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Abstract

In order to meet the high throughput demand set by international mobile telecommunication union, carrier

aggregation is exploited for expanding the bandwidth of up to 100 MHz in Long Term Evolution-Advanced (LTE-A).

For achieving the aforementioned bandwidth, a maximum of five component carriers (CCs) can be aggregated as

per Release 10 LTE-A. Improper CC selection and scheduling will result in hazardous throughput, fairness, and

interference problems. Therefore, a proper CC selection and scheduling algorithm is most important for the overall

performance of the network. On the other hand, due to an increased information exchange, centralized network

planning is not a suitable choice here. In this study, we are employing a self-organized particle swarm optimization

(PSO)-based joint component carrier selection and scheduling (JCCS) algorithm for the downlink. More precisely,

the concern of the proposed algorithm is the autonomous distribution of resource blocks (RBs) from the pool of

CCs by the base station, with the concern of minimizing the impact of inter-cell interference. Our proposed

PSO-based JCCS algorithm results in the maximization of the min-max throughput by managing the inter-cell

interference in an appropriate manner. Moreover, the proposed algorithm is compared with the traditional CC

selection and scheduling algorithms, i.e., random, round robin, and proportional fair. The comparison is carried out

in terms of throughput and fairness, and the calculated percentage gain in the end elaborates the performance

improvement by exploiting PSO-based JCCS.
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1 Introduction
Long Term Evolution-Advanced (LTE-A) is an evolving

standard that will give the next generation mobile net-

works high data rates of 1Gbps for low mobility and 100

Mbps for high mobility [1]. Two international bodies, a

third generation partnership project (3GPP) and an IEEE

802.16 working group, are enthusiastically working to-

gether to achieve the goals set by the international tele-

communication union (ITU) in terms of an international

mobile telecommunication union (IMT-A). Therefore,

3GPP started a new study item: LTE-A in March 2008

which was confirmed as an IMT-A technology in

November 2010 [2]. LTE-A Release 10 is an extension of

LTE Release 8/9 and provides many advantages over

LTE such as throughput, spectral efficiency, capacity,

power consumption, etc. These enhancements are to be

met by exploiting many exciting wireless technologies

like multi-antenna, orthogonal frequency division multi-

plexing (OFDM) in downlink and single-carrier fre-

quency division multiple access (SC-FDMA) in the

uplink. In order to increase the bandwidth, in LTE-A,

the concept of carrier aggregation (CA) is exploited for

escalating the bandwidth from 20 to 100 MHz [3].

In CA, the bandwidth is expanded by aggregating mul-

tiple component carriers (CCs) either contiguously or

non-contiguously. CA should strictly follow the 3G LTE

specifications in order to keep backward compatibility

with previous releases of LTE. Figure 1 shows three dif-

ferent types of CA scenarios that have been proposed

for LTE-A as in [4]. The three CA scenarios are intra-

band contiguous CA, intra-band non-contiguous CA,

and inter-band non-contiguous CA. The CCs belong to
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the same frequency band adjacently in the first scenario

and non-adjacently in the second. In inter-band CA, the

CCs belong to the different bands. In this study, we are

considering all the CA scenarios and we are aiming to

propose the combined optimum solution. Moreover, we

are targeting CA for downlink because the concept of

CA is more pronounced in downlink rather than uplink.

Principally, the job of the base station (eNB) is to allo-

cate the CCs to the user equipments (UEs) based upon

the instruction from the network side and also from the

reporting of UEs. Various channel estimation techniques

can be employed to get information about the interfer-

ence and other things [5]. In order to inculcate the

self-organization concept within this framework, each

eNB carries out the allocation task autonomously by

only having the local acquired information. This self-

organization helps in allocating the resources without

any involvement of the centralized entity. The aggregated

carriers for CCs are of different bandwidth such as 1.4, 3,

5, 10, 15, or 20 MHz, and the maximum of only five can

be aggregated as per LTE-A. Hence, the maximum band-

width in LTE-A extended up to 100 MHz. CA enables the

UE to be configured on multiple CCs simultaneously,

where each CC has different radio characteristics as

described in the last paragraph. This will open a new

research arena regarding how to distribute the CCs

among UEs optimally for balancing the load across CCs and

performance improvement. The multicarrier protocol struc-

ture of an LTE-A system is illustrated in Figure 2. Initially,

the eNB decides which UE is to be serviced, and then layer-

3 CC selection allocates CCs to the UE depending upon its

requirement (throughput demand, type of information, etc).

After CC selection is done, packet scheduling is executed

for each CC which decides the group of RBs allotted to the

UE. The combination of CC selection at layer-3 and sched-

uling at layer-2 is termed as radio resource management,

which is an important part of eNB in LTE-A and is a worth

investigating research area that we are investigating here.

The increasing number of UEs and traffic in the future

4G cellular system leads to an unfeasible centralized net-

work planning because of the increased overhead [6]. A

self-organization-based optimization is the target for the

future cellular networks that contribute to the reduction

of human intervention in network planning. This is the

novel concept that reduces the system capital and oper-

ational expenditure (CAPEX/OPOEX) [7]. Within the

last decade, significant attention is given to the investi-

gation of self-organization in cellular network from the

academia as well as from the industry. The future cellular

network is expected to provide full broadband wireless

service with efficient resource utilization by employing

self-organization paradigm. In this study, we are pro-

posing a joint CC selection and scheduling algorithm

in a self-organizing manner by exploiting a particle

CC-2CC-1 CC-3 CC-4 ... CC-2CC-1 CC-3

CC-2CC-1 CC-3 CC-4 ... CC-2CC-1 CC-3

CC-2CC-1 CC-3 CC-4 ... CC-2CC-1 CC-3

CC-1

(a)

(b)

(c)
Band 1 Band 2

Figure 1 CA scenarios. (a) Intra-band contiguous, (b) intra-band non-contiguous, and (c) inter-band non-contiguous.

Figure 2 Generalized structure of LTE-A.
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swarm optimization (PSO). The main contributions of

our study are categorically described as the following:

� A self-organized algorithm is presented as the JCCS

in the downlink with the concern of minimizing the

impact of inter-cell interference.

� PSO, a meta-heuristic algorithm, is exploited here

for distribution of RBs among the pool of CCs to

UEs. The proposed algorithm is applicable for both

intra-band and inter-band CA scenarios.

� A concept of CA is utilized here which

corresponds to the aggregation of contiguous and

non-contiguous CCs.

� The joint CC selection and scheduling (JCCS) is

studied here, which has not been investigated so far.

� The analysis in terms of the maximization of

min-max throughput is carried out. Additionally, the

comparison is illustrated out in terms of mean

throughout and fairness with other traditional

methods, which justify the applicability of the

proposed algorithm. Finally, the percentage gain is

also evaluated.

The rest of this paper is organized as follows: Related

work is outlined in Section 2. Section 3 presents the sys-

tem model with the inclusion of problem formulation.

The generalized PSO algorithm is presented in Section 4.

Section 5 houses the algorithmic details of self-organized

PSO-based JCCS. The simulation results and analysis is

listed in Section 6, which contains preliminary analysis,

min-max throughput, and the comparison of our proposed

algorithms with the traditional ones. Finally, Section 7 con-

cludes the article.

2 Related work
Recently, many researchers have indulged in investigat-

ing the issues related to designing the packet scheduler

(PS) at the layer-2 as shown in Figure 2. The studies

done designing PS, and carrier load balancing methods

are listed in [8-13]. The assumptions made in all these

papers are that the UE is assigned either just one CC

[8-10] or all CCs [11,12]. However, in a real scenario,

specifically in downlink, assigning on CC or all CCs to

each UE will not meet the requirements set by the ITU.

Furthermore, assigning all CCs to the UE results in se-

vere inter-cell interference problems. In [13], the authors

proposed autonomous component carrier selection algo-

rithms, but that is relevant to the local environment.

Our study is pertinent to the CC selection and schedul-

ing of RBs to the UEs in the macro environment. To

the best of our knowledge, no major work has been done

in the CC selection domain at layer-3, specifically the

combined selection and scheduling that we are going to

examine in this study. Therefore, we targeted a joint

approach and intend to propose an optimal solution that

supersedes the other proposed ones.

The algorithms proposed for CC selection [14-16]

are listed here. A G-factor based CC selection algorithm

is proposed in [14]. This algorithm targeted the CA

of inter-band non-contiguous CCs. It takes into account

both radio channel characteristics and traffic load. In [15],

the authors proposed the received signal power based CC

selection algorithm. They targeted the non-continuous

carrier aggregation. The traditional algorithms for CC

selection and scheduling that we are going to use for com-

parison are random, round robin, and proportional fair.

As we are proposing the joint approach, therefore, we are

treating this selection and scheduling algorithms to be the

same, just for comparison. In random selection/scheduling

(RS), the eNB randomly allocates the resource blocks

(RBs) from the pool of CCs with the goal of equalizing the

UEs on each CC. The round robin (RR) concerns evenly

distributing the load to all CCs with the constraint of

allocating a least number of CCs to the targeted UE.

Both the above listed techniques are not suited for non-

continuous CA scenarios. The authors in [16] propose

an autonomous CC selection for the femtocell network.

However, they employed the expected interference man-

agement rather than the acquired information that we

are exploiting in this study.

Various resource allocation methods have been pro-

posed in the literature that can mitigate inter-cell and

intra-cell interference and, consequently, can improve the

system performance [17-23]. The authors in [17] propose

a conjunction of dual polarization and time domain re-

source allocation technique. However, it also includes the

changing of the polarization whereas, we are targeting the

resource allocation that can mitigate inter-cell in a self-

organizing manner and improves system performance.

The authors in [18] propose an adaptive resource alloca-

tion scheme for minimizing the transmit power. However,

only considering the power minimization leads to viola-

tion of quality of service (QoS) requirement in certain

cases. There has been some work in the self-organization

for the wireless systems. The authors in [19] propose a

distributed self-organization by exploiting Gibb's sampler

concept. However, they considered potential delay for

throughput optimization. The authors in [20] present a

heuristic approach for multiuser scheduling. The results il-

lustrate that the implication of heuristic approaches gives

near optimal results at the cost of bearable complexity.

The authors in [21] propose a heuristic approach for re-

source management in femtocell networks. A docitive

learning mechanism for resource allocation and power

control is presented in [22], where the femtocell environ-

ment is considered. However, the concept of CA is not

taken into account which is the state of the art technology

for escalating the system performance. The authors in [23]
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propose a downlink resource management by combining

multiuser MIMO and CA. However, we are considering the

joint optimization in terms of RB and CC selection.

According to the best of authors' knowledge, a self-

organization scheme for PSO-based JCCS has not been in-

vestigated so far. The proposed algorithm mitigates inter-

cell interference and provides a near optimal solution at

cost of bearable computation complexity. An important

point of the proposed algorithm is that the self-

organization concept has been exploited in which the eNB

carries out the scheduling task in an autonomous manner.

3 System model
3.1 Proposed framework

The proposed framework of self-organized PSO-based

JCCS within LTE-A is illustrated in Figure 3. The infor-

mation about the RBs is acquired by each eNB from

their connected UEs based upon the direction of eNB.

Moreover, this information includes the received signal-

to-interference-plus-noise ratio (SINR) on different

channels and is conveyed via channel quality indicator

(CQI) on S1 interface, where S1 is the interface between

the UEs and network components in the context of LTE

standard. These measurements quantitatively differentiate

the RBs from the pool of CCs in terms of interference in

different geographical regions of the cell. The geographical

information of the UEs is acquired by the network entities

mobility management utility (MME) and evolved serving

location center (E-SMLC). This gathered information is

exploited in our proposed algorithm for carrying out the

scheduling task in a self-organizing manner. The proposed

PSO-based JCCS algorithm is represented by the block in

Figure 3. Specifically, we are taking into consideration the

inter-cell interference with the assumption that intra-cell

interference is not there. This assumption is based upon

the fact that one RB can only be utilized by a single UE

within a cell, and also a strict synchronization in the

OFDMA-based subcarriers is assumed here. The concern

of this tight synchronization assumption means that inter-

ference is only inculcated if there is a transmission on

same RBs. The general theme of the proposed algorithm is

to iteratively distribute the RBs in a self-organizing man-

ner with the concern of minimizing the interference or

maximizing the system performance. In order to reduce

the information exchange for the reporting of the RBs, sin-

gle CQI is utilized for a group of RBs. In addition, on each

eNB, the average of CQI values is computed for the geo-

graphically close UEs and this is done for having the most

reliable information. The two benefits of exploiting this

self-organized joint approach are: firstly, each eNB carries

out the scheduling task based upon the local information

received from the directed UEs and secondly, by employing

the joint approach efficient spectrum, utilization is achieved

based upon reducing the inter-cell interference.

3.2 Problem formulation

We consider a downlink CA in LTE-A with a frequency

reuse-1, where there are N UEs in different cells. More-

over, there are M RBs within L CCs. Each UE can be op-

erated on multiple CCs simultaneously. However, the

number of CCs that the UE has to connect should be as

small as possible considering the power saving and sig-

nal processing complexities. According to the 3GPP

LTE-Advanced specifications, the maximum number of

five CCs can be allocated to UE. This corresponds to the

fact that the maximum bandwidth of the UE cannot be

Figure 3 Proposed framework.
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exceeded beyond 100 MHz. Particularly, in this study,

we are considering that the number of CCs allocated

should be in accordance to the 3GPP LTE-Advanced

specifications. Each CC is divided into many RBs, and

these are grouped into 12 adjacent subcarriers with an

inter-subcarrier spacing of 15 kHz as shown in Figure 4.

Each RB comprises of six or seven OFDM symbols and

spans a length of 0.5 ms [24,25]. In this study, we are

taking into account frequency division duplex (FDD)

downlink transmission and resource scheduling. Within

LTE-Advanced downlink, a UE can be allotted a number

of RBs; however, for a single cell, a RB cannot be assigned

to more than one UE as in (5). Additionally, strict

synchronization is assumed here which means that inter-

ference is only induced when there is a transmission of

two network entities on same RB in parallel. Thereby, the

only interference component that exists here is the inter-

cell which has to be managed.

The proposed algorithm is applicable for both intra-band

and inter-band CA scenarios. Concerning the case of CA in

the downlink, consider a set of L CCs {CC1, CC2, CC3,…,

CCL} with the further variable division of RBs within each

CC. This variable distribution is represented by Ml, which

corresponds to the number of RBs in lth CC. Each CC is

assumed to be of different bandwidth for better analyzing

the real situation, and the goal is to distribute among UEs

based upon the variable throughput demand. Moreover, it

is also assumed that our system consists of N UEs such as

{UE1, UE2, UE3,…,UEN}. Also, the K base stations are repre-

sented by a set {eNB1, eNB2, eNB3,…, eNBK}. In this study,

we are considering the frequency reuse-1 system. However,

the results can be extended to any system.

The transmission power of kth eNB on mth RB from lth

CC is represented as Pk
ml . In addition, we are assuming that

if the eNB is not transmitting on the RB, then Pk
ml ¼ 0. As

far as the power budget is concerned, we are assuming that

fixed power budget is available such that
X

l
Pk
ml≤W . In

other words, this can be considered as the power constraint

that each eNB has. Here we assumed that the power is uni-

formly distributed among the allotted pool of RBs. The path

loss and shadowing effect are included in the considered

channel models. Let Hnk
ml be the channel gain between kth

eNB and nth UE on the mth RB of lth CC. The received

power on the nth UE from the kth eNB is Hnk
mlP

k
ml and on

the other UEs this is the interference components. Based

upon the above mentioned concerns, the SINR of the nth

UE on mth RB from lth CC is given by

SINRn
ml ¼

Hnk
mlP

k
ml

σnml þ
X

K

q≠k

X

L

l¼1

X

Ml

m¼1

xnmlH
nq
mlP

q
ml

 ! ! ð1Þ

where σn
ml is the noise that is experienced by the nth UE

on the mth RB of lth CC, xnml is the decision variable that

corresponds to the assignment of mth RB from lth CC

to nth UE and is defined in Equations (9) and (11). The

achieved throughput by nth UE on the allocated RBs is

given by

γn ¼
X

L

l¼1

X

Ml

m¼1

xnmlB log2 1þ SINRn
ml

� �

 !

ð2Þ

The number of RBs to be allotted to the nth is based

upon the demand Dn in terms of number of RBs. In

order to minimize the inter-cell interference and to

achieve the increase throughput performance, the prob-

lem function can be formulated as:

Maximize:
X

N

n¼1

γn ð3Þ

. . .. . .

. . .. . .

One RB=12 Subcarriers

CCs set

15kHZ Frequency (Hz)

Frequency (Hz)

...

CC1

... ...

CC2 CC3

RBs in a CC RBs in a CC RBs in a CC

Figure 4 RBs and CCs.
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Subject to:
X

L

l¼1

X

Ml

m¼1

xnml ¼ Dn; ∀n ¼ 1; 2; 3;…;Nf g ð4Þ

xn1ml≠x
n2
ml; ∀n1≠n2; k ð5Þ

γn≥Γ0; n ¼ 1; 2; 3;…;Nf g ð6Þ

X

L

l¼1

X

Ml

m¼1

Pk
ml≤W ; ∀k ¼ 1; 2; 3;…;Kf g ð7Þ

Pk
ml≥0; k ¼ 1; 2; 3;…;Kf g;m ¼ 1; 2; 3;…;Mlf g;

l ¼ 1; 2; 3;…; Lf g

ð8Þ

xnml ¼ 0; 1f g; n ¼ 1; 2; 3;…;Nf g;m ¼ 1; 2; 3;…;Mlf g;

l ¼ 1; 2; 3;…; Lf g

ð9Þ

X

L

l¼1

xnml

Ml

≤5;∀n ¼ 1; 2; 3;…;Nf g;m ¼ 1; 2; 3;…;Mlf g

ð10Þ

The formulation comprises of important constraint that

the UE be allotted a number of RBs from its acquired

demand as in (4). Additionally, a minimum throughput

criterion is also included as in (6) for limiting the effect

of greedy behavior of other eNBs UEs. By maximizing

the throughput that is achieved (3), inter-cell interfer-

ence can be significantly reduced, under the assumption

that intra-cell interference is not present. This is due to

the fact that two different UEs in a same cell cannot be

allotted a same RB as in (5). In addition, the number of

CCs allocated should be in accordance to 3GPP LTE-

Advanced specifications as in (10). Hence, the only inter-

ference that exists in our case is the inter-cell. Equation 9

is the decision variable and is represented as:

xn
ml
¼

1; if the mth RB of lth CC is assigned to nth UE
0; if the mth RB of lth CC is not assigned to nth UE

� �

ð11Þ

3.3 Notations and assumptions

The notations presented in Table 1 are used in the rest

of the paper.

4 Particle swarm optimization
PSO is a population-based bio-inspired algorithm inspired

by the bird flocking and fish schooling mechanism. These

types of algorithms are specifically useful where the sample

space is very large, the parameters of interest are dynamic,

and there is not too much information exchanged between

the users (particles) [26].

The PSO algorithm starts with populating the swarm

of particles, where each particle represents a potential

solution. The swarm is similar to the population while a

particle is equivalent to the individual. Each particle is

associated with a position and velocity in search space.

In each iteration of the algorithm, the specified fitness is

computed and both the velocity and position of each

particle are updated according to (11) and (12), respect-

ively. The velocity of each particle is updated according

to the finest two known positions, personal best position

(pbest) and the neighborhood best position (nbest),

where pbest is the best position the particle has visited

and nbest is the finest position corresponding to the par-

ticle, and its neighbor-hood have visited since for the

first time step. When the whole swarm is considered as

the neighbor, then the nbest is termed as the global best

(gbest) and for a small neighborhood, nbest is equivalent

to the local best (lbest). The major difference between

the two positions is the convergence, i.e., due to large

particle size: gbest PSO converges faster than the lbest.

Furthermore, lbest has the chance of being trapped be-

cause of a small sample space. Therefore, in our case, we

are using gbest due to its yielding faster convergence.

V new
j ¼ V j þ c1r1 pbestj−X j

� �

þc2r2 nbestj−X j

� �

…j ¼ 1; 2;…; P

ð12Þ

Xnew
j ¼ X j þ V new

j ð13Þ

where c1 and c2 are termed as acceleration coefficients

whose job is to control the influence in the search

Table 1 Notations and assumptions

Parameters Meaning

K Total number of eNBs

N Number of UEs in the system;

L Total number of CCs;

Mj Total number of RBs in lth CC;

Pkml Transmission power on kth eNB on mth RB of lth CC;

W Total power budget available on kth eNB;

Hnk
ml Channel gain between kth eNB and nth UE operating

on mth RB of lth CC;

SINRnml SINR value at the nth UE on mth RB of lth CC;

xnml Decision variable as described in (9);

γ
n The achieved capacity by the nth UE;

Dn The demand in terms of RBs of the nth UE;

Γ0 The minimum capacity throughput limit in the system;

P Particle size in the proposed algorithm;

Xj Position vector of the jth particle;

Vj Velocity of the jth particle;
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process; P is the total number of particles in a swarm; r1
and r2 are two random numbers and are uniformly dis-

tributed in the interval from 0 to 1; and Xj, Xnew
j ,Vj, and

V new
j represent the current and updated position and

velocity of the jth particle.

Figure 5 shows the generalized work of PSO in a flow

chart format [27].

4.1 Convergence analysis

The investigation of convergence characteristic of any

optimization problem is of paramount importance.

Thereby, it is necessary to analyze the convergence

characteristic of PSO before giving a practical solution. The

analysis of the convergence characteristics of the PSO is a

tiring task because of the stochastic nature of PSO. Two

conditions, H1 and H2 given in [28], help in proving the

convergence of the optimization algorithm.

Given the optimization algorithm A, the optimization

problem (B, f ), Xi is the result of ith iteration, and the

next iteration Xi+1 (Xi+1 = A(Xi, Ω)), where Ω is the

sorted out solution by the algorithm A. The condition

H1 can be expressed as:

Condition H1: f (A (X, Ω)) ≤ f (X), if Ω ∈B, then we

have f (A (X1, Ω)) ≤ f (Ω) where B is the constraint space

of the problem under consideration.

The concern of the aforementioned condition stipu-

lates that the new solution given by A is no worse than

the current solution. The global convergence is defined

as the sequence f X ið Þf g∞i¼0 can reach to the infimum,

where inf (f (X ∈B)) is the viable solution in B. On the

other hand, it is possible that the viable solution B com-

prises of isolated spots, infimum, and discontinuous

spaces. Thereby, considering this potential problem, the

search infimum is defined by Lebesgue measure space.

Φ ¼ inf s : q X∈B f Xð Þ < s� > 0Þj½ð ð14Þ

Where q[X] denotes the Lebesgue measure in set X. The

definition of q[X] and B guarantees that the nonempty point

does not contain in set B. In other words, the optimization

algorithm can reach or close to the infimum instead of

searching all points. The algorithm can be considered to find

a solution (global optimum or near global optimum) if it can

generate the point in the optimality region R0 defined as:

R0 ¼ X∈B f Xð Þ < Φþ εgjf ð15Þ

where ε >0.

Condition H2: A sufficient condition for the global

optimum can be written as:
Y

∞

i¼0

1−qi E½ �ð Þ ¼ 0; ∀E⊆B; q E½ � > 0 ð16Þ

where qi [E] is the probability measure generated by qi.

Theorem 1: Assuming that f is a measurable and viable

solution, the algorithm A satisfies the aforementioned

conditions H1 and H2. If the sequence generated by the

algorithm A is f X ið Þf g∞i¼0 , then

lim
i→þ∞

U X i ∈ R0½ � ¼ 1 ð17Þ

The proof of the theorem is given in [28]. In order to

achieve the global convergence, the stochastic optimization

Create a swarm with particles

Randomly initialize the particle position Xj

and velocity Vj

Calculate the fitness of each position of the

particle

Calculate the pbest and nbest of each

particle as described in our proposed

algorithm

Update the velocity and position of each

particle using (12) and (13)

Calculate the fitness of each particle

Calculate the pbest and nbest of each

particle as described in our proposed

algorithm

Start

Required fitness achieved OR

number of iterations passed

End

Figure 5 Flow chart description of the generalized PSO.
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algorithm must satisfy conditions H1 and H2. The consid-

ered PSO satisfy both the conditions and can achieve the

global convergence.

5 Self-organized PSO-based JCCS algorithm
The proposed self-organized algorithm is described in

three different steps. First, each eNB directs the UEs on

the control to send the CQI for the group of RBs. Sec-

ond, UE sends the corresponding CQI values as directed

by the eNB. Third, based on the received information,

the self-organized PSO-based JCCS algorithm is carried

out, which iteratively select the best solution information

within the constraint described in Equations (4) to (9).

An important aspect of the proposed algorithm is that it

only relies on the local received information with any

central entity for carrying out the scheduling task. The

objective of the optimization is to maximize the capacity

based upon the demands of the UE. The detail of pro-

posed algorithm is presented hereafter.

5.1 Algorithm

5.2 Particle encoding

A major concern in PSO being workable for the CC se-

lection and RBs assignment is to map a problem solu-

tion and a particle. In this paper, every particle position

is represented in a M-dimensional space, where M is the

total number of RBs in L CCs. The particle's position in

M-dimensional space is filled with a positive integral

number in the range from 1 to N. The Xj = {Xj,ml,…,Xj,ml}

represents the position of jth particle, and Xj,ml is the as-

signment of mth RB of zth CC to the UE which is being

scheduled by the proposed algorithm.

5.2.1 Fitness computation

Fitness value depicts the excellence of the particle's so-

lution in PSO. In this study, we are using the fitness as

maximization of the throughput under the networks

constraints (4) to (10). The fitness function aims at maxi-

mizing the throughput in a self-organizing manner which

indirectly minimizes the inter-cell interference. Further-

more, in order to avoid the performance deterioration

of neighbor cells, a minimum capacity check (6) is in-

culcated in the problem formulation. In the proposed

PSO-based JCCS, in each iteration of the PSO, new pos-

ition and velocities are updated which results in achieving

better solutions in terms of good fitness values. The fitness

of the jth particle is represented as:

fitness j½ � ¼ max
1

N

X

N

n¼1

γn

 !

ð18Þ

5.2.2 Velocity and position changing

The velocity and position of each particle j = {1, 2, 3,…, P}

is updated as described in algorithm in Section 5.1. Each

new particle's position results in better solution in terms

of high capacity value. Therefore, the general theme of this

iterative algorithm is to minimize the inter-cell interference

and to give optimum assignment of the RBs from the pool

of CCs. The pbest, gbest, and fitness calculation in each

iteration results in changing the particle velocity appropri-

ately and the same with the position. The pbest and gbest

are being updated in a similar fashion as well as particle

initialization and is elaborated in the algorithm-1. The vel-

ocity matrix is of dimension N ×M, in which all the ele-

ments are real numbers in the interval [−N, N]. The bound

of velocity matrix of jth particle is represented by

V j∈ −Vmax;Vmax½ � ∀ j ¼ 1; 2; 3;…; Pf g ð19Þ

5.3 Counter example

For further elaboration, let us consider the scenario in

which we have three CCs, each having a different band-

width. The number of RBs per CCs are CC1 = {RB1,1,

RB1,2, RB1,3}, CC2 = {RB2,1, RB2,2}, and CC3 = {RB3,1,

RB3,2, RB3,3, RB3,4} and are to be distributed among two

UEs, depending upon their throughput demand. Each

particle is represented by nine elements Xj = {Xj1,1, Xj1,2,

Xj1,3, Xj2,1, Xj2,2, Xj3,1, Xj3,2, Xj3,3, Xj3,4}, where Xjl,m is the

allocation of mth RB of lth CC to UE. Figure 6a shows

the position assignment of one single particle. For ex-

ample, UE1 allocated six RBs from three CCs, i.e., RB1,1,

RB1,3, RB2,1, RB2,2, RB3,2 and RB3,3. The SINR values in

dBs those results while allocation of mth RB from lth

CC is also elaborated. This single shot information is

just presented to have an intuitive information of the

proposed PSO-based JCCS algorithm. However, in real

sense, there are many RBs available and also many UEs

with variable demand. Hence, different assignment re-

sults in different overall performance of the algorithm.

The goal of the proposed iterative algorithm is to allocate

the RBs to the UEs in a manner to increase the throughput

by minimizing the impact of inter-cell interference. On the
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other hand, the proposed algorithm purely relies on the

local received information. In order to mitigate the greedy

behavior, a minimum throughput is also included which

jeopardize the violation of the performance.

As far as the complexity of the proposed algorithm is

concerned, the proposed algorithm relies on the SINR

values acquired from the UEs on the direction of the

eNB. Once they are received, the PSO algorithm gives

near optimal solution with bearable complexity under

the network constraints (4) to (10). The plus point of

the proposed algorithm is that it totally relies on the

local received information without any involvement of

any centralized entity, which significantly reduces the

information among various cells and also to the net-

work. However, the communication overhead that ex-

ists within a cell for the transfer of SINR information is

minimized by using a single CQI value for a group of

RBs. Additionally, not all the UEs within a cell transfer

that information; it is to be decided by the concerned

eNB based upon the geographical region that when the

information needs to be updated. By incorporating this

thing, significant information exchange overhead can

be reduced. On the other hand, the proposed algorithm

is also scalable in the sense that any new user can be a

part of the network and is serviced by the eNB in a

self-organizing manner. However, the algorithm may

take time to converge as it is heuristic algorithm. But

once the convergence is achieved, the results are far

more superior as compared to the traditional methods as

in Section 6.2. The proposed PSO-based JCCS algorithm

is more viable to a scenario in which the channel effects

are not changed that much. The reason is that in harsh

channel environment, the RB allocation takes place re-

peatedly, i.e., around every half frame (5 ms). Therefore,

for the large varying environment, the proposed PSO-

based JCCS will not get the near optimal results because

of repeated RB allocations.

6 Simulation results and analysis
The analysis that we carried out is divided into three

subsections: preliminary analysis, min-max throughput,

and comparison. In the preliminary analysis section, the

parameter selection of the proposed PSO-based JCCS al-

gorithm is carried out. Additionally, the simulation setup

regarding the WINNER II channel model is also included

in this section. Different parameter values result in varying

fitness values, which will have a significant impact on

system performance. Therefore, it is very important to

choose the appropriate PSO parameters. The first and the

foremost parameter is the particle size, i.e., the initial

population count. Therefore, an exhaustive search is car-

ried out in selecting parameters like particle size, acceler-

ation coefficients, and inertia, as they all have a significant

impact on the algorithm performance. Moreover, different

particle sizes have varying performances in terms of fitness

values, which is also illustrated in this section. In the sec-

ond section, the maximization of the min-max throughput

is elaborated. Finally in the third section, we compared

our proposed algorithm with traditional algorithms in

terms of throughput and fairness.

RB1,1 RB1,2 RB1,3 RB2,1 RB2,2 RB3,1

1 0 1 1 1 0

0 1 1 0 0 1

RB3,2 RB3,3 RB3,4

1 1 0
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CC1 CC2 CC3

UE1

UE2

RB1,1 RB1,2 RB1,3 RB2,1 RB2,2 RB3,1 RB3,2 RB3,3 RB3,4

CC1 CC2 CC3

UE1

UE2

RB1,1 RB1,2 RB1,3 RB2,1 RB2,2 RB3,1
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Figure 6 PSO-based JCCS algorithm. (a) Particle assignment, (b) SINR assignment generalized, and (c) SINR values in dBs.
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6.1 Simulation setup

We consider a reuse-1 FDD system with eight eNBs that

share the same bandwidth of 4 × 10 MHz. The distance

between the eNBs is considered to be 500 m. Additionally,

the numbers of UEs N are taken to be in the range from

40 to 80. The convergence analysis and min-max through-

put in Figures 7 and 8 are computed for N = 50 UEs, while

the comparison in Figures 9, 10 and 11 is carried out for

varying UEs such that N = 40 to 80. As far as the num-

ber of RBs in CC set is concerned, we take L = 4 CCs

and a variable division of RBs. The total number of RBs

in CCs set is considered to be M = 200. We are

employing WINNER II channel model for the system

level simulations. Various propagation scenarios exist

with WINNER II channel model which include indoor

office, indoor-to-outdoor, stationary, rural macrocell,

urban macrocell, etc. For the investigation of our algo-

rithm, we have utilized urban macrocell model denoted

as C2. The path loss models for the urban macrocell

environment are given in Table 2 [29].

In path loss models, d is the distance between the UE

and the eNB, heNB and hUE are the antenna height of

eNB and UE, respectively, fc is the operating frequency

in GHz, and PL is the channel gain in dBs. The power

budget W of each eNB is assumed to be 1 W. The ther-

mal noise is randomly generated in [3.5 − 4.5] × 10−15.

The shadowing effect is incorporated with a mean of 0

and standard deviation of 8 dB.

The simulation is carried out in MATLAB based

upon the aforementioned simulation setup. The proposed

PSO-based JCCS is being implemented here in a self-

organizing manner on each eNB. For getting the

optimum solution in terms of best fitness, four parti-

cles are considered, i.e., 4, 8, 12, and 20. Moreover, the

other parameters like acceleration coefficients (c1 and c2)

and inertia weight are also fine-tuned to achieve the

best fitness. On the other hand, the investigation had

been done in [30] that it is a good choice to set

Vmax = Xmax = N, whenever there is lack of informa-

tion regarding the Vmax which is also true in our case.

Along with the selection of the value for Vmax, an inertia

weight value w = 0.6 is also a good starting point. The

selected parameters for our proposed algorithm are

listed in tabular form in Table 3.

As already discussed, different particle sizes have vary-

ing effect on the fitness values. The result of employing

four different particles such as 4, 8, 12, and 20 in our re-

source optimization problem is shown in Figure 7. The

average objective function, which is the actually the fit-

ness in our study, is plotted with respect to number of

iterations for the different particles sizes. All the four fit-

ness curves are achieved with the same parameters such

as N = 50, L = 10, and M = 250. It can be depicted that

a particle size of 12 outperforms the other particles. We

have selected the particle size 12 for further analysis

because of its being the best objective function value.

Furthermore, on average, the selected particle size yields

20% better performance than particle sizes 4 and 20, and

4% better than particle size 8. The rest of the analysis is

based on the selected configuration.
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Figure 7 Fitness comparison.
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6.2 Min-max throughput

The main theme of our proposed algorithm is the

minimization of the inter-cell interference. However,

the important performance edge that is gained from this

optimization is the maximization of the min-max through-

put. We will illustrate here how our proposed algorithm re-

sults in maximizing of the min-max throughput.

The cdf of the min-max throughput of the UEs is plot-

ted in terms of initial population and after optimization

in Figure 8. It can be seen that because of exploiting the

maximization of the throughput in our proposed PSO-

based JCCS, the average min-max throughput of the

network is enhanced. The initial population that is

generated by randomly assigning the RBs, without any

concern with the encountered interference, can only

result in achieving the maximum throughout up to

around 275 kbps. However, our projected algorithm

has the capability of increasing the average throughput up
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to 350 kbps. Hence, it can be concluded that by employing

PSO-based JCCS algorithm, the min-max throughput can

significantly be enhanced.

6.2 Comparison of PSO-based JCCS algorithm with

traditional ones

In this subsection of the analysis, we compared our pro-

posed algorithm with the two well-known traditional CC

selection and scheduling algorithms such as random, round

robin, and proportional fair. The comparison is carried out

in terms of throughput and fairness. Finally, the percentage

gain of our proposed algorithm is also calculated in terms

of throughput and fairness. For the sake of comparison,

the best selected parameters as in section 6.2 are used for

the proposed algorithms. The number of RBs and CCs, i.e.,

(M and L) are assumed to be fixed; however, the number of

UEs N are varied for getting a comparison.

6.2.1 Throughput comparison

Figure 9 illustrates the average throughput per UEs with

respect to the number of UEs, N. Four curves are obtained

by employing four selection/scheduling algorithms, i.e.,

proposed PSO-based JCCS algorithm, proportional fair,

round robin, and random. It is shown that with the in-

crease of a number of UEs per cell, throughput decreases,

which is obvious because we have assumed a fixed number

of RBs from the CC sets. However, by exploiting the PSO-

based JCCS algorithm, the throughput gap becomes wider

as compared to the traditional methods by increasing the

number of UEs. This is due to the fact that for fewer num-

bers of UEs, the ample availability of RBs results in a bit

good average throughput by proportional fair, round robin,

and random. On the other hand, the proportional fair per-

forms better as compared to round robin for fewer numbers

of UEs. This is in accordance to the fact that for users close

to eNB, the proportional fair performs well as compared to

round robin while its performance deteriorates for users at

the cell edge. Thus, the performance gap between propor-

tional fair and round robin reduces with the increase of

UEs. However, for the proposed PSO-based JCCS, an algo-

rithm performs well as compared to all the traditional algo-

rithms. With the number of UE increases, the competition

among the fixed number of RB increases and this results in

the inferior performance of traditional algorithms compared

with our proposed one. This is due to the fact that the PSO

based-JCCS operates by considering the minimization

of the inducted interferences. Moreover, there is about

20% improved per UE throughput after UE 70 with

other traditional algorithms.

6.2.2 Fairness comparison

The comparison in terms of fairness of the proposed al-

gorithm is illustrated in Figure 10. The parameter and

fairness used to evaluate the performance of the algo-

rithms is calculated by the fairness index (FI) formula in

(15). The FI is a continuous value in the range between

0 and 1. The larger index value means better system per-

formance and vice versa.

FI ¼

X

N

n¼1

γn

 !

N �
X

N

n¼1

γ2n

2

ð20Þ

40 45 50 55 60 65 70 75 80
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Number of UEs

F
ai

rn
es

s

 

 

Proposed PSO-based JCCS algorithm

Proportional algorithm

Round robin algorithm

Random algorithm

Figure 10 Fairness comparison.

Shahid et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:171 Page 12 of 15

http://jwcn.eurasipjournals.com/content/2014/1/171



where N is the total UE to be serviced in the cell, and

γn is the average data rate of the nth UE. Figure 10

illustrates the comparison in terms of fairness with

respect to the number of UEs of the CC selection and

scheduling algorithms. As the fairness is dependent

on per UE mean throughput, therefore, our proposed

algorithm will definitely show better performance with

respect to fairness also. It is also noted that with a

fewer number of UEs, PSO-based JCCS algorithm shows

same fairness as round robin and proportional fair because

there is not much difference in the average throughput

of the UEs; but as the number of UEs increases, the

fairness curve gap becomes wider. This is due to the

fact that PSO-based JCCS algorithm results in large

per UE throughput because of optimum CC selection

and RB assignments. Particularly, the performance of

proportional fair is better than the other traditional

methods for fewer numbers of UEs. However, this per-

formance trend reduces with the increase of UEs. The

reason being that the performance of proportional fair
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algorithm is better than round robin for the UE close

to the eNB while it become worst for UEs that are on

the edge of eNB. The same argument holds while com-

paring fairness of random allocation and the proposed

algorithms. For fewer UEs, the difference is more pro-

nounced because of the large difference between the

average data rate between the two.

6.3 Percentage gain

Figure 11 elaborates the percentage gain of the PSO-

based JCCS algorithm over random, round robin, and

proportional fair algorithms with respect to UEs. For

both the throughput and fairness cases, the percentage

gain increased as a function of UEs because PSO-

based JCCS algorithm shows significant improvement

by increasing UEs. More precisely, the percentage gain

increases from 10% to 20% for the random algorithm,

6% to 17% for the round robin algorithm, and 2% to

16% for proportional fair algorithm with the increase

of UEs from 40 to 80 as in Figure 11a. The increasing

trend observed is due to the fact that the proposed

PSO-based JCCS takes into account the interference

while allocating the RBs from the CC set.

Similarly, the percentage gain in terms of fairness is

plotted in Figure 11b. It can be illustrated that the per-

centage gain is not so significant for fewer number of

UEs; however, percentage gain of the proposed PSO-based

JCCS algorithm becomes significant as compared to

traditional methods. This is the concern of iterative

JCCS, which result in better RB assignments. The better

CC selection and RB assignment in PSO-based JCCS

election algorithm results in profound performance gap

for increased UEs.

7 Conclusions
In this study, we investigated the self-organized PSO-based

JCCS algorithm for inter-cell interference management

in LTE-Advanced. Inter-cell interference management

is the most critical task in LTE-Advanced that limits

the performance of the networks. On the other hand,

CA is exploited as a novel solution for meeting the in-

creased throughput demands of UEs. Within the con-

text of CA, CC selection and scheduling is the most

critical task and has significant impact on the system

performance. In order to alleviate these problems, a

self-organized PSO-based JCCS is proposed for the

downlink in LTE-Advanced. The general theme of the

proposed algorithm is that it relies on the CQI values

from the UEs on the direction of eNB, and based upon

the values PSO-based JCCS, is carried out for distribut-

ing the resources with the concern of maximizing the

throughput. An important point is that each eNB relies

on the local received information without any involve-

ment of centralized entity. In addition, the minimum

throughput is also inculcated for alleviating the greedi-

ness behavior. As far as the reduction of information

exchange is concerned, a single CQI value is used for

representing the group of RBs from the CC set. Hence,

it significantly reduces the information exchange. The

comparison of the proposed PSO-based JCCS with

traditional algorithms is carried out regarding average

Table 3 Parameters for PSO-based JCCS

Parameters Values

Number of particles 4, 8, 12, 20

Acceleration coefficient (c1 and c2) 2

Inertia weight (w) 0.6

Number of iterations 1,500

[−Vmin, Vmax] [−N, N]

Table 2 System simulation parameters

Parameters Setting (description)

Site layout Eight sites - three sectors per site - wrap around

Inter-site distance 500 m

TTI 1 ms

Path loss - LOS PL = 40log10(d) + 13.47 − 14log10(heNB) − 14log10(hUE) + 14log10(fc/5.0)

Path loss - NLOS PL = (44.9 − 6.55log10 (heNB)) log10(d) + 31.46 + 5.83log10(heNB) + 23log10(fc/5.0) + 40log10(d)

Shadowing Gaussian distribution with zero mean and 8 dB

Total eNB power 46 dBm

Antenna configuration 1 × 1

Thermal noise power [3.5 − 4.5] × 10−15 W

Traffic model Full buffer

Component carriers 4 × 10 MHz contiguous @ 2 GHz band.

Number of RBs 50 RBs per CC, 200 RBs in total

Total UEs in system 40 − 80

CQI frequency domain resolution 1 CQI per 3 RBs
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throughput and fairness. The results validate the superior

performance of the proposed algorithm.

The benefit of the proposed PSO-based JCCS algorithms

is that each eNB operate in a self-organizing manner

and rule out the RBs allocation from the CC set with

the concern of minimizing the impact of inter-cell inter-

ference. In addition, the proposed algorithm is also scal-

able in the sense that each eNB is individually responsible

for the self-organizing scheduling task. However, the

algorithm relies on the information in the form of CQI

on the RBs for carrying out the scheduling task. This issue

is addressed in this study by reporting on the bunch of

RBs. The proposed metaheuristic algorithm takes some

time to converge, and when the convergence is achieve, it

gives optimum performance in terms of throughput and

fairness. The investigation carried out in this study can be

extended by considering the small cells.
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