.org/10.3389/fdata.2021.688969

5. Bercea CI, Pauly O, Maier A, et al. (2019) SHAMANN:
Shared memory augmented neural networks. In: Lecture Notes
in Computer Science. Springer International Publishing, Cham,
pp 830–841. https://doi.org/10.1007/978-3-030-20351-1 65

6. Bietti A, Mialon G, Chen D, et al. (2019) A kernel perspective for
regularizing deep neural networks. In: Chaudhuri K, Salakhutdi-
nov R (eds) Proceedings of the 36th International Conference on
Machine Learning, Proceedings of Machine Learning Research,
vol 97. PMLR, pp 664–674. https://proceedings.mlr.press/v97/
bietti19a.html

9143A self-interpretable module for deep image classification on small data

https://github.com/BayesWatch/cinic-10
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://github.com/KRLGroup/memory-wrap
https://github.com/KRLGroup/memory-wrap
https://pypi.org/project/memorywrap/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://proceedings.mlr.press/v119/bahng20a.html
https://proceedings.mlr.press/v119/bahng20a.html
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.1007/978-3-030-20351-1_65
https://proceedings.mlr.press/v97/bietti19a.html
https://proceedings.mlr.press/v97/bietti19a.html

7. Blondel M, Martins A, Niculae V (2019) Learning classifiers
with fenchel-young losses: generalized entropies, margins, and
algorithms. In: Chaudhuri K, Sugiyama M (eds) Proceedings
of the Twenty-Second International Conference on Artificial
Intelligence and Statistics, Proceedings of Machine Learning
Research, vol 89. PMLR, pp 606–615

8. Cai Q, Pan Y, Yao T, et al. (2018) Memory matching networks for
one-shot image recognition. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. IEEE, pp 4080–4088

9. Carion N, Massa F, Synnaeve G, et al. (2020) End-to-end
object detection with transformers. In: Computer Vision – ECCV
2020. Springer International Publishing, Cham, pp 213–229.
https://doi.org/10.1007/978-3-030-58452-8 13

10. Chen C, Li O, Tao D, et al. (2019) This looks like that:
Deep learning for interpretable image recognition. In: Wallach
H, Larochelle H, Beygelzimer A, et al. (eds) Advances in
Neural Information. https://proceedings.neurips.cc/paper/2019/
file/adf7ee2dcf142b0e11888e72b43fcb75-Paper.pdf. Accessed 1
Dec. 2021

11. Chen Z, Bei Y, Rudin C (2020) Concept whitening for
interpretable image recognition. Nat Mach Intell 2(12):772–782.
10.1038/s42256-020-00265-z

12. Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. (2018)
Opportunities and obstacles for deep learning in biology and
medicine. J R Soc Interf 15(141):20170–387. https://doi.org/10.
1098/rsif.2017.0387. https://royalsocietypublishing.org/doi/10.
1098/rsif.2017.0387

13. Correia GM, Niculae V, Martins AFT (2019) Adaptively sparse
transformers. Assoc Comput Linguist. https://doi.org/10.18653/
v1/d19-1223

14. Cover T, Hart P (1967) Nearest neighbor pattern classification.
IEEE Trans Inf Theory 13(1):21–27. https://doi.org/10.1109/tit.
1967.1053964

15. Darlow LN, Crowley EJ, Antoniou A et al (2018) Cinic-10 is not
imagenet or cifar-10, University of Edinburgh, [dataset], Tech. rep.
https://doi.org/10.7488/DS/2448

16. Ding W, Ming Y, Wang YK et al (2021) Memory augmented con-
volutional neural network and its application in bioimages. Neuro-
computing 466:128–138. https://doi.org/10.1016/j.neucom.2021.
09.012

17. Donahue J, Jia Y, Vinyals O et al (2014) Decaf: A deep
convolutional activation feature for generic visual recognition. In:
Xing EP, Jebara T (eds) Proceedings of the 31st international
conference on machine learning, proceedings of machine learning
research, vol 32. PMLR, China, pp 647–655. https://proceedings.
mlr.press/v32/donahue14.html

18. Dosovitskiy A, Beyer L, Kolesnikov A et al (2021) An image is
worth 16x16 words: transformers for image recognition at scale.
International Conference on Learning Representations

19. van Engelen JE, Hoos HH (2019) A survey on semi-supervised
learning. Mach Learn 109(2):373–440. https://doi.org/10.1007/
s10994-019-05855-6

20. Feng L, Li Z, Kuang Z et al (2018) Extractive video summarizer
with memory augmented neural networks Proceedings of the 26th
ACM international conference on Multimedia. ACM, pp 976–983.
https://doi.org/10.1145/3240508.3240651

21. Fu P, Xu Q, Zhang J et al (2019) A noise-resistant superpixel
segmentation algorithm for hyperspectral images. Comput Mater
Contin 59(2):509–515. https://doi.org/10.32604/cmc.2019.05250

22. Goyal Y, Wu Z, Ernst J, et al. (2019) Counterfactual visual
explanations. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings
of the 36th international conference on machine learning,
proceedings of machine learning research, vol 97. PMLR,
pp 2376–2384. https://proceedings.mlr.press/v97/goyal19a.html

23. Graves A, Wayne G, Reynolds M et al (2016) Hybrid computing
using a neural network with dynamic external memory. Nature
538(7626):471–476. https://doi.org/10.1038/nature20101

24. Gurumoorthy KS, Dhurandhar A, Cecchi G et al (2019) Efficient
data representation by selecting prototypes with importance
weights. In: 2019 IEEE International Conference on Data Mining
(ICDM). IEEE. https://doi.org/10.1109/icdm.2019.00036

25. Song H, Yang W, Yuan H, Bufford H (2020) Deep 3d-multiscale
densenet for hyperspectral image classification based on spatial-
spectral information. Intell Autom Soft Comput 26(6):1441–1458.
https://doi.org/10.32604/iasc.2020.011988

26. He K, Zhang X, Ren S, et al. (2016) Deep residual learning for
image recognition. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, pp 770–778

27. He L, Li J, Liu C et al (2018) Recent advances on spec-
tral–spatial hyperspectral image classification: an overview and
new guidelines. IEEE Trans Geosci Remote Sens 56(3):1579–
1597. https://doi.org/10.1109/tgrs.2017.2765364

28. Huang G, Liu Z, Maaten LVD, et al. (2017) Densely connected
convolutional networks. In: 2017 IEEE Conference on computer
vision and pattern recognition (CVPR). IEEE, pp 4700–4708

29. Hyun Y, Kim H (2020) Memory-augmented convolutional neural
networks with triplet loss for imbalanced wafer defect pattern
classification. IEEE Trans Semicond Manuf 33(4):622–634.
https://doi.org/10.1109/tsm.2020.3010984

30. Kang D, Kwon H, Min J, et al. (2021) Relational embedding
for few-shot classification. In: Proceedings of the IEEE/CVF
international conference on Computer Vision (ICCV), pp 8822–
8833

31. Kenny EM, Keane MT (2019) Twin-systems to explain artificial
neural networks using case-based reasoning: Comparative tests
of feature-weighting methods in ANN-CBR twins for XAI. In:
Proceedings of the twenty-eighth international joint conference on
artificial intelligence. International Joint Conferences on Artificial
Intelligence Organization, pp 2708–2715

32. Kenny EM, Keane MT (2021) Explaining deep learning using
examples: Optimal feature weighting methods for twin systems
using post-hoc, explanation-by-example in XAI. Knowl-Based
Syst 233:107,530. https://doi.org/10.1016/j.knosys.2021.107530

33. Kim B, Khanna R, Koyejo OO et al (2016) Examples are not
enough, learn to criticize! criticism for interpretability. In: Lee D,
Sugiyama M, Luxburg U (eds) Advances in neural information
processing systems, vol 29. Curran Associates, Inc

34. Kobayashi T (2021) t-vmf similarity for regularizing in-class
feature distribution. In: Proceedings of IEEE conference on
computer vision and pattern recognition (CVPR)

35. Koh PW, Nguyen T, Tang YS, et al. (2020) Concept bottleneck
models. In: III HD, Singh A (eds) Proceedings of the 37th
international conference on machine learning, proceedings of
machine learning research, vol 119. PMLR, pp 5338–5348. https://
proceedings.mlr.press/v119/koh20a.html

36. Krizhevsky A (2009) Learning multiple layers of features from
tiny images. University of Toronto, [dataset], Tech. rep.

37. Kumar A, Irsoy O, Ondruska P, et al. (2016) Ask me anything:
Dynamic memory networks for natural language processing. In:
Proceedings of the 33rd international conference on international
conference on machine learning, ICML’16, vol 48, pp 1378–1387.
JMLR.org

38. La Rosa B, Capobianco R, Nardi D (2020) Explainable infer-
ence on sequential data via memory-tracking. In: Proceedings of
the twenty-ninth international joint conference on artificial intel-
ligence. International joint conferences on artificial intelligence
organization, pp 2006–2013

39. Laugel T, Lesot MJ, Marsala C et al (2018) Comparison-
based inverse classification for interpretability in machine

9144 B. La Rosa et al.

https://doi.org/10.1007/978-3-030-58452-8_13
https://proceedings.neurips.cc/paper/2019/file/adf7ee2dcf142b 0e11888e72b43fcb75-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/adf7ee2dcf142b 0e11888e72b43fcb75-Paper.pdf
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1098/rsif.2017.0387
https://royalsocietypublishing.org/doi/10.1098/rsif.2017.0387
https://royalsocietypublishing.org/doi/10.1098/rsif.2017.0387
https://doi.org/10.18653/v1/d19-1223
https://doi.org/10.18653/v1/d19-1223
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.7488/DS/2448
https://doi.org/10.1016/j.neucom.2021.09.012
https://doi.org/10.1016/j.neucom.2021.09.012
https://proceedings.mlr.press/v32/donahue14.html
https://proceedings.mlr.press/v32/donahue14.html
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1145/3240508.3240651
https://doi.org/10.32604/cmc.2019.05250
https://proceedings.mlr.press/v97/goyal19a.html
https://doi.org/10.1038/nature20101
https://doi.org/10.1109/icdm.2019.00036
https://doi.org/10.32604/iasc.2020.011988
https://doi.org/10.1109/tgrs.2017.2765364
https://doi.org/10.1109/tsm.2020.3010984
https://doi.org/10.1016/j.knosys.2021.107530
https://proceedings.mlr.press/v119/koh20a.html
https://proceedings.mlr.press/v119/koh20a.html
https://www.JMLR.org

learning. In: Communications in computer and information
science. Springer International Publishing, Cham, pp 100–111.
https://doi.org/10.1007/978-3-319-91473-2 9

40. Lecun Y, Bottou L, Bengio Y et al (1998) Gradient-based learning
applied to document recognition. Proc IEEE 86(11):2278–2324.
https://doi.org/10.1109/5.726791

41. Lezama J, Qiu Q, Musé P et al (2018) OlÉ: orthogonal low-rank
embedding - a plug and play geometric loss for deep learning.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR)

42. Li H, Zeng W, Xiao G et al (2020) The instance-aware automatic
image colorization based on deep convolutional neural network.
Intell Autom Soft Comput 26(4):841–846. https://doi.org/10.
32604/iasc.2020.010118

43. Li L, Wang B, Verma M et al (2021) Scouter: Slot attention-based
classifier for explainable image recognition. In: Proceedings of the
IEEE/CVF international conference on computer vision (ICCV),
pp 1046–1055

44. Li O, Liu H, Chen C et al (2018a) Deep learning for case-based
reasoning through prototypes: a neural network that explains its
predictions. In: Proceedings of the AAAI conference on artificial
intelligence. AAAI Press, USA. https://ojs.aaai.org/index.php/
AAAI/article/view/11771. Accessed 10 Dec. 2021

45. Li O, Liu H, Chen C, et al. (2018b) Deep learning for case-based
reasoning through prototypes: a neural network that explains its
predictions. In: Proceedings of the thirty-second AAAI conference
on artificial intelligence and thirtieth innovative applications of
artificial intelligence conference and eighth AAAI symposium on
educational advances in artificial intelligence. AAAI Press, USA.
AAAI’18/IAAI’18/EAAI’18

46. Li Y, Zhang H, Xue X, et al. (2018c) Deep learning for remote
sensing image classification: a survey. WIREs Data Min Knowl
Discov 8(6):e–1264. https://doi.org/10.1002/widm.1264

47. Lipton ZC (2018) The mythos of model interpretability: In
machine learning, the concept of interpretability is both important
and slippery. Queue 16(3):31–57

48. Liu J, Ye J (2009) Efficient euclidean projections in linear time.
In: Proceedings of the 26th Annual International Conference on
Machine Learning - ICML ’09. ACM Press. https://doi.org/10.
1145/1553374.1553459

49. Liu S, Kailkhura B, Loveland D, et al. (2019) Generative
counterfactual introspection for explainable deep learning. In:
2019 IEEE Global Conference on Signal and Information
Processing (GlobalSIP), pp 1–5

50. Looveren AV, Klaise J (2021) Interpretable counterfactual expla-
nations guided by prototypes. Springer International Publishing,
Cham, pp 650–665. https://doi.org/10.1007/978-3-030-86520-
7 40

51. Ma C, Shen C, Dick A, et al. (2018) Visual question answering
with memory-augmented networks. In: 2018 IEEE/CVF Confer-
ence on computer vision and pattern recognition. IEEE, pp 6975–
6984

52. Malaviya C, Ferreira P, Martins AFT (2018) Sparse and con-
strained attention for neural machine translation. In: Proceedings
of the 56th annual meeting of the association for computational
linguistics (Volume 2: Short Papers). Association for Computa-
tional Linguistics. https://doi.org/10.18653/v1/p18-2059

53. Martins A, Astudillo R (2016a) From softmax to sparsemax: A
sparse model of attention and multi-label classification. In: Balcan
MF, Weinberger KQ (eds) Proceedings of the 33rd international
conference on machine learning, proceedings of machine learning
research, vol 48. PMLR, New York. USA, New York, pp 1614–
1623

54. Martins AFT, Astudillo RF (2016b) From softmax to sparsemax:
a sparse model of attention and multi-label classification. In:
Proceedings of the 33rd international conference on international

conference on machine learning - Volume 48. JMLR.org,
ICML’16, pp 1614–1623

55. Miranda E, Aryuni M, Irwansyah E (2016) A survey of medical
image classification techniques. In: 2016 International Conference
on Information Management and Technology (ICIMTech), pp 56–
61. https://doi.org/10.1109/ICIMTech.2016.7930302

56. Mothilal RK, Sharma A, Tan C (2020) Explaining machine
learning classifiers through diverse counterfactual explanations.
In: Proceedings of the 2020 Conference on Fairness Account-
ability, and Transparency. ACM. https://doi.org/10.1145/3351095.
3372850

57. Muthusamy D, Rakkimuthu P (2021) Steepest deep bipolar
cascade correlation for finger-vein verification. Appl Intell
52(4):3825–3845. https://doi.org/10.1007/s10489-021-02619-5

58. Netzer Y, Wang T, Coates A et al (2011) Reading digits in natural
images with unsupervised feature learning. In: NIPS Workshop on
Deep Learning and Unsupervised Feature Learning

59. phi Nguyen A, Martı́nez MR (2020) On quantitative aspects of
model interpretability. https://arxiv.org/abs/2007.07584

60. Nugent C, Cunningham P (2005) A case-based explanation
system for black-box systems. Artif Intell Rev 24(2):163–178.
https://doi.org/10.1007/s10462-005-4609-5

61. Papernot N, McDaniel P (2018) Deep k-nearest neighbors:
towards confident, interpretable and robust deep learning. https://
arxiv.org/abs/1803.04765

62. Rdusseeun L, Kaufman P (1987) Clustering by means of medoids.
In: Proceedings of the statistical data analysis based on the L1
norm conference, Neuchatel, Switzerland, pp 405–416

63. Russakovsky O, Deng J, Su H et al (2015) ImageNet Large
Scale Visual Recognition Challenge. Int J Comput Vis (IJCV)
115(3):211–252. https://doi.org/10.1007/s11263-015-0816-y

64. Sandler M, Howard A, Zhu M et al (2018) Mobilenetv2: Inverted
residuals and linear bottlenecks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR)

65. Santoro A, Bartunov S, Botvinick M et al (2016) Meta-learning
with memory-augmented neural networks. In: Proceedings of
machine learning research, vol 48. PMLR, pp 1842–1850

66. Singh G, Yow KC (2021) These do not look like those: An inter-
pretable deep learning model for image recognition. IEEE Access
9:41,482–41,493. https://doi.org/10.1109/access.2021.3064838

67. Snell J, Swersky K, Zemel R (2017) Prototypical networks
for few-shot learning. In: Proceedings of the 31st International
conference on neural information processing systems. Curran
Associates Inc., NIPS’17, pp 4080–4090

68. Stigler SM (1989) Francis galton’s account of the invention
of correlation. Stat Sci 4(2):73–79. https://doi.org/10.1214/ss/
1177012580

69. Sukhbaatar S, Szlam A, Weston J, et al. (2015) End-to-end
memory networks. In: Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume
2. MIT Press, NIPS’15, pp 2440–2448

70. Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution
for deep networks. In: Proceedings of the 34th international
conference on machine learning - Volume 70. JMLR.org,
ICML’17, pp 3319–3328

71. Sung F, Yang Y, Zhang L et al (2018) Learning to compare:
Relation network for few-shot learning. In: Proceedings of the
IEEE conference on computer vision and pattern recognition
(CVPR)

72. Szegedy C, Liu W, Jia Y, et al. (2015) Going deeper with
convolutions. In: Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), pp 1–9

73. Tan C, Sun F, Kong T, et al. (2018) A survey on deep transfer
learning. In: Artificial Neural Networks and Machine Learning –
ICANN 2018. Springer International Publishing, Cham, pp 270–
279. https://doi.org/10.1007/978-3-030-01424-7 27

9145A self-interpretable module for deep image classification on small data

https://doi.org/10.1007/978-3-319-91473-2_9
https://doi.org/10.1109/5.726791
https://doi.org/10.32604/iasc.2020.010118
https://doi.org/10.32604/iasc.2020.010118
https://ojs.aaai.org/index.php/AAAI/article/view/11771
https://ojs.aaai.org/index.php/AAAI/article/view/11771
https://doi.org/10.1002/widm.1264
https://doi.org/10.1145/1553374.1553459
https://doi.org/10.1145/1553374.1553459
https://doi.org/10.1007/978-3-030-86520-7_40
https://doi.org/10.1007/978-3-030-86520-7_40
https://doi.org/10.18653/v1/p18-2059
https://doi.org/10.1109/ICIMTech.2016.7930302
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1007/s10489-021-02619-5
https://arxiv.org/abs/2007.07584
https://doi.org/10.1007/s10462-005-4609-5
https://arxiv.org/abs/1803.04765
https://arxiv.org/abs/1803.04765
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/access.2021.3064838
https://doi.org/10.1214/ss/1177012580
https://doi.org/10.1214/ss/1177012580
https://doi.org/10.1007/978-3-030-01424-7_27

74. Tan M, Le Q (2019) EfficientNet: Rethinking model scaling for
convolutional neural networks. In: Chaudhuri K, Salakhutdinov
R (eds) Proceedings of the 36th international conference on
machine learning, proceedings of machine learning research, vol
97. PMLR, pp 6105-6114

75. Tsallis C (1988) Possible generalization of boltzmann-gibbs
statistics. J Stat Phys 52(1-2):479–487. https://doi.org/10.1007/
bf01016429

76. Ulicny M, Krylov VA, Dahyot R (2019) Harmonic networks with
limited training samples. In: 2019 27th European Signal Pro-
cessing Conference (EUSIPCO). IEEE. https://doi.org/10.23919/
eusipco.2019.8902831

77. Varshneya S, Ledent A, Vandermeulen RA et al (2021) Learn-
ing interpretable concept groups in CNNs. In: Proceedings of
the thirtieth international joint conference on artificial intelli-
gence. International joint conferences on artificial intelligence
organization. https://doi.org/10.24963/ijcai.2021/147

78. Vinyals O, Blundell C, Lillicrap T, et al. (2016) Matching net-
works for one shot learning. In: Proceedings of the 30th inter-
national conference on neural information processing systems.
Curran Associates Inc., NIPS’16, pp 3637–3645

79. Wachter S, Mittelstadt B, Russell C (2018) Counterfactual
explanations without opening the black box: Automated decisions
and the gdpr. Harv J Law Technol 31(2):841–887

80. Wang J, Liu H, Wang X, et al. (2021) Interpretable image
recognition by constructing transparent embedding space. In:
Proceedings of the IEEE/CVF international conference on
computer vision (ICCV), pp 895–904

81. Wang P, Vasconcelos N (2020) Scout: Self-aware discriminant
counterfactual explanations. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)

82. Wang Y, Yao Q, Kwok JT et al (2020) Generalizing from a
few examples. ACM Comput Surv 53(3):1–34. https://doi.org/10.
1145/3386252

83. Wiegreffe S, Pinter Y (2019) Attention is not not expla-
nation. In: Proceedings of the 2019 conference on empir-
ical methods in natural language processing and the 9th
International joint conference on natural language processing
(EMNLP-IJCNLP). Association for Computational Linguistics.
https://doi.org/10.18653/v1/d19-1002

84. Wu X, Luo C, Zhang Q et al (2019) Text detection and
recognition for natural scene images using deep convolu-
tional neural networks. Comput Mater Contin 61(1):289–300.
https://doi.org/10.32604/cmc.2019.05990

85. Xing C, Wang M, Wang Z et al (2021) Diagonalized low-rank
learning for hyperspectral image classification. IEEE Trans Geosci
Remote Sens 60:1–12. https://doi.org/10.1109/tgrs.2021.3085672

86. Yasmeen U, Shah JH, Khan MA et al (2020) Text detection and
classification from low quality natural images. Intell Autom Soft
Comput 26(4):1251–1266. https://doi.org/10.32604/iasc.2020.
012775

87. Zagoruyko S, Komodakis N (2016) Wide residual networks. In:
Proceedings of the British Machine Vision Conference 2016.
British Machine Vision Association. https://doi.org/10.5244/c.
30.87

88. Zhang X, Zhou X, Lin M, et al. (2018) ShuffleNet: An extremely
efficient convolutional neural network for mobile devices. In: 2018
IEEE/CVF conference on computer vision and pattern recog-
nition. IEEE, pp 6848–6856. https://doi.org/10.1109/cvpr.2018.
00716

89. Zheng H, Fu J, Mei T et al (2017) Learning multi-attention
convolutional neural network for fine-grained image recognition.
In: 2017 IEEE International conference on computer vision
(ICCV). IEEE. https://doi.org/10.1109/iccv.2017.557

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Biagio La Rosa is a Ph.D. stu-
dent at Sapienza University of
Rome. His research focuses
on the field of eXplainable
Artificial Intelligence and in
particular on exploring meth-
ods for interpreting deep neu-
ral networks. The application
domains of his work include
natural language processing
and computer vision. He has
been one of the organizers
of the XAI4Debugging work-
shop at NeurIPS2021, a work-
shop that aimed at bringing
together researchers of the

visual analytics community and the eXplainable artificial intelligence
community around the problem of explaining deep learning systems.
He is active in the AI community, publishing international conferences
and contributing to the organization of conferences.

Roberto Capobianco is a
Senior Research Scientist at
Sony AI as well as Con-
tract Professor and member of
the PhD board at the Depart-
ment of Computer, Control,
and Management Engineering
“Antonio Ruberti” (DIAG),
Sapienza University of Rome.
He is the founder of the
Knowledge, Reasoning and
Learning Research Group in
the Collaborative and Cog-
nitive Robotics Lab in the
same department. With long-
standing machine and deep

learning experience both in academia and industry, his research is
focused on reinforcement learning, explainable AI, robot control and
knowledge representation. He has recently organized the Explainable
AI for Debugging Workshop at NeurIPS, as well as a Workshop on
the Evaluation and Benchmarking of Human-Centered AI Systems. He
has additionally contributed to the organization of other conferences as
well as robotics competitions (RoCKIn and SciRoc challenges) in the
context of EU projects.

9146 B. La Rosa et al.

https://doi.org/10.1007/bf01016429
https://doi.org/10.1007/bf01016429
https://doi.org/10.23919/eusipco.2019.8902831
https://doi.org/10.23919/eusipco.2019.8902831
https://doi.org/10.24963/ijcai.2021/147
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252
https://doi.org/10.18653/v1/d19-1002
https://doi.org/10.32604/cmc.2019.05990
https://doi.org/10.1109/tgrs.2021.3085672
https://doi.org/10.32604/iasc.2020.012775
https://doi.org/10.32604/iasc.2020.012775
https://doi.org/10.5244/c.30.87
https://doi.org/10.5244/c.30.87
https://doi.org/10.1109/cvpr.2018.00716
https://doi.org/10.1109/cvpr.2018.00716
https://doi.org/10.1109/iccv.2017.557

Daniele Nardi received the
Graduated degree in electri-
cal engineering at Politec-
nico di Torino in 1981. He
has been a Full Professor
with the Faculty of Ingegne-
ria dell’Informazione, Infor-
matica, Statistica, Department
of Computer, Control, and
Management Engineering “A.
Ruberti,” Sapienza University
of Rome, Rome, Italy, since
2000. He is currently the refer-
ent for the Master curriculum
in Artificial Intelligence and
Robotics, and he is teaching

the course Artificial Intelligence of the master, since several years.
He leads the research laboratory “Cognitive Robot Teams,” addressing
different research topics: Cognitive Robotics, Localization, Naviga-
tion, Perception, Cooperation in multirobot systems, Human Robot
Interaction, multimodal interfaces and speech. The scientific and tech-
nical achievements are deployed in manifold application domains:
Ambient Intelligence and robots to support elderly people, Disaster
Response robots to explore and gather information from the environ-
ment, Cultural Heritage, Precision Agriculture, Soccer Player robots
for RoboCup competitions. He has a publication record with several
contributions in Artificial Intelligence and Robotics (H-index 50). He
has been the principal investigator of several collaborative projects
funded by FP7, H2020, and several other research funding institu-
tions. Mr. Nardi is a EurAI Fellow, and was a President of RoboCup
Federation from 2011 to 2014.

9147A self-interpretable module for deep image classification on small data

	A self-interpretable module for deep image classification on small data
	Abstract
	Introduction
	Background
	Memory augmented neural networks
	eXplainable Artificial Intelligence
	Example-based explanations
	Counterfactuals

	Image classification

	Memory wrap
	Preliminaries
	Problem formulation
	Content-based attention
	Sparsemax

	Proposed module
	Getting explanations

	Results
	Setup
	Training procedure

	Performance comparison
	Memory-based modules
	Standard (Std)
	Prototypical networks
	Matching networks
	Performance

	Interpretable methods
	Major voting
	Only Memory (OnlyMem)
	Performance

	Complete experiments

	Interpreting the memory wrap behavior
	Example-based explanations
	Usage scenario: bias detection
	Quality estimation

	Counterfactuals
	Usage scenario: understanding prediction reliability
	Quality estimation

	Enhancing explanations
	Feature attribution
	Contrastive explanations

	Analysis
	Ablation study
	Representation power
	Parameters
	Number of samples
	Distance
	Sample selection
	Full dataset

	Computational cost
	Parameters
	Space complexity
	Time complexity

	Limitations
	Memory footprint and training time
	Bias amplification

	Applicability to other tasks or domains

	Conclusion and future research
	Appendix A A: Tables of results
	 B: Results for the only memory variant
	Appendix B B: Results for the only memory variant
	 C: Baselines using different training setup
	Appendix C C: Baselines using different training setup
	Declarations
	References

