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ABSTRACf 

We propose a new neural network structure that is compatible 
with silicon technology and has built-in learning capability. The 
thrust of this network work is a new synapse function. The 
synapses have the feature that the learning parameter is em
bodied in the thresholds of MOSFET devices and is local in char
acter. The network is shown to be capable of learning by 
example as well as exhibiting the desirable features of the 
Hopfield type networks. 

The thrust of what we want to discuss is a new synapse function for an artificial 
neuron to be used in a neural network. We choose the synapse function to be 
readily implementable in VLSI technology, rather than choosing a function which 
is either our best guess for the function used by real synapses or mathematically 
the most tractable. In order to demonstrate that this type of synapse function 
provides interesting behavior in a neural network, we imbed this type of function 
in a Hopfield {Hopfield, 1982} type network and provide the synapses with a 
Hebbian {Hebb, 1949} learning capability. We then show that this type of net
work functions in much the same way as a Hopfield network and also learns by 
example. Some of this work has been discussed previously {Hartstein, 1988}. 

Most neural networks, which have been described, use a multiplicative function 
for the synapses. The inputs to the neuron are multiplied by weighting factors 
and then the results are summed in the neuron. The result of the sum is then put 
into a hard threshold device or a device with a sigmoid output. This is not the 

easiest function for a MOSFET to perform although it can be done. Over a large 
range of parameters, a MOSFET is a linear device with the output current being 
a linear function of the input voltage relative to a threshold voltage. If one could 
directly utilize these characteristics, one would be able to design a neural network 
more compactly. 
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We propose that we directly use MOSFETs as the input devices for the neurons 

in the network, utilizing their natural characteristics. We assume the following 
form for the input of each neuron in our network: 

V; = 0 ( 2: IIj - T;j I ) 
1 

(1) 

where V, is the output, ~ are the inputs and T,j are the learned threshold voltages. 
In this network we use a representation in which both the V's and the T's range 

from 0 to + 1. The result of the summation is fed into a non-linear sigmoid func
tion (0). All of the neurons in the network are interconnected, the outputs of 
each neuron feeding the inputs of every other neuron. The functional form of Eq. 
1 might, for instance, represent several n-channel and p-channel MOSFETs in 

parallel. 

The memories in this network are contained in the threshold voltages, 1',}" We 

implement learning in this network using a simple linear Hebbian {Hebb, 1949} 
learning rule. We use a rule which locally reinforces the state of each input node 

in a neuron relative to the output of that neuron. The equation governing this 

learning algorithm is: 

(2) 

where 1';j are the initial threshold voltages and T 'j are the new threshold voltages 
after a time,.6.t. Here TJ is a small learning parameter related to this time period, 
and the offset factor O.S is needed for symmetry. Additional saturation con

straints are imposed to ensure that 1';j remain in the interval 0 to + 1. 

This learning rule is one which is linear in the difference between each input and 

output of a neuron. This is an enhancing/inhibiting rule. The thresholds are ad
justed in such a way that the output of the neuron is either pushed in the same 
direction as the input (enhancing), or pushed in the opposite direction (inhibit
ing). For our simple simulations we started the network with all thresholds at O.S 

and let learning proceed until some saturation occurred. The somewhat more so
phisticated method of including a relaxation term in Eq. 2 to slowly push the val

ues toward O.S over time was also explored. The results are essentially the same 

as for our simple simulations. 

The interesting question is if we form a network using this type of neuron, what 
will the overall network response be like? Will the network learn multiple states 
or will it learn a simple average over all of the states it sees? In order to probe the 
functioning of this network, we have performed simulations of this network on a 
digital computer. Each simulation was divided into two phases. The first was a 

learning phase in which a fixed number of random patterns were presented to the 
network sequentially for some period of time. During this phase the threshold 
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voltages were allowed to change using the rule in Eq. 2. The second was a testing 

phase in which learning was turned off and the memories established in the net

work were probed to determine the essential features of these learned memories. 

In this way we could test how well the network was able to learn the initial test 

patterns, how well the network could reconstruct the learned patterns when pre
sented with test patterns containing errors, and how the network responded to 
random input patterns. 

We have simulated this network using N fully interconnected neurons, with N in 
the range of 10 to 200. M random patterns were chosen and sequentially pre

sented to the network for learning. M typically ranged up to N/3. After the 
learning phase, the nature of the stable states in the network was tested. In gen

eral we found that the network is capable of learning all of the input patterns as 

long as M is not too large. The network also learns the inverse patterns (l's and 
O's interchanged) due to the inherent symmetry of the network. Additional ex
traneous patterns are learned which have no obvious connection to the intended 
learned states. These may be analogous to either the spin glass states or the mixed 
pattern states discussed for the multiplicative network {Amit, 1985}. 

Fig. 1 shows the capacity of a 100 neuron network. We attempted to teach the 
network M states and then probed the network to see how many of the states 

were successfully learned. This process was repeated many times until we 

achieved good statistics. We have defined successful learning as 1000;6 accuracy. 
A more relaxed definition would yield a qualitatively similar curve with larger 
capacity. 

The functional form of the learning is peaked at a fixed value of the number of 
input patterns. For a small number of input patterns, the network essentially 
learns all of the patterns. Deviations from perfect learning here generally mean 1 
bit of information was learned incorrectly. Near the peak the results become 

more noisy for different learning attempts. Most errors are still only 1 or 2 bits! 
but the learning in this region becomes marginal as the capacity of the network is 
approached. For larger values of the number of input patterns the network be
comes overloaded and it becomes incapable of learning most of the input states. 
Some small number of patterns are still learned, but the network is clearly not 
functioning well. Many of the errors in this region are large, showing little corre
lation with the intended learned states. 

This functional form for the learning in the network is the same for all of the net

work sizes tested. We define the capacity of the network as the average value of 
the peak number of patterns which can be successfully learned. The inset to Fig. 
1 shows the memory capacity of a number of tested networks as a function of the 
size of the network. The network capacity is seen to be a linear function of the 

network size. The capacity is proportional to the number of T./s specified. In this 
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example the network capacity was f ouod to be about 8010 of the maximum possi
ble for binary information. This rather low figure results from a trade-off of ca
pacity for the partic\Jlar types of functions that a neural network can perform. It 
is possible to construct simple memories with 1000.,.6 capacity. 
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Figure 1. The number of successfully learned patterns as a func
tion of the number of input patterns for a 100 neuron network. 
The dashed curve is for perfect learning. The inset shows the 
memory capacity of a threshold neural network as a function of 
the size of the network. 

Some important measures of learning in the network are the distribution of stable 
states in the network after learning has taken place. and the basin of attraction 
r or each stable point. One can gain a handle on these parameters by probing the 
network with random test patterns after the network has learned M states. Fig. 
2 shows the averaged results of such tests for a 100 neuron network and varying 
numbers of learned states. The figure shows the probability of finding particular 
states. both learned and extraneous. The states are ordered first by decreasing 
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probability for the learned states, followed by decreasing probability for the ex
traneous states. It is clear from the figure that both types of stable states are 
present in the network. It is also clear that the probabilities of finding different 
patterns are not equal. Some learned states are more robust than others, that is 
they have larger basins of attraction. This network model does not partition the 
available memory space equally among the input patterns. It also provides a large 
amount of memory space for the extraneous states. Clearly, this is not the opti
mum situation. 
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Figure 2. The probability of the network finding a specific pat
tern. Both learned states and extraneous states are found. The 
figure was obtained for a 100 neuron network. Fig. 2a is for 5 

learned patterns and 2b is for 10 learned patterns. 

Some of the learned states appear to have 0 probability of being found in this 

simulation. Some of these states are not stable states of the network and will 
never be found. This is particularly true-when the number of learned states is 

close to or exceeds the capacity of the network. Others of these states simply 
have an extremely small probability of being found in a random search because 
they have small basins of attraction. However, as discussed below, these are still 
viable states. When the network learns fewer states than its capacity (Fig. 2a), 
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most of the stable states are the learned states. As the capacity is approached or 
exceeded, most of the stable states are extraneous states. 

The results shown in Fig. 2 address the question of the networks tolerance to er
rors. A pattern, which has a large basin of attraction, will be relatively tolerant 
to errors when being retrieved, whereas, a pattern, which has a small basin of at
traction, will be less tolerant of errors. The immunity of the learned patterns to 

errors in being retrieved can also be tested in a more direct way. One can probe 
the network with test patterns which start out as the learned patterns, but have a 
certain number of bits changed randomly. One then monitors the final pattern 
which the networks finds and compares to the known learned pattern . 
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Figure 3. Probability of the network finding a specific learned 
state when the input pattern has a certain Hamming distance. 
This figure was obtained for a 100 neuron network which was 
taught 10 random patterns. 

Fig. 3 shows typical results of such a calculation. The probability of successfully 
retrieving a pattern is shown as a function of the Hamming distance. the number 
of bits which were randomly changed in the test pattern. For this simulation a 
tOO neuron network was used and it was taught 10 patterns. For small Hamming 
distances the patterns are successfully found 100°,.6 of the time. As the Hamming 
distance gets larger the network is no longer capable of finding the desired pat
tern. but rather finds one of the other fixed points. This result is a statistical av-
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erase over all of the states and therefore tends to emphasize patterns with small 
basins of attraction. This is just the opposite of the types of states emphasized in 
the analysis shown in Fig. 2. 

We can define the maximum Hamming distance as the Hamming distance at 
which the probability of finding the learned state has dropped to SO%. Fig. 4 
shows the maximum Hamming distance as a function of the number of learned 
states in our 100 neuron network. As one expects the maximum Hamming dis
tance gets smaller as the number of learned states increases. Perhaps surprisingly, 
the relationship is linear. These results are important since one requires a rea
sonable maximum Hamming distance for any real system to function. These 
considerations also shed some light on the nature of the functioning of the net
work and its ability to learn. 
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Figure 4. The maximum Hamming distance for a given number 
of learned states. Results are for a 100 neuron network. 

This simulation gives us a picture of the way in which the network utilizes its 
phase space to store information. When only a few patterns are stored in the 
network, the network divides up the available space among these memories. The 
learning process is almost always successful. When a larger number of learn~ 
patterns are attempted, the available space is now divided among more memories. 
The maximum Hamming distance decreases and more space is taken up byex
traneous states. When the memory capacity is exceeded, the phase space allo-
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cated to any successful memory is very small and most of the space is taken up 

by extraneous states. 

The types of behavior we have described are similar to those found in the 

Hopfield type memory utilizing multiplicative synapses. In fact our central point 
is that by using a completely different type of synapse function, we can obtain the 

same behavior. At the same time we argue since this network was proposed using 
a synapse function which mirrors the operating characteristics of MOSFETs, it 

will be much easier to realize in hardware. Therefore, we should be able to con

struct a smaller more tolerant network with the same operating characteristics. 

We do not mean to imply that the type of synapse function we have explored can 

only be used in a Hopfield type network. In fact we feel that this type of neuron 

is quite general and can successfully be utilized in any type of network. This is at 
present just a conjecture which needs to be explored more fully. Perhaps the 

most important message from our work is the realization that one need not be 
constrained to the multiplicative type of synapse, and that other forms of 
synapses can perform similar functions in neural networks. This may open up 
many new avenues of investigation. 
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