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A Self-Learning Solution for Torque Ripple

Reduction for Non-Sinusoidal Permanent Magnet

Motor Drives Based on Artificial Neural Networks
Damien Flieller, Ngac Ky Nguyen, Member, IEEE, Patrice Wira, Member, IEEE, Guy Sturtzer, Djaffar Ould

Abdeslam, Member, IEEE, and Jean Mercklé

Abstract—This paper presents an original method, based on
artificial neural networks, to reduce the torque ripple in a
permanent-magnet non-sinusoidal synchronous motor. Solutions
for calculating optimal currents are deduced from geometrical
considerations and without a calculation step which is generally
based on the Lagrange optimization. These optimal currents are
obtained from two hyperplanes. The study takes into account the
presence of harmonics in the back-EMF and the cogging torque.
New control schemes are thus proposed to derive the optimal
stator currents giving exactly the desired electromagnetic torque
(or speed) and minimizing the ohmic losses. Either the torque
or the speed control scheme, both integrate two neural blocks,
one dedicated for optimal currents calculation and the other
to ensure the generation of these currents via a voltage source
inverter. Simulation and experimental results from a laboratory
prototype are shown to confirm the validity of the proposed
neural approach.

Index Terms—Permanent Magnet Synchronous Motor, Torque
Ripple, Cogging Torque, Homopolar Current, Neuro-controller,
Adaline.

NOMENCLATURE

i Stator current vector

e Back-EMF vector

n Number of phases of PMSM

p Number of pole pairs

K1 Speed normalized back-EMF vector

K0 Vector containing only fundamental components

of K1

K2 Vector does not containing the components of

rank nq, q = 1, 2, · · · which exist in K1

θ Mechanical rotor angle

Ω Mechanical rotor speed

Ctotal(pθ) Total torque

Cem(pθ) Electromagnetic torque

Ccog(pθ) Cogging torque

Cref Desired torque
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Ωref Desired speed

kopt−i Optimal function by strategy i = 0, 1, 2
iopt−i Stator current vector corresponding to strategy

i = 0, 1, 2

I. INTRODUCTION

PERMANENT MAGNET SYNCHRONOUS MOTORS

(PMSMs) are widely used in many industrial production

systems due to their attractive features which are their

compactness, high torque mass ratio, high efficiency and

ease to be controlled. There are mainly two principal

types of PMSMs which are characterized by sinusoidal or

non-sinusoidal back electromotive forces (back-EMF) [1].

Whatever the PMSMs, torque ripples come from various

causes [1]–[5]. The cogging torque is generated by the inter-

action between the rotor magnetic field and the stator teeth

even if there is no current in the stator. Another source of

torque pulsation results from the interaction between the stator

currents and the rotor magnetic field. Generally, this torque can

be divided into two terms. The first one is due to the rotor’s

magnets and the stator currents. The second one is due to

the saillance. In this paper, only the first term is considered

because our interest points to the non-saillance motor. Works

related to saillance motors can be found in [6]–[8].

A constant torque is highly required in many applications.

Therefore, various works were proposed to minimize the

undesirable torque ripple [9]–[11]. These works can be divided

into two categories. The techniques from the first one consist in

developing the machine’s stator and rotor design to cancel the

undesirable torque ripple. The magnets’s properties and how

to distribute them optimally on the rotor’s surface are studied

in [5], [12]–[14]. The influence of the slots/poles ratio of the

machine on the torque ripple is specifically studied in [13].

In [15], four analytical models for predicting the cogging

torque in surface-mounted Permanent Magnet (PM) machines.

This work focus on the influence of design parameters, such

as the slot-depth-to-slot-opening ratio and optimal pole-arc-to-

pole-pitch and slot-opening-to-slot-pitch ratios, on the cogging

torque. The techniques from the second category are based

on the stator current control. An analyze of the torque’s

expression is used to calculate the best currents that cancel

the torque ripple. The literature provides various techniques

for the optimal current determination according to adequate

transformations. For example, the individual harmonics of the
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Fourier’s series of the back-EMF are used in order to obtain

the stator currents in [16]–[18]. The work presented in [16]

optimizes the currents only for harmonics of rank 5 and 7
while the method presented in [17], [18] gives the optimal

currents by calculating a pseudo-inverse matrix containing the

harmonics of the back-EMF. A formula was proposed in [19]

which works in the a-b-c reference frame. In this method the

homopolar current is null and moreover, the loss by Joule

effect is not optimal. Always in the a-b-c reference frame,

the works presented in [20], [21] give the expressions of the

optimal currents. These methods are based on a Lagrange’s

optimization to obtain the currents which minimize the stator

ohmic losses and maintain the desired torque. While working

in the d-q reference frame of Park, the authors in [22], [23]

determine the expressions of the d-q optimal currents; [23] op-

timizes only for one harmonic of rank 6. A direct expression of

the a-b-c currents is given in [24], [25] by using an extension

of Park’s transformation. In [26], an adaptive process based

on the Fourier series expansion is presented for a machine

containing 4 pairs of poles and 24 stator slots. The flow chart

proposed leads to the determination of the current iq(pθ) in

order to compensate for the 6th rank harmonic of the torque

ripple. The repetitive and iterative learning control schemes

were presented in [4], [27]. Based on a vectorial approach,

the generation of optimal current references for multiphase

PMSM in real time is reported in [28]. This approach reduces

the computing operations compared to scalar methods which

generally require a large amount of calculus. The performance

of the proposed method is experimentally valided in normal

and fault mode (open-circuited phases). Zhao et al. in [29]

recently presented an approach based on harmonic current

injection, on which the Redundant Flux-Switching Permanent-

Magnet Motor (R-FSPM) can be operated with high dynamic

performance and good behavior at steady-state. If the back-

EMF of the R-FSPM is highly non-sinusoidal, then the current

calculation with the proposed method becomes complicated.

The work presented in this paper is different from the

approaches mentioned above. A torque control scheme and a

speed control scheme are proposed to cancel the torque ripple,

including the cogging torque. The design of the controllers is

based on Adaline Neural Networks (ANNs) [30], [31]. Indeed,

the learning capabilities of the ANNs allow to calculate the

optimal currents which give exactly the desired torque (or

a desired speed) and minimum ohmic losses. This solution

can be applied for a multiphase PM machine under normal

operation or under open-circuit fault conditions.

This paper is organized as follows. The problem related

to torque pulsation due to the harmonics of the back-EMF

is presented in Section II. Section III presents new geo-

metrical considerations leading to the optimal currents. They

are based on the definition of hyperplanes whose equations

depend on stator currents. Section IV proposes an original

direct torque (or speed) controller based on an Adaline neural

network. Simulation results in Section V and experimental

results in Section VI confirm the validity of the proposed

neural approach. Finally, concluding remarks are provided in

Section VII.
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Fig. 1. Torque obtained in a non-sinusoidal three-phase machine in BLAC
mode

II. PMSM’S TORQUE RIPPLE

The stator current and the back-EMF vectors of a n phases

PMSM can be defined respectively by:

i =
[

i1 i2 · · · ii . . . in
]T
, (1)

e =
[

e1 e2 · · · ei . . . en
]T
. (2)

If the machine is non-sinusoidal, we can develop the back-

EMF for the ith phase as:

ei =

kmax
∑

k=1

eak,i sin (kpθ) + ebk,i cos (kpθ), i = 1, · · · , n,

(3)

and the fundamental component of ei is:

e0i = ea1,i sin (pθ) + eb1,i cos (pθ), i = 1, · · · , n, (4)

where kmax is the highest considered harmonic of the back-

EMF, θ is the angular position, eak,i and ebk,i are the Fourier

coefficients. p is the number of pole pairs.

The speed normalized back-EMF vector K1 can be ex-

pressed by:

K1 =
1

Ω

[

e1 e2 · · · ei · · · en
]T
. (5)

We can define K0 by:

K0 =
1

Ω

[

e01 e02 · · · e0i · · · e0n
]T
, (6)

where Ω = dθ
dt

is the rotor’s speed.

The total torque of the machine is given by:

Ctotal(pθ) = Cem(pθ) + Ccog(pθ), (7)

with Cem(pθ) = K
T
1 i which represents the electromagnetic

torque of the interaction between the stator currents and the

rotor’s magnetic field. Fig. 1 shows the current and the back-

EMF of phase 1 as well as the total torque of a non-sinusoidal

three-phase machine. It is obvious that the sinusoidal excita-

tion currents reveal a torque pulsation. To supply the machine

correctly, we have to determine the stator current for each

phase such that the desired torque Cref is obtained.
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TABLE I
RELATIVE ANGULAR FREQUENCIES OF THE COGGING TORQUE

PULSATIONS IN A THREE-PHASE PMSM (n = 3) [32], [34]

Winding Ns 2p angular frequencies mlp of Ccog

Distributed 18 6 18, 36, 54,. . .
36 6 36, 72, 108. . .

9 6 18, 36, 54,. . .
Concentrated 12 10 60, 120, 180. . .

12 14 84, 168, 252,. . .

Ccog is the cogging torque which can be expressed by [12],

[32], [33]:

Ccog(pθ) =

lmax
∑

l=1

Ccoga,ml sin (mlpθ) + Ccogb,ml cos (mlpθ)

=

lmax
∑

l=1

Ccog,ml cos (mlpθ + φml) , l = 1, 2, 3 . . .

(8)

where mp is the least common multiple of the number of stator

slots Ns and the number of poles. We have:

Ccog,ml =
√

C2

coga,ml + C2

cogb,ml, (9)

tanφml =−
Ccoga,ml

Ccogb,ml

. (10)

Tab. I gives the angular frequencies of the pulsation of the

cogging torque in a three-phase machine (n = 3) for several

feasible combinations of slot number and pole number of

PMSM [32], [34].

Our goal is to cancel the torque ripple and we’ll obtain:

Ctotal(pθ) = Cref . (11)

From now, a torque analysis is necessary to design an

efficient controller. Indeed, we want to establish a relation-

ship between the back-EMF and the torque. This allows to

determine the coefficients of the current harmonic terms and

therefore allows to eliminate several or all undesirable torque

harmonic terms. In steady state, when the stator current is:

ii =

hmax
∑

h=1

iah,i sin (hpθ) + ibh,i cos (hpθ), i = 1, · · · , n,

(12)

the electromagnetic torque is then given by:

Cem(pθ) = C0 +

qmax
∑

q=1

Ca,qn′ sin (qn′pθ) +Cb,qn′ cos (qn′pθ),

(13)

where n′ = 2n if the back-EMF contains only odd or

even harmonic components, hmax and qmaxn
′ are the highest

harmonics of stator currents and electromagnetic torque re-

spectively. In the general case, when the back-EMF contains

both odd and even harmonic terms, we have n′ = n. This

analyze is obtained by an extension of the work presented

in [17]. C0 is the mean value and Ca,qn′ , Cb,qn′ are the Fourier

coefficients of Cem(pθ). qmax is determined by:

qmax = integer(
kmax + hmax

n′
). (14)

TABLE II
RELATIVE ANGULAR FREQUENCY OF THE TORQUE PULSATIONS IN A

THREE-PHASE PMSM (n = 3) [33]

h k 1 3 5 7 9 11 13 15 17

1 0 6 6 12 12 18
3 0,6 6,12 12,18
5 6 0 12 6 18
7 6 12 0 18 6 24
9 6,12 0,18 6,24
11 12 6 18 0 24 6
13 12 18 6 24 0 30
15 12,18 24 0,30
17 18 12 24 6 30 0
19 18 24 12 30 6 36
21 18,24 12,30 6,36

We note:

Cqn′ =
√

C2

a,qn′ + C2

b,qn′ . (15)

The compensation of the torque ripple leads to:

C0 = Cref (16)

and this condition is obtained when:
qmax
∑

q=1

Ca,qn′ sin (qn′pθ) + Cb,qn′ cos (qn′pθ) = −Ccog(pθ).

(17)

The torque pulsations produced by the stator current com-

ponents h and the back-EMF components k for a three-phase

machine are given by Tab. II [33]. It is obvious that a non-

sinusoidal PMSM exited by sinusoidal currents gives a torque

pulsation. In order to supply the machine correctly, the stator

current for each phase must be determined so that:

K
T
1 i = Cref − Ccog(pθ). (18)

There is an infinity of solutions i for (18) and we aim

to obtain one giving a minimum ohmic losses. In [21],

[22], [35], [36], solutions are obtained from an optimization

based on Lagrange’s method to derive the stator currents. The

work presented thereafter will complete these solutions by

using a geometrical approach to deduce the optimal currents.

Furthermore, the optimal currents can be easily obtained by a

feed-back current control scheme based on an Adaline neural

network. It should be noticed that these currents give exactly

the desired torque by taking into account the cogging torque.

III. GEOMETRICAL INTERPRETATION OF THE THREE

OPTIMAL CURRENTS

(18) is an equation of a hyperplane. Let P be the hyperplane

that contains all points M whose coordinates are equal to i

and which satisfies (18). K1 is thus normal to P .

In the case of a star coupled machine, the zero homopolar

current constraint can be introduced by:

u
T
1 i = 0, (19)

with u1 =
[

1 1 · · · 1
]T

, ∥u1∥
2
= n.

(18) is also an equation of an other hyperplane. Let H1 be a

second hyperplane where all points M verify (19). u1 is thus

normal to H1. P and H1 are represented on Fig. 2.
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First, we try to find i = iopt−0 proportional to K0:

iopt−0 = kopt−0K0. (20)

From (18) and (20), we have:

kopt−0 =
Cref − Ccog(pθ)

KT
1 K0

, (21)

and finally, we obtain:

iopt−0 =
Cref − Ccog(pθ)

KT
0 K1

K0 =
Cref − Ccog(pθ)

KT
1 K0

K0. (22)

The current of the ith phase is therefore:

iopt−0,i =
Cref − Ccog (pθ)

n
∑

k=1

eke
0

k

Ωe0i . (23)

It should be noticed that iopt−0 always gives a zero homopolar

current. This solution is represented by the point Mopt−0

on Fig. 2. iopt−0 does not give the minimal ohmic losses.

Let us define Mopt−1, represented on Fig. 2, that belongs to

the hyperplane P and is nearest point to the origin O. We

will show that taking some geometrical considerations allows

to easily derive the expression of the current vector iopt−1,

corresponding to Mopt−1, which has the minimal module. The

current iopt−1 is thus proportional to K1, so:

iopt−1 =

(

KT
1

∥K1∥
iopt−1

)

K1

∥K1∥
, (24)

with K1

∥K1∥
is the unit vector in the direction of K1. From (18),

we have K
T
1 iopt−1 = K

T
1 iopt−0, and (24) becomes:

iopt−1 =

(

KT
1

∥K1∥
iopt−0

)

K1

∥K1∥
, (25)

and with KT
1 K1 = ∥K1∥

2
, we obtain:

iopt−1 =(Cref − Ccog(pθ))
KT

1 K0

KT
1 K0

K1

∥K1∥
2

=
Cref − Ccog(pθ)

KT
1 K1

K1. (26)

iopt−1 gives the minimal ohmic losses and the ith phase can

be written as follow:

iopt−1,i =
Cref − Ccog (pθ)

n
∑

k=1

ek2
Ωei. (27)

In a star connected machine, we have to introduce the

additional constraint given by (19).

Let us define Mopt−2, represented on Fig. 2, that belongs

to the intersection of H1 and P and is nearest to the origin

O. Once again, we will show that taking some geometrical

considerations allows to easily derive the expression of the

current vector iopt−2, corresponding to Mopt−2, which has the

minimal module.

The current iopt−2 is proportional to K2:

iopt−2 =

(

KT
2

∥K2∥
iopt−2

)

K2

∥K2∥
, (28)

where K2 is determined by (Fig. 3):

K2 = K1 −
KT

1 u1

∥u1∥
2
u1 = K1 − uT

1 K1

u1

n
. (29)

It can be seen from (29) that K2 does not contain harmonics

components of rank nq, q = 1, 2, · · · which exist in the vector

K1. K2 can thus be expressed by:

K2 =
1

Ω

[

e′1 e′2 · · · e′i · · · e′n
]T
, (30)

where:

e′i =ei −
1

n

kmax
∑

k=1

ek

=

k′

max
∑

k=1,k ̸=nq

eak,i sin (kpθ) + ebk,i cos (kpθ), i = 1, . . . , n.

(31)

k′max is the highest component of e′i and k′max = kmax when

kmax ̸= nq.

From (18), we have:

K
T
1 iopt−2 = K

T
1 iopt−0 (32)
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where:

K
T
1 iopt−2 =

(

K2 +
KT

1 u1

∥u1∥
2
u1

)T

iopt−2 = KT
2 iopt−2 (33)

K
T
1 iopt−0 =

(

K2 +
KT

1 u1

∥u1∥
2
u1

)T

iopt−0 = KT
2 iopt−0 (34)

We can thus deduce:

KT
2 iopt−2 = KT

2 iopt−0. (35)

From (22) and (35), the expression (28) becomes:

iopt−2 =

(

KT
2

∥K2∥
iopt−0

)

K2

∥K2∥

=

(

KT
2 K0

KT
2 K2

Cref − Ccog(pθ)

KT
1 K0

)

K2. (36)

From (29), we obtain:

KT
2 K0 = KT

1 K0. (37)

Moreover, from the Pythagorean theorem:

KT
2 K2 = KT

1 K1 −

(

KT
1 u1

)2

∥u1∥
2

= KT
1 K2 = KT

2 K1. (38)

According to (37) and (38), iopt−2 is obtained as follow:

iopt−2 =
Cref − Ccog(pθ)

KT
1 K2

K2. (39)

The expression for the ith phase current iopt−2 is given by:

iopt−2,i =
Cref − Ccog (pθ)

n
∑

k=1

(

ek − 1

n

n
∑

l=1

el

)2

(

ei −
1

n

n
∑

l=1

el

)

Ω

=
Cref − Ccog (pθ)

n
n
∑

k=1

ek2 −

(

n
∑

k=1

ek

)2

(

nei −

n
∑

l=1

el

)

Ω. (40)

iopt−2 is the current vector which offers less ohmic losses with

zero homopolar current.

This section has developed the expressions of optimal

currents which are already presented in various works by

using different approaches. Indeed, iopt−0 is identical to the

solution given in [19]. Based on the Lagrange’s optimization,

the currents iopt−1 and iopt−2 are also obtained in [21],

[22], [37]. Our solution leads to the same results. We give a

completed geometrical representation on which we can easily

determine these different optimal currents.

Expressions (22) (26) and (39) can be generalized to faulty

conditions. In the faulty phases, the current can be null (open

circuit), equal to a saturation value, or be a short-circuit

current. The current of the healthy phases can be calculated

if the defect conditions are known by imposing the desired

torque, minimizing Joule losses, and fulfilling the constraints

on the homopolar current (free or null). But, it is difficult to

determine in real time the cogging torque and the nature of

the fault. A learning schemes based on an Adaline network is

thus proposed as a torque controller to provide the Fourier’s
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coefficients of an optimal function. This technique will thus

be able to calculate the desired optimal currents on real time.

This main contribution is presented in the following section.

IV. TORQUE AND SPEED CONTROLLERS BASED ON

ADALINE NEURAL NETWORKS

A. Principal ideas for the torque and speed control

The optimal current is a product between kopt−i (pθ) with

the vector Ki, i = 0, 1, 2. The optimal currents iopt−i can be

rewritten as:

iopt−0 =
Cref − Ccog (pθ)

KT
1 K0

K0 = kopt−0 (pθ)K0, (41)

iopt−1 =
Cref − Ccog (pθ)

KT
1
K1

K1 = kopt−1 (pθ)K1, (42)

iopt−2 =
Cref − Ccog (pθ)

KT
1
K2

K2 = kopt−2 (pθ)K2. (43)

Fig. 4 gives the shapes of the three optimal functions kopt−i

corresponding to a cogging torque and to a non-sinusoidal

back-EMF (the Fourier’s components of the back-EMF are

given in section V-A).

The optimal functions kopt−i(pθ) with i = 0, 1, 2 can be

written by a sum of Fourier’s terms as follow:

kopt−i = k0−i+

N
∑

q=1

(kaqn′−i sin(qn
′pθ) + kbqn′−i cos(qn

′pθ)) .

(44)

The functions kopt−i (i = 0, 1, 2) will be learned and synthe-

sized by an Adaline network.

The value of N is important in order to compensate for

the torque ripple and has to be determined correctly. This
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value can be obtained after a mathematical decomposition of

the optimal function kopt−i. We present the development of

kopt−1. Based on the value of N for kopt−1, we can determine

the ones for kopt−0 and kopt−2. Indeed, the product of KT
1 K1

can be expressed as:

K
T
1 K1 = A0 +

qmax
∑

q=1

Aqn′ cos(qn′pθ + ψqn′) (45)

where qmax = int
(

2kmax

n′

)

.

When the coefficients Aqn′ << A0, we can write:

1

KT
1
K1

≈
1

A0

(

1−

qmax
∑

q=1

Aqn′

A0

cos(qn′pθ + ψqn′)

)

. (46)

Finally, we obtain:

kopt−1 =
Cref − Ccog(pθ)

KT
1
K1

=
C0

A0

(

1−

lmax
∑

l=1

Ccog,ml

C0

cos(mlpθ + φml)

−

qmax
∑

q=1

Aqn′

A0

cos(qn′pθ + ψqn′)

)

. (47)

By observing (47), we notice that the Adaline can estimate

correctly the function kopt−1 if the input vector x contains all

the terms presented in kopt−1. So, the highest rank of Adaline’s

input (Nn′) has to be:

Nn′ = max

(

mlmax, int

(

2kmax

n′

)

n′
)

. (48)

With the same development, we determine N for the kopt−0:

Nn′ = max

(

mlmax, int

(

kmax + 1

n′

)

n′
)

, (49)

and for the kopt−2:

Nn′ = max

(

mlmax, int

(

kmax + k′max

n′

)

n′
)

. (50)

Fig. 5 shows the estimation of kopt−1 with different values

of N (the machine’s parameters are given in section V). We

can see that a good estimation is obtained when N ≥ 2.

For the three strategies, the vector containing the Fourier

coefficients must be determined:

w∗
i =

[

k0−i kan′−i kbn′−i .. kaNn′−i kbNn′−i

]T
.

(51)

Based on this, a torque control and a speed control can be

synthesized in one single scheme represented by Fig. 6. The

switch s allows to choose between the torque control or the

speed control (s = 1 or s = 0 respectively) according to the

inverter’s characteristics and to the machine’s coupling. The

functions kopt−i (i = 0, 1, 2) will be learned and synthesized

by the Adaline network of the controller based on the three

possible strategies:

• Strategy 0: Only the fundamental component of the back-

EMF is used. This strategy can be used for all machines

and all couplings with or without a neutral line.

• Strategy 1: The back-EMF is used completely, with all

its harmonic components. This strategy can be used for

star-coupled machines without a neutral line, which does

not have harmonic components that are multiple of three

in their back-EMFs, or all the machines that support a

homopolar current.

• Strategy 2: The back-EMF is used without its harmonic

component of rank multiple of n. This strategy can be

used for all star-coupled machines without a neutral line.

The Adaline controller takes the place of the traditional torque

or speed controller for ensuring the convergence of the motor’s

torque or speed toward the desired ones. All the torque ripples

are compensated. The details about the Adaline are presented

in the next section (Ki can be obtained off-line by another

Adaline, see Section VI-A).

B. Adaline-based controller design

Adaline’s structure is shown in Fig. 7. The rule of the torque

or the speed controller based on the Adaline is to provide
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the optimal functions kopt−i with i = 0, 1, 2. The same input

vector of the Adaline is used for the three strategies:

x =
[

x0 sin(n′pθ) cos(n′pθ) · · ·

sin(Nn′pθ) cos(Nn′pθ)
]T (52)

where θ is supposed to be close to θm which is measured by

an encoder.

For each control strategy, the weights of Adaline are defined

by:

wi =
[

w0−i wan′−i wbn′−i .. waNn′−i wbNn′−i

]T
.

(53)

The output of Adaline is then:

yi = wi
T
x

=w0−ix0 +
N
∑

q=1

(waqn′−i sin(qn
′pθ) + wbqn′−i cos(qn

′pθ)) .

(54)

The Adaline weights are solved using an iterative linear Least

Mean Squares (LMS) algorithm [38] in order to minimize the

torque or speed error. The weights of the Adaline can be inter-

preted, giving thus a non negligible advantage to the Adaline

over other types of ANNs. The Adaline is well-suited and

ideal for approximating and learning linear relations. It will

thus be used to learn the expressions previously developed.

The Adaline weights are adjusted at each sampled time k:

wi(k + 1) =
wi(k) + ηϵx

xTx
=

wi(k) + ηϵx

x2
0
+N

, (55)

where η is a learning rate [38], ϵ is the torque or speed error.

On each iteration, the weights of Adaline are enforced to

converge toward the amplitudes of current corresponding to

the control strategy. After convergence,

wi(k)−−−→k→∞
w

∗
i , (56)

where w
∗
i is the optimal solution given by (51). Finally, the

output of Adaline yi converges toward kopt−i.
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V. SIMULATION RESULTS

In this section, simulation results are presented to evaluate

and to compare the performances of the approaches previously

developed. A non-sinusoidal three-phase PMSM (n = 3) is

considered and a constant torque of 1.5 N.m is desired.

A. Case without a cogging torque

The following numerical example is taken. The non-

sinusoidal three-phase PMSM has no cogging torque and a

speed normalized back-EMF for the first phase expressed by:

e1 (pθ)

Ω
=pϕf1 sin(pθ) + 3pϕf3 sin(3pθ) + 5pϕf5 sin(5pθ)

+7pϕf7 sin(7pθ) + 9pϕf9 sin(9pθ) (57)

with ϕf1 = 0.1223 Wb, ϕf3 = 0.0258 Wb, ϕf5 = 0.0027
Wb, ϕf7 = −0.0049 Wb, and ϕf9 = −0.0054 Wb. In this

case, kmax = 9 (according to (3)) and k′max = 7 according
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to (31). e1 contains only odd terms, the ranks of torque ripple

is thus 2qn = 6q and q = 1, 2, 3.

According to (49), (48), (50), we chose 6N = 18 to reach an

optimal solution. Fig. 8 shows the performances of the neural

torque control with 6N = 18. More precisely, Fig. 8 a) shows

the flux linkage, Fig. 8 b) shows the three optimal functions

kopt−0, kopt−1 and kopt−2 obtained by the Adaline controller.

Fig. 8 c) gives the shapes of the three optimal currents obtained

with three strategies and Fig. 8 d) shows the total torque

developed. It can be seen that the approach based on iopt−0

gives the same results than the one based on iopt−2 since these

two currents are close.
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The stator’s ohmic losses have been estimated for the

three approaches. Fig. 9 confirms that the ohmic losses ob-

tained with iopt−1 are minimum. The currents iopt−0 present

5.2 % more ohmic losses and the losses of iopt−2 are lightly

smaller. iopt−2 are thus the optimal solution for a machine

which does not have a homopolar current. Fig. 10 shows

the currents iopt−0, iopt−1 and iopt−2 obtained by learning

respectively (41), (42) and (43) with an Adaline. We can see

that the convergence of all strategies is obtained approximately

in one round.

B. Case with a cogging torque

To clarify the performance of the proposed control strategy,

a cogging torque is now introduced under the same previous

conditions. Let us thus consider the following cogging torque:

Ccog(pθ) = 0.06 sin(6pθ) + 0.03 sin(12pθ). (58)

The simulated results with a cogging torque are shown by

Fig. 11 which compares the total torques obtained for the

strategy based on iopt−2 with two cases, i.e., 6N = 6 and

6N = 12. This figure shows that for 6N = 6, the torque of

rank 6 is completely compensated but the torques of ranks 12,

18 and 24 are only partially eliminated. Finally, the torque

ripple results in ∆Ctotal = 3.3 %. In the second case, it can

be seen from the same figure that the torque ripples of rank

6, 12 and 18 are perfectly eliminated for 6N = 12. For this

value of N = 2, Fig. 12 shows the optimal functions and

the optimal currents, kopt−i and iopt−i with i = 0, 1, 2, and

the resulting torques. It can be seen that all torque ripple,

including the cogging torque, is elimined. Finally, we have

Ctotal = Cref = 1.5 N.m.

C. Case with a cogging torque and a fault on one phase

Simulations with a faulty machine are performed to confirm

the validity of the proposed method. An additional pulsation

of the electromagnetic torque always appears when one of the

machine’s phases is faulty. The compensation of this pulsation

is ensured by the healthy phases. In the following, the third

phase of machine is faulty and the results are presented by

Fig. 13. In spite of a faulty phase, the control based on the



9

0

0.15

0.20

0.25

-10

-5

0

5

10

-0.5

0

0.5

1.0

1.5

2.0

0.30

1opt
k

- 2opt
k

-0opt
k

-

2
cog

C total
C

(rad)

a)

b)

c)

108642
pq

0opt-

i
1opt-

i
2opt-

i

1
with

opt-

i

0
with

opt-

i

2
with

opt-

i

Fig. 12. Control performance with a cogging torque; a) kopt−0, kopt−1

and kopt−2 (A/Wb) obtained by the Adaline controller; b) optimal currents
obtained with three approaches (A); c) torque developed (N.m) and cogging
torque (N.m)

three strategies is able to maintain the torque as a constant.

Comparatively to the results obtained in Fig. 12 (with a

cogging torque but no faulty phase), it can be seen that there

are more harmonics in the optimal functions kopt−i in the

presence of a fault. According to the training capabilities of the

Adaline, these harmonics are adjusted in real time in order to

produce the currents that compensate for the torque pulsation

created by the faulty phase. Finally, a desired constant torque

is obtained.

The proposed neural approaches are also compared to a

PI (Proportional Integrator) controller under the same faulty

conditions. Fig. 13 c) shows the irregular behavior of the

torque obtained by the PI controller. The neuronal controller

based on the optimal strategies is more efficient. Maintaining

a constant torque under faulty phase conditions remains a

difficult task.

VI. EXPERIMENTAL RESULTS

A three-phase non-sinusoidal machine PMSM with Rs = 3
Ω, Ls = 12.25 mH and a pair poles number p = 3 is connected

to a three-phase Voltage Source Inverter (VSI). The rotor’s

position as well as the stator currents are measured in real-

time by using an incremental coder and currents sensors. The

measures are sent to a process running on a dSPACE DS1104

board hosted by a PC. The process consists of the control
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Fig. 14. Experimental platform setup

algorithm based on the proposed strategies which provides the

signals sent to a PWM generator for the control the inverter.

A. Speed normalized back-EMF estimation

In practice, the PMSM is actuated by an induction machine

which has no cogging torque in order to precisely estimate the

speed normalized back-EMF. In this experiment, the speed and

the back-EMF are measured by standard sensors. The speed

normalized back-EMF depends on the internal structure (rotor

and stator) of the machine and its amplitude is not related to

the rotor speed.
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The optimal functions are learned with an Adaline network

with an input vector composed of cos kpθ and sin kpθ terms

with k varies from 0 to 15. After convergence, the signal k1 =
e1
Ω

is estimated with:

k1 =− 0.234 cos (pθ) + 0.563 sin (pθ)

+ 0.123 cos (3pθ) + 0.060 sin (3pθ)

− 0.003 cos (5pθ) + 0.007 sin (5pθ)

+ 0.001 cos (7pθ)− 0.003 sin (7pθ)

+ 0.002 cos (9pθ) + 0.005 sin (9pθ)

+ 0.003 cos (11pθ) + 0.003 sin (11pθ) + ... (59)

In (59), terms of ranks 13 and 15 are negligible and are

therefore not written down. The simultaneous presence of

cosine and sine terms clearly indicates the dissymmetry of the

back-EMF. Moreover, there are no even terms in the back-

EMF, the torque is thus Cqn′ with n′ = 6. The estimated

speed normalized back-EMF is given by Fig. 15.

B. Neural speed control

The torque control scheme can not be carried out because

the plate-form must be equipped with a torque meter. Thus,

only the speed control scheme is presented.

The test machine is a star coupled PMSM. Therefore, only

the strategy with iopt−0 or with iopt−2 can be employed. We

chose the strategy based on iopt−2 because of its lower ohmic

losses. In (59), we note: k′max = 11. By taking the highest

angular frequency of Ccog is mlmax = 18, we chose N = 3
to compensate all the significant torque harmonics.

A constant reference speed has been fixed at Ωref = 70
rad/s. Results are presented by Fig. 16. Fig. 16 a) shows the

electromagnetic torque Cem. We can notice that the expres-

sion (17) is justified. The pulsation of Cem compensates for

the cogging torque that exists in the motor. This compensation

leads to a smooth speed which is shown in Fig. 16 c). The

reference currents obtained by the optimal solution and the

measured currents are shown by Fig. 16 b). It can be seen

that the resulting currents provided by the neural current

controller are close to their references. The non-sinusoidal

currents obtained with the Adaline controller compensate for

all the torque ripple.

Finally, Fig. 17 compares the speed obtained by our ap-

proach to the one obtained when the motor is feed by the

sinusoidal currents. It clearly shows that the speed pulsation
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obtained by the neural approach is eliminated. When the

machine is supplied by the sinusoidal currents, it is obvious

that there is a torque ripple which leads to the speed pulsation.

By using the proposed approach, the problem of torque and

speed pulsation that is present in the control of conventional

PMSMs have been solved.

VII. CONCLUSION

A new solution to calculate the optimal currents for non-

sinusoidal multiphase PMSMs and particularly for three-phase

non-sinusoidal machines has been presented in this paper.

These optimal currents are derived from control strategies

which depend on machine’s structure (for example, with or

without the neutral current). The optimization criterion con-

sists of a desired constant torque and minimal ohmic losses.
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These optimal currents are directly deduced from a geometri-

cal development instead of calculations based on the Lagrange

optimization. A new torque (or speed) control scheme has

been proposed. According to the learning capability of Adaline

neural network, the optimal currents are obtained in real time.

In each control scheme, the Adaline controller takes the place

of the traditional torque or speed controller for ensuring the

convergence of the motor’s torque or speed toward the desired

one. The torque (or speed) ripple is efficiently compensated.

This has been verified by various tests and comparisons under

different conditions, even when one of the machine’s phases

is faulty. The proposed simulations and experiments clearly

confirm the high performances of our approaches.
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