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A Self-Learning Approach

to Single Image Super-Resolution
Min-Chun Yang and Yu-Chiang Frank Wang, Member, IEEE

Abstract—Learning-based approaches for image super-resolu-
tion (SR) have attracted the attention from researchers in the past

few years. In this paper, we present a novel self-learning approach

for SR. In our proposed framework, we advance support vector re-
gression (SVR) with image sparse representation, which offers ex-

cellent generalization in modeling the relationship between images

and their associated SR versions. Unlike most prior SR methods,
our proposed framework does not require the collection of training

low and high-resolution image data in advance, and we do not as-

sume the reoccurrence (or self-similarity) of image patches within
an image or across image scales.With theoretical supports of Bayes

decision theory, we verify that our SR framework learns and se-

lects the optimal SVR model when producing an SR image, which
results in the minimum SR reconstruction error. We evaluate our

method on a variety of images, and obtain very promising SR re-

sults. In most cases, our method quantitatively and qualitatively
outperforms bicubic interpolation and state-of-the-art learning-

based SR approaches.

Index Terms—Self-learning, sparse representation, super-reso-

lution, support vector regression.

I. INTRODUCTION

S UPER-RESOLUTION (SR) has been an active research

topic in the areas of image processing and computer vision.

It is a process to produce a high-resolution (HR) image from one

or several low-resolution (LR) images. Conventional methods

are based on the reconstruction of multiple LR images, and they

approach SR as solving an inverse problem, i.e., they recover

the HR image as a linear operation of multiple LR patches. Re-

cently, learning-based SR approaches which focus on modeling

the relationship between training low and high-resolution im-

ages have also attracted researchers, while the existence of the

aforementioned relationship is typically seen in natural images

[1], [2]. However, the difficulty of learning-based SR methods

lies on the selection of proper training data and proper learning

models for SR from an unseen target image.
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In machine learning, support vector regression (SVR) [3] is

considered as an extension of support vector machine (SVM),

which exhibits excellent generalization ability in predicting

functional outputs without any prior knowledge or assumption

on the training data (e.g., data distribution, etc.). SVR is capable

of fitting data via either linear or nonlinear mapping, and the

use of SVR has been applied in applications of data mining,

bioinformatics, financial forecasting, etc. Previously, SVR has

been shown to address SR problems in [1], [4]; however, these

SVR-based SR approaches require the collection of training

low and high-resolution image pairs in advance, and this

might limit their practical uses. In this paper, we propose a

self-learning framework for SR. We not only present quantita-

tive and qualitative SR results to support our method, we will

also provide theoretical backgrounds to verify the effectiveness

of our learning framework.

The remainder of this paper is organized as follows. Prior SR

works are discussed in Section II. Section III details the pro-

posed self-learning method, including theoretical backgrounds

of Bayesian decision theory for our SVR model selection.

Section IV provides empirical results on a variety of images

with different magnification factors, including comparisons

with several SR methods. Finally, Section V concludes this

paper.

II. RELATED WORK

A. Reconstruction-Based SR

Typically, reconstruction-based SR algorithms require image

patches from one or several images (frames) when synthesizing

the SR output. This is achieved by registration and alignment

of multiple LR image patches of the same scene with sub-pixel

level accuracy [5]–[7]. For single-image reconstruction-based

SR methods, one needs to exploit self similarity of patches

within the target LR image. With this property, one can thus

synthesize each patch of the SR image by similar patches in

the LR version. However, reconstruction-based methods are

known to suffer from ill-conditioned image registration and

inappropriate blurring operator assumptions (due to an insuf-

ficient number of LR images) [8]. Moreover, when an image

does not provide sufficient patch self-similarity, single-image

reconstruction based methods are not able to produce satisfying

SR results [9]. Although some regularization based approaches

[5], [7], [10] were proposed to alleviate the above problems,

their SR results will still be degraded if only a limited number

of low-resolution images/patches are available or if a larger

image magnification factor is needed. According to [8], [11],

the magnification factor of reconstruction-based SR approaches

is limited to be less than 2 for practical applications. A recent

1520-9210/$31.00 © 2012 IEEE
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approach proposed in [12] alleviates this limitation by learning

image prior models via kernel principal component analysis

from multiple image frames.

Since single-image SR does not require multiple LR images

as inputs, it attracts the interest from researchers and engineers

due to practical applications. As discussed above, methods

assuming the existence of image patch self-similarity need to

search for similar patches from an input image when synthe-

sizing the SR output. However, the assumption of self-similarity

might not always hold, and the associated SR performance

varies with the similarity between different categories of image

patches. The nonlocal means (NLM) method [13] is one of

the representatives which advocates such a property in image

related applications.

B. Learning-Based SR

In the past few years, much attention has been directed

to learning (or example) based SR methods (e.g., [1], [14],

[15]), which can be considered as single image SR approaches

utilizing the information learned/observed from training image

data. With the aid of training data consisting of low and

high resolution image pairs, learning-based methods focus on

modeling the relationship between the images with different

resolutions (by observing priors of specific image or context

categories). For example, Chang et al. [15] applied the tech-

nique of locally linear embedding (LLE) for SR purposes. They

collected a training data set with multiple low and high-res-

olution image pairs. For each patch in an input LR image,

they proposed to search for similar patches from LR training

images, and they used the corresponding training HR patches

to linearly reconstruct the SR output (using the weights deter-

mined by LLE). Ni et al. [1] proposed to use support vector

regression (SVR) to fit LR image patches and the pixel value

of the corresponding HR images in spatial and DCT domains.

It is not surprisingly that, however, the performance of typical

learning-based methods varies significantly on the training data

collected. As a result, in order to achieve better SR results, one

needs to carefully/manually select the training data. In such

cases, the computation complexity of training and difficulty of

training data selection should be both taken into consideration.

Recently, Glasner et al. [2] proposed to integrate both

classical and example-based SR approaches for single image

SR. Instead of collecting training image data beforehand, they

searched for similar image patches across multiple down-scaled

versions of the image of interest. It is worth noting that this

single image SR method advocates the reoccurrence of similar

patches across scales in natural images, so that their approach

simply downgrades the resolution of the input image and

perform example-based SR. In other words, once similar

patches are found in different scaled versions, classical SR

methods such as [7], [16], [17] can be applied to synthesize

the SR output. Although very promising SR examples were

shown in [2], there is no guarantee that self-similarity always

exists within or across image scales, and thus this prohibits the

generalization of their SR framework for practical problems.

Moreover, it is not clear what is the preferable magnification

factor when applying their approach (SR images with different

magnification factors were presented in [2]).

Fig. 1. Overview of our learning-based single image SR approach. Note that
represents the original input low-resolution image, and , , etc. are the

down-scaled versions of . is the SR result.

C. Sparse Representation for SR

Originally applied to signal recovery, sparse coding [18] has

shown its success in image related applications such as image

denoising [19], and it was first applied to SR by Yang et al.

[20], [21]. They considered the image patch from HR images

as a sparse representation with respect to an over-complete

dictionary composed of signal-atoms. They suggested that,

under mild conditions, the sparse representation of high-reso-

lution images can be recovered from the low-resolution image

patches [20], [21]. They used a small set of randomly chosen

image patches for training, and implied that their SR method

only applies to images with similar statistical nature. Kim and

Kwon [22], [23] proposed an example-based single image

SR for learning the mapping function between the low and

high-resolution images by using sparse regression and natural

image priors. However, blurring and ringing effects near the

edges exist in their SR results, and additional post-processing

techniques are still needed to alleviate this problem. Recently,

Yang et al. [24] extended the framework of [2]. Based on the

assumption of image patch self-similarity, they concatenated

high and low-resolution image pairs from the image pyramid

and jointly learned their sparse representation. When super-re-

solve an LR input patch, they searched for similar patches from

the image pyramid and use the associated sparse representation

(the HR part) to predict its final SR version.

D. Our Contributions

The overview of our single image SR approach is shown in

Fig. 1. Image is the LR input image, and is the SR output.

Instead of searching for similar patches from training image data

or from different down-scaled versions of the original image

(e.g., [2], [15]), we aim to learn the relationships between image

patches across scales. Once these relationships are observed, we

can apply the proper model to synthesize the final SR image

from . It is worth noting that, instead of working directly at

pixel, etc. domains as [1], [15] did, we apply image sparse rep-

resentation as a robust and effective feature for learning ([20],

[21] also did this). Furthermore, our method does not require

collection of training data, and we do not require the assump-

tion of image patch self-similarity in our framework.

In ourmethod, there are twomajor issues to be addressed. The

first task is the modeling of relationships between image patches

from different image scales. Once these models are observed,

the following task (and probably the most challenging one) is
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TABLE I
THE DESCRIPTIONS OF THE SYMBOLS USED IN THIS PAPER

Fig. 2. Our proposed self-learning framework for single image SR. Note that
no training low and high-resolution image data is required in this framework.

to determine the proper model for SR. Detailed discussions and

solutions will be presented in Section II and III, respectively.

Finally, the contribution of our proposed SR method is twofold.

First, our method focuses on the learning of proper SR models

from different image scales when producing higher resolution

images, and thus our approach does not search for similar image

patches for SR reconstruction. This avoids the problem of insuf-

ficient self-similarity of patches from different training images

(e.g., [5], [7]), within the image of interest (e.g., [25]), or across

different scaled versions of that image (e.g., [2]). In other words,

there is no need to manually and carefully select training image

data, which is not practical to real-world SR applications. The

second contribution of our approach is to support the learning of

proper image sparse representation for SVR and SR purposes.

The use of sparse representation not only can be viewed as an ef-

fective image feature, such a compact image representation also

accelerates the learning and prediction processes of SR images

(due to very few non-zero attributes in a feature vector), which

makes the SR with larger magnification factors more computa-

tionally feasible.

III. THE PROPOSED SELF-LEARNING APPROACH

TO SINGLE IMAGE SUPER-RESOLUTION

This section presents our proposed single image SR method,

which is an extension of our previous work [4], and is also in-

spired by the recent success of the method of Glasner et al. [2].

Fig. 2 shows the detailed framework of our approach, where

Fig. 3. Refinement of an interpolated high-resolution image (by bicubic inter-
polation) for SR.

image is the low-resolution input image, and is the final

SR output. Instead of searching for similar patches from im-

ages as [2] did, we focus on modeling the re-

lationships between image patches from each scale. Once these

models are observed from each scale, we select the best ones to

refine each patch in into the final output . Using such a

self-learning and data-driven framework, we need not collect

training data from other low and high-resolution image pairs,

and we do not require the reoccurrence of image patches either.

We now discuss the details of our method. In addition, the de-

scriptions of the symbols used in this paper are listed in Table I.

A. An Image Refinement Process for SR via SVR

In our prior SRmethod in [4], we approached the SR problem

as a refinement (or denoising) process which converts an in-

terpolated HR image into a final SR output, as illustrated in

Fig. 3. Like most prior learning-based SR works, our approach

in [4] also required the training of SR algorithms from pre-col-

lected training data, which not only limits its practical uses, and

the associated SR performance would also be dependent on the

training data of use. Since the image refinement process for SR

previously proposed in [4] motivates the self-learning approach

in this paper, it is necessary to review this work for the sake of

completeness.

1) Learning of Image Sparse Representation: As shown in

Fig. 3, our work in [4] uses bicubic interpolation to synthesize an

LR input image into its HR version. After all 5 x 5 pixel patches

are extracted from this synthesized image, proper features need

to be selected to describe each patch for learning the SRmodels.

Instead of using raw pixels as image features, we advocate the
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Fig. 4. The flowchart of our previous approach [4] for synthesizing an SR image. Note that the learning of SVR models in this work requires the collection of
training low and high-resolution image data.

use of sparse representations as the image features. As suggested

by [4], [13], [21], [23],[24], sparse representation has been ob-

served as a preferable type of features to use especially for SR

applications. To determine the sparse representation for image

patches, an over-complete dictionary will be learned from the

extracted patches, and the resulting spare coefficients for each

patch will be the features of interest. It is worth noting that, an-

other advantage of using sparse representation as image features

is that most feature attributes will be zeroes (due to the enforced

sparsity), and thus its use as image features would further de-

crease the training and computation time when learning or pro-

ducing SR images (as we confirmed in [4]).

In [4] and our proposed work in this paper, we apply the tool

developed by [26] to learn the dictionary and the associated

sparse coefficient vectors for each patch. This can be formu-

lated as following optimization problem:

(1)

where is the image patch of interest (in terms of pixels),

is the over-complete dictionary to be determined, and is the

corresponding sparse coefficient vector. Note that the Lagrange

multiplier balances the sparsity of and the -norm recon-

struction error. In our implementation, we divide the image

patches into high and low spatial frequency ones and learn their

dictionaries accordingly. From our observation (and as verified

in [4]), this patch categorization strategy moderately improves

the averaged PSNR performance, and computation/training

time will be significantly reduced due to a smaller training set

for the SR learning model (i.e., SVR in our proposed frame-

work). We note that, one can apply other patch categorization

methods like [27] and can expect to obtain context specific

representation for the image patches. When integrating such

more advanced feature selection techniques into our proposed

self-learning framework, further improved SR performance can

be expected. Nonetheless, from our observations and the above

recent SR works, we consider the use of sparse representation

as the features, and we choose to learn distinct sparse represen-

tation dictionaries for high and low spatial frequency patches.

In the following step, we will discuss how we integrate sparse

image representation and SVR for self-learning and predicting

the final SR output.

2) Support Vector Regression for SR: Support vector regres-

sion (SVR) [3] is an extension of support vector machine, which

is able to fit the data in a high-dimensional feature space without

assumptions of data distribution. Similar to SVM, the general-

ization ability makes the SVR very powerful in predicting un-

known outputs, and the use of SVR has been shown to produce

effective SR outputs in [1], [4]. As illustrated in Fig. 3, the final

task of our previous work in [4] aims at modeling the relation-

ship between input data and the associated SR pixel values .

In training, our SVR solves the following problem

(2)

In (2), is the pixel value at the same location as the center of

the patch of interest in the high-resolution image. The param-

eter is the off-set of the regression model, is the number of

training patches, is the sparse image representation in the

transformed space, and is the norm vector of the nonlinear

mapping function. Similar to SVM, is the tradeoff between

the generalization and the upper/lower bounds of training errors

and , subject to a margin . In our implementation, we sub-

tract the mean value of each patch from its pixel values before

calculating the sparse coefficient , and the same value is also

subtracted from the corresponding pixel label in the high reso-

lution image. This is because our approach suggests the learning

and prediction of local pixel value variations, not the absolute

pixel value output. In testing, the mean value of each patch will

be added to the predicted output pixel value .

Once the training of SVR is complete, the observed SVR will

be applied to predict the final SR output for a test LR input.

Using the flowchart shown in Fig. 4, our work in [4] first syn-

thesizes the HR version from the test input using bicubic inter-

polation. To refine this HR image into the final SR output, we de-

rive the sparse representation of each patch and update the cen-

tered pixel value for each using the learned SVR models. From

the experimental results shown in [4], we achieved better and

comparable SR results than some prior learning-based SR ap-

proaches did. While this refinement process exhibits impressive

capability in producing SR images, its need to collect training

LR/HR image data in advance is not desirable. In this paper, a

novel self-learning approach for single image SR based on this

refinement strategy is presented, as discussed in the following

subsections.

B. Self-Learning of In-Scale SVR for Image SR

To address the single-image SR problem with a self-learning

strategy,We first downgrade the resolution of an input LR image

into several lower-resolution versions . Next,

we interpolate these images to synthesize the corresponding
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higher-resolution images using bicubic inter-

polation. The entire framework is shown in Fig. 2. From this

figure, it is clear that two image pyramids and will be

constructed, and each image can be considered as a ground

truth image of its interpolated version . It is worth noting that,

we do not limit this framework to the use of bicubic interpo-

lation when constructing the image pyramids. Later in our ex-

periments, we will apply other state-of-the-art SR techniques to

produce the up-sampled images , and we will show that our

proposed method is still able to produce effective SR results.

Once the ground truth image and its interpolated version

are obtained, we extract the sparse image representation of

each patch in . Similar to our work in [4], we apply SVR to

model the relationship between and , and we have the set

as the collection of SVR

models indicating the learning models observed from different

image scales. As discussed in Section III-A, SVR is subject to

training errors and with precision . As a result, the pre-

dicted result of using does not guarantee to be ex-

actly the same as , and the resulting error image will be

obtained. Thus, each pixel in this error image can be cal-

culated as follows:

(3)

In the above equation, is the -th pixel value in image

(at the th scale), and is the sparse representation of the

th image patch in . Once the error image is obtained, we

choose to fit another SVR regression model between and ,

and this model is denoted as . In practice, the precision

for will be smaller than that for the . This is

because, given an input patch (in terms of its sparse represen-

tation), the output of will be used as a cue that how

well the associated is for the purpose of image SR. In

other words, a smaller output indicates that the cor-

responding model fits the patch relationship between

images and better.

Let us take in Fig. 2 for example. Using image sparse rep-

resentation as the input feature, we first learn the SVR model

, which refines the interpolated image into the

ground truth image . The predicted output image of is

the orange image shown (i.e., the learned HR image) in Fig. 5.

Since this predicted SVR output will not be the same as the

ground truth due to the precision and training errors , the

induced error image (the red image in Fig. 5) can be thus

calculated as the difference between the predicted image and

the ground truth , and the error SVR model can

be trained to associate with . For an input image patch

in the synthesized HR image in Fig. 2, if this

produces a smaller output than other models at other

scales, this implies that the corresponding better fits

the model between and , and thus will be ap-

plied to refine that image patch into its SR output. Similar re-

marks apply to other SVR models at different scales.

To summarize our proposed framework, we construct the

image pyramids from an LR input, as depicted in Fig. 2. Both

types of SVR models and will be observed

from different image scales. To refine the patches in into

as the final output, we predict the errors for each patch

Fig. 5. Illustration of SVR models and for the ground
truth , interpolated image , and the corresponding error .

using different models. Once the smallest

output is determined for a patch, we choose the associated

for the prediction/refinement purpose (recall that, a

smaller output indicates a better for that

patch to fit in). In the following subsection, we will discuss

the background theories for this SVR model selection process.

Moreover, experimental results in Section IV will also verify

the effectiveness of this proposed selection method.

C. SVR Model Selection via Bayesian Decision Theory

As discussed above, when refining each patch in the target

high-resolution image into the final SR output, our proposed

method aims at selecting the most desirable SVR model which

is learned from the subsequent image scales. More precisely,

for the producing the smallest output, we consider the

associated to be the best in terms of refining the patch

in into that in .

We observe that this SVR model selection process corre-

sponds to a minimum-error-rate classification rule based on

Bayesian decision theory. While the traditional Bayes classifi-

cation rule aims to minimize the classification error, our SVR

selection process focuses on minimizing the image reconstruc-

tion error for SR purposes. To be more specific, for a patch

in , its preferable model is the category label to be

predicted, and the difference between that patch in the resulting

SR output and that in the ground truth HR image is the

prediction error. We now discuss why the proposed SVR model

selection process is associated with the Bayes decision theory,

and why a minimum SR reconstruction error can be achieved

using our decision rule.

Let be the category-conditional proba-

bility function (or likelihood) of , where is the dictionary

for image sparse representation in image scale and is

the input patch. Under the assumption of equal prior (i.e.,

the prior probabilities are the same across

image scales, which means the SVR models learned from

each scale are equally informative), the posterior probability

will be proportional to

due to the Bayes rule. For each image scale , we compute

the posterior probability for the patch as

follows

(4)

where . It can be seen from (4)

that the likelihood of is inversely proportional to the
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output modeling the reconstruction/prediction error at image

scale (i.e., one minus the normalized regression error output),

and the above equation allows us to calculate this likelihood ac-

cordingly. Using (4), a smaller output for the patch

will result in a larger . As derived above, a

large likelihood value corresponds to a large

posterior probability , and it implies that the

patch is more likely to occur in the th scale (and thus the

model is the most preferable among all). We note that

this observation is consistent with our proposed SVR model se-

lection rule. Later in Section IV, we will verify the validity of

our SR method based on this probability model, and we will

show that the use of our proposed SVR model selection method

consistently outperforms the random selection one for all test

images.

To produce the final , we calculate the posterior proba-

bility for each patch in the target high-res-

olution image . For the model resulting in the max-

imum output, this SVR model will be used

for refining the patch of into the output. This SVR

model selection process can be determined as follows

(5)

We note that the above process corresponds to the Bayes de-

cision rule in minimizing the prediction error when assigning

the category to the input . The last term in (5) indi-

cates our selection rule, i.e., the model is preferable for

patch if its produces a smallest output. For example,

we select the model for the patch in

image , if its is the smallest among

all .

We now derive the expected reconstruction error using the

aforementioned rule, and we will show that why our method is

able to achieve a preferable SR output with a smallest recon-

struction error (and thus a large PSNR value). Let be the

number of pixels (patches) in the target high-resolution image

, we approximate the predicted SR error in the final

SR output by

(6)

From (6), we conclude that if one does not choose proper

models to obtain the final SR output as we do, the

resulting reconstruction error will always be larger than that

produced by our SR method. In other words, using such a

self-learning framework, our selection rule for choosing proper

Fig. 6. Example images for SR in our experiments.

learning models in predicting the final SR output will result in

the minimum SR reconstruction error.

IV. EXPERIMENTAL RESULTS

In Section IV-A, we first evaluate our proposed SR method

with different magnification factors on several grayscale or

color images. Besides presenting the SR images and their

PSNR values, we also compare our results with those produced

by state-of-the-art learning-based SR methods. In Section IV-B,

we replace bicubic interpolation in our framework by other

up-sampling or SR algorithms. This is to verify that our pro-

posed framework is not limited to the use of any specific

type of image up-sampling techniques when constructing the

image pyramids. These two parts of experiments are to verify

the effectiveness and robustness of our proposed method,

respectively.

A. Quantitative and Qualitative Comparisons of SR Results

We test our SR approach on a variety of images, which are

collected from the USC-SIPI database (http://sipi.usc.edu/data-

base) and by Fattal et al. [28]. Some example images are shown

in Fig. 6. We do not particularly consider any specific category

of images for SR (e.g., natural scenes, artificial objects, etc.),

and we do not require the collection of training data as other

learning-based SR approaches did. For color images, we only

perform SR on the illuminance channel in the YUV color space,

and the remaining color channels are up-sampled by bicubic in-

terpolation. When synthesizing an SR output, we start with the

original image as the ground-truth HR image, and we degrade it

into LR versions by nearest neighbor interpolation or Gaussian

blur kernels.

In the implementation of our SR framework, we train our

SVR models using LIBSVM [29]. Since only linear SVR

models are considered, the computation time of our SR algo-

rithm is actually less than or comparable to state-of-the-art

learning-based SR methods (as shown later). To learn the

image sparse representation, we construct the dictionaries

and calculate the corresponding sparse coefficients using the

software developed by [26], in which the sparsity constraint

(i.e., ) is set to 0.25 and the size of the dictionary is 100.

With these parameter choices, the sparsity of the derived sparse

representation can be observed. We have the average number
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TABLE II
COMPARISONS OF SR IMAGES PRODUCED BY DIFFERENTMETHODSWITH AMAGNIFICATION FACTOR OF 2, INCLUDING THE AVERAGE TRAINING AND TESTING
TIME ( AND ) FOR EACH. NOTE THAT THE RUN-TIME ESTIMATES (IN MINUTES) ARE OBTAINED ON AN INTEL QUAD CORE PC WITH 2.23 GHZ

PROCESSORS AND 2G RAM, AND THE INPUT IMAGES ARE DOWNSAMPLED FROM THEIR GROUND TRUTH VERSIONS USING NEAREST NEIGHBOR INTERPOLATION

TABLE III
COMPARISONS OF SR IMAGES PRODUCED BY DIFFERENT METHODS WITH A MAGNIFICATION FACTOR OF 2. NOTE THAT

THE INPUT IMAGES ARE DOWNSAMPLED FROM THEIR GROUND TRUTH VERSIONS USING GAUSSIAN BLUR KERNELS

of non-zero entries as 2.93 out of 100 (more specifically, 5.54

for the high-frequency patches and 1.99 for the low-frequency

ones). In addition, we limit the number of levels in the image

pyramid of our framework less than or equal to three. This

choice avoids producing images with insufficient resolution

(e.g., pixels or less), which might result in over-fitting

during the learning of SVR.

To quantitatively compare our results with those produced by

prior SR methods, Table II lists the PSNR values of SR images

using different approaches: bicubic interpolation, locally linear

embedding (LLE) for SR [15], sparse representation for SR by

Yang et al. [21], our previous SVR method for SR (Wang et

al.) [4], the recent work of Glasner et al. [2], our framework

using randomly-chosen SVR models, and our proposed method

(i.e., with the selection of SVR via Bayesian decision theory).

We note that we apply the Matlab code implemented by Yang

et al. [24] when comparing to the method of [2]. Their code

is available at the website http://faculty.ucmerced.edu/mhyang/

code/accv10_super.zip. All the input LR images are down-sam-

pled from their ground truth versions using nearest neighbor in-

terpolation. As can be seen in the last column of Table II, all the

learning-based SR approach except for ours and that of Glasner

et al. [2] need to collect/select training image data. For [21],

the training images are included in their software, and thus we

use their designed dictionary and algorithms for SR directly.

For [4] and [15], we randomly select an image bridge from

the USC-SIPI dataset for training. We note that the implemen-

tation of [4] and [15] requires only one training image, while

several hundred images are needed for [21] (as provided by

their software package). From Table II (and later summarized

in Table IV), we observe PSNR improvements from 0.07 dB to

2.93 dB, or 1.02 dB (3.77%) in average, for our method over

bicubic interpolation.

In additional, we repeat the above experiments but replacing

the nearest neighbor interpolation by a Gaussian blur kernel

(we set as [2] did) for degrading the resolution of

TABLE IV
AVERAGE PSNR IMPROVEMENTS (IN ) OF DIFFERENT SR METHODS OVER
BICUBIC INTERPOLATION WITH DIFFERENT MAGNIFICATION FACTORS .
NOTE THAT INPUT IMAGES GENERATED BY GAUSSIAN BLUR OR NEAREST

NEIGHBOR TECHNIQUES ARE CONSIDERED FOR

input images, which is considered as a more general way in

degrading the image resolution in practice. Table III lists the

PSNR comparisons, and we observe an averaged 0.93 dB (or

3.14%) improvement using our proposed approach for this sce-

nario. From the last two rows in Tables II and III, it is clear that

the proposed probability-based SVR model selection strategy

consistently outperformed the random selection one in all SR

image outputs, which thus verified the validity of the proposed

method (including the SVR probability models). To make the

comparisons more complete, we list the PNSR improvements

of different SR methods with different magnification factors in

Table IV. Besides, we consider a larger magnification factor of

4 and repeat the above experiments. The PSNR values of dif-

ferent methods are also listed in Table IV. From this summary

table, it can be observed that our approach consistently achieved

the best PSNR improvements using different down-sampling

techniques and with different magnification factors.

As for the computation time, Table II lists actual runtime

for different SR methods. The average computation time (in

minutes) for training and testing, i.e., and , are listed.

For the first three learning-based methods in Table II requiring

training image data, LLE [15] reported the least computation

time (with only one training LR/HR image pair) but produced

slightly poorer or comparable PSNR results than bicubic inter-

polation. While neither the methods of Glasner et al. nor ours
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Fig. 7. Example SR results (with a magnification factor 2) and their PSNR values. Top row: ground truth HR image, bicubic interpolation (PSNR: 29.70), LLE [15]
(PSNR: 27.43). Bottom row: Yang et al. [21] (PSNR: 28.86), Glasner et al. [2] (PSNR: 28.81), and ours (PSNR: 32.63). Note that nearest neighbor interpolation
is applied to degrade the image resolution in this example.

Fig. 8. Example SR results (with a magnification factor 4) and their PSNR values. Top row: ground truth HR image, bicubic interpolation (PSNR: 28.19), LLE [15]
(PSNR: 26.85). Bottom row: Yang et al. [21] (PSNR: 26.12), Glasner et al. [2] (PSNR: 24.87), and ours (PSNR: 28.66). Note that nearest neighbor interpolation
is applied to degrade the image resolution in this example.

require training image data (and thus no training time is re-

ported in the table), our average time to produce an SR image

is only 64% of that required by Glasner et al. (160 min. vs. 250

min.) and thus is computationally more preferable. However, it

is worth noting that, since we did not particularly perform any

optimization techniques for the SR methods considered in this

paper (including ours), we simply reported the training/test time

using the Matlab code either implemented by ourselves or re-

leased by the authors (such as [2], [15], [21]).

Fig. 7 shows example SR results of different SR approaches,

in which a portion of the SR image is enlarged for detailed

comparisons. Comparing the SR images produced by different

methods, we see that our approach obtained a satisfactory result

without blurring, etc. artifacts along the edges, while the highest

PSNR value was achieved. Using a larger magnification factor

of 4, Fig. 8 shows another SR example with a larger magnifica-

tion factor of 4, and the effectiveness of our proposed method

is again verified.
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Fig. 9. Example SR results applying Gaussian blur kernels for degrading the image resolution. Top row: Ground truth image, bicubic interpolation (PSNR: 27.45),
LLE [15] (PSNR: 24.05). Bottom row: Yang et al. [21] (PSNR: 27.83), Glasner et al. [2] (PSNR: 27.92) and ours (PSNR: 28.32).

Fig. 10. Example SR results (with a magnification factor 4) and the corresponding PSNR values. Top row: Ground truth image, SR image produced by Genuine
Fractals (software available at www.ononesoftware.com), Freeman et al. [14] (PSNR: 21.34), Fattal et al. [31] (PSNR: 21.36), Wang et al. [4] (PSNR: 23.86).
Bottom row: Kim and Kwon [22], [23] (PSNR: 20.93), Glasner et al. [2] (PSNR: 20.94), LLE [15] (PSNR: 29.8), Yang et al. [21] (PSNR: 24.43), and ours
(PSNR: 31.14).

Finally, we replace nearest neighbor interpolation by

Gaussian blur kernels (as [2] did) when down-sampling images

in our experiments; this is to confirm that our method applies

to practical image processing scenarios. More precisely, to

synthesize the input LR images from their ground truth HR ver-

sions, we apply Gaussian blur kernels before down-sampling

the images. The same down-sampling technique is also applied

to construct the image pyramid in our proposed framework for

self-learning purposes. We show example SR results on three

different images in Figs. 9–11. From these figures (and the

listed PSNR values), one can see the advantages of our method

in producing qualitatively and quantitatively satisfactory SR

results.

B. Our SR Framework With Different Up-Sampling Techniques

As shown in Fig. 2, we apply bicubic interpolation to

up-sample the images into in

the proposed framework for self-learning purposes. While very

promising SR results were reported in Section IV-A, we need

to address the concern that whether the use of bicubic interpo-

lation is critical in this framework. In other words, when other

up-sampling or SR techniques are deployed in our framework,

we need to verify whether the proposed self-learning approach

is still able to achieve satisfactory SR results. While similar

remarks have been concluded in [30], it is necessary to confirm

the robustness of our proposed SR framework, and to show that

it is not limited to the use of bicubic interpolation during the

self-learning process.

We now consider the methods of Lanczos, LLE [15], Yang

et al. [21], and Glasner et al. [2] as the up-sampling techniques.

We replace bicubic interpolation in Fig. 2 by these methods, and

the resulting SR performance is shown in Table V. The first row

of Table V lists the average PSNR improvement of our proposed

self-learning framework, in which the default choice of bicubic

interpolation is used to construct the image pyramid from the

input LR image. The remaining entries in Table V list the PSNR
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Fig. 11. Example SR results applying Gaussian blur kernels for degrading the image resolution. Top row: Ground truth image, bicubic interpolation (PSNR: 27.08),
LLE [15] (PSNR: 24.23). Bottom row: Yang et al. [21] (PSNR: 25.99), Glasner et al. [2] (PSNR: 24.41) and ours (PSNR: 27.48).

Fig. 12. Example SR results using different up-sampling techniques. SR image produced by Glasner et al. [2] (PSNR: 21.34), error image between the ground
truth and the SR image of Glasner et al.; our SR output using the approach of Glasner et al. [2] to up-sample the intermediate images in the proposed framework
(PSNR: 23.42) and error image between the ground truth and the SR image using Glasner et al. approach to up-sample the intermediate images. It can be seen
that, while not using bicubic interpolation, our approach still performs better than that of Glasner et al. Note that the error images are scaled into the same display
range for detail comparisons.

TABLE V
AVERAGE PERFORMANCE IMPROVEMENTS USING DIFFERENT

UP-SAMPLING TECHNIQUES IN OUR SR FRAMEWORK

improvements when applying the above techniques for up-sam-

pling, and it can be seen that all the values are positive and larger

than those reported by other learning-based SR methods shown

in Table IV. We also show an SR example in Fig. 12, in which

the left image was produced by Glasner et al. [2], while the

right one was obtained by our approach using the SR method of

Glasner et al. [2] as the up-sampling technique. Comparing the

two images (and the corresponding error images) in Fig. 12, we

see that our proposed self-learning framework indeed achieved

visually improved SR results (especially with less noise and ar-

tifacts along the edges). As a result, the robustness of our SR

method is successfully verified.

V. CONCLUSION

This paper proposed a novel in-scale self-learning frame-

work for single image SR. We advanced the learning of support

vector regression and image sparse representation in our SR

method, which exhibited excellent generalization in refining an

up-sampled image into its SR version. Different frommost prior

learning-based approaches, our approach is very unique since

we do not require training low and high-resolution image data.

We do not assume context, edge, etc. priors when synthesizing

SR images, nor do we expect reoccurrence of image patches in

images as many prior learning-based methods did. Supported

by the Bayes decision rule, our method produced excellent SR

results on a variety of images, and we achieved a significant

improvement in PSNR when comparing with state-of-the-art

SR approaches. Moreover, by deploying different types of

interpolation or SR techniques to up-sample images at interme-

diate scales in our framework, we confirmed the robustness and

effectiveness of our proposed SR framework. Future research

will be directed at the extension of our current SVR models to

the use of multiple kernel learning for adaptive kernel selection.
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