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Abstract. A new approach is presented to deal with the problem of modelling and simulating the 
control mechanisms underlying planned-arm-movements. We adopt a synergetic view in which we 
assume that the movement patterns are not explicitly programmed but rather are emergent properties 
of a dynamic system constrained by physical laws in space and time. The model automatically translates 
a high-level command specification into a complete movement trajectory. This is an inverse problem, 
since the dynamic variables controlling the current state of the system have to be calculated from 
movement outcomes such as the position of the arm endpoint. The proposed method is based on an 
optimization strategy: the dynamic system evolves towards a stable equilibrium position according to 
the minimization of a potential function. This system, which could well be described as a feedback 
control loop, obeys a set of non-linear differential equations. The gradient descent provides a solution 
to the problem which proves to be both numerically stable and computationally efficient. Moreover, the 
addition into the control loop of elements whose structure and parameters have a pertinent biological 
meaning allows for the synthesis of gestural signals whose global patterns keep the main invariants 
of human gestures. The model can be exploited to handle more complex gestures involving planning 
strategies of movement. Finally, the extension of the approach to the learning and control of non-linear 
biological systems is discussed. 
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I. Introduction 

This paper describes a method of planning and 
controlling the motion of an artificial arm with 
multiple degrees of freedom. Sensory feedback 
from an observation space is used to update 
the current state variables controlling each joint 
movement. This is an inverse problem of finding 
the appropriate control parameters of a non- 
linear multi-dimensional system to achieve a de- 
sired end-point position. The proposed solution 
does not try to calculate the inverse transforma- 
tion analytically. It produces a potential function 
which characterizes the evolution of the dynamic 
system in terms of its minimization: when a new 

target is specified, the system evolves towards 
a new stable equilibrium state corresponding to 
the minimization of the potential function. The 
method is based on a gradient descent minimiza- 
tion of a quadratic function of the error between 
the desired and the current arm location [1]. We 
demonstrate in the general case that the equilib- 
rium points of the model correspond effectively 
to the desired solutions, and that these solutions 
are asymptotically reached. 

Two models of planned arm-movements are 
presented. The first one describes the multi- 
joint arm as a geometrical model: this model 
corresponds to a position-based control scheme. 
The second includes a mechanical model of the 
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articulated arm in the control loop, each joint 
being controlled dynamically by driving forces. 
The second model enables the interaction be- 
tween biomechanical variables of the arm and 
environmental variables to be taken into account 
so that the impact of the arm on a physical object 
can be simulated. In both cases, the feasibility of 
the method is demonstrated by simulations for 
an arm with four degrees of freedom. 

Our approach contrasts with previous adap- 
tive control methods in a major way: it is more 
devoted to explaining physiological aspects of hu- 
man motor control than to industrial robotics. In 
particular, the control mechanism does not main- 
tain the dynamic response of a physical device in 
accordance with some pre-specified desired tra- 
jectory. It uses sensory and motor coordinates 
to adaptively modify the control parameters of 
the mechanical multi-joint arm. 

The originality of our model lies in the intro- 
duction into the feedback loop of a nonlinear 
function which gives rise to natural behaviours. 
Using psychomotor results, we show indeed that 
such a model automatically generates gestures 
which keep the main features of human gestures. 
Some prospects are then presented which place 
this modelling within a broader conceptual frame- 
work, dealing with multi-dimensional systems for 
which an analytic function is hard to determine. 

2. The Control Model 

2.1. Terminology 

We adopt as a working basis the Synergetic view: 
the movement patterns are not explicitly pro- 
grammed but are rather emergent properties of 
a dynamic system constrained by physical laws 
in space and time. The dynamics of the system 
are determined by a set of non-linear differential 
equations known as the Langevin equations [2]: 

dq = N(a,  at, t) + (1) 
dt 

where N is the deterministic element and r/ is 
an internal noise, q is the state vector of the 
system, at is the control parameter vector which 
qualitatively affects the solutions of the differen- 
tial equations. If a potential function, V(a, at), 
depending jointly upon the control parameter 
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Figure 1. S e n s o r i - m o t o r  sys tem.  

vector and the state vector can be extracted from 
this dynamic system, then the spontaneous tra- 
jectory formation can be expressed in terms of 
potential minimization (if the control parameters 
are steady) and/or equilibrium phase transition (if 
the control parameters are variable). 

The state vector q characterizes the state of 
the motor system at any time. The observable 
signals, measured in the observation space, are 
the movement outputs used as feedback signals 
to control the movement execution in real time. 
These signals could be expressed via a variety 
of modalities, including vision, audition and/or 
kinaesthesia. The Task space is the vector space 
in which environmental specifications of tasks are 
given to the operator: this task vector contains 
data which evolves more slowly and is used to- 
gether with the observable data to modify the 
state of the articulators (Fig. 1). The evolution 
of this vector with time represents, for instance, 
a succession of reached targets. 

A time-varying scalar quantity can be defined, 
E(a, at), which is a cost function corresponding 
to some task-level constraints and is dependent 
simultaneously on the task vector at (target) and 
on the observation vector a. This quantity is 
calculated at each step to update the state of 
the articulatory system through a feedback loop. 
Let's call M the transformation which links the 
vector of state coordinates to the vector of obser- 
vation coordinates: a = M(q)M is a non-linear 
and projective function, since the system is a 
redundant system: "i.e." several possible config- 
urations of the articulators may correspond to a 
given outcome. 



Nonlinear Multi-Dimensional Systems 339 

B C L 

Figure 2. Position-based control scheme, 
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Systemic considerations lead us to describe the 
natural evolution of the physical system with a 
potential function: from an initial equilibrium 
state, the system goes through a succession of 
states towards another equilibrium state. The 
passage from one equilibrium state to another 
can be determined according to the minimization 
of the potential function. 

2.2. The Model 

We consider in our model that the observation 
variables are contained in the space of the plan 
variables in which the task is assigned. The state 
coordinates are generated on the basis of the gra- 
dient of the cost function. This cost is expressed 
as a quadratic function of the error between the 
target vector at and the actual observation vec- 
tor M(q): 

E(q, at) = ½" (M(q) - at) T. (M(q) - at) (2) 

The behaviour of the whole system can thus 
be derived from the following set of differential 
equations: 

dq 
- g(t) .  gradE(q, at) 

dt 

= -g( t )  . [-O~--~q ] . (M(q)  - at) (3) 

where 9(t) is a non-linear gain function, 

[~q ] = Jq = [bij] with bij - Oai Oqj (4) 

dq is the Jacobian matrix of the operator M. 
This matrix relates small changes in the state 
space to small changes in the observation space 
results. All of the derivatives in the matrix are 
forward derivatives and are easily obtained by dif- 
ferentiation if the model M is analytically avail- 
able. The gradient of the error is then used to 
adjust the internal state variables of the system. 

With such a closed-loop model, the transitions 

generated can be abrupt and lead to instabili- 
ties linked to some intermediate configurations. 
As a consequence, natural movements are not 
achieved. As pointed out by Grossberg [3, 4], 
adding a second order filter and a non-linear 
function inside the loop (see Fig. 2) ensures the 
stability of the system and generates smooth tran- 
sitions. The non-linear gain is a "sigmoid" func- 
tion: the gain is low when the error is significant, 
and it increases as the error goes towards zero. 
This accelerates the convergence in the vicinity 
of the minimum. In Figure 2, 

B(a, at) = - gradE(q, at) 
C is a weighting function which permits the ad- 
dition of articulatory constraints to the system, 
E is the error function, 
N is a non-linear gain function ("sigmoid" 
shape), 
L is a second order filter, 
M is a kinematics function which calculates 
the feedback components given the state space 
components. 
The equilibrium point of the system is reached 

when the current position matches the target po- 
sition, thereby preventing further changes in the 
current position and allowing the system to come 
to rest. Note that using the gradient descent of 
the error as a strategy to reach the target requires 
that the optimal solution should correspond to a 
minimal displacement of the articulators. 

2.3. Equilibrium Points of  the Model 

The loop does invert the operator M, as a stable 
solution is reached when the output q is equal to 
the inverse image of the target. This is demon- 
strated in two steps: first, we show that under 
appropriate circumstances, the only stable points 
are such that M(q)  = at. Second, we demon- 
strate that the stable points are indeed reached 
in an asymptotic way. 

(i) We show that the excess of degrees of free- 
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dom minimizes the possibility of the system to 
reach sub-optimal equilibrium points and to stay 
in such states. 

Taking E(q,  qt) expressed in (2), we have, for 
each i(i = 1 . . . N ) :  

N 
OE = E ( M ( q )  j _ aj,) . OM(q)j (5) 
Oqi j=l cOqi 

The stable points satisfy: 

0q 
Ot - 0 (6) 

This is equivalent to saying: 

OE 
E(q, at) = 0 or ~ = 0 for each i (7) 

The first equality means: M(q)  = at, which is the 
desired solution. The second equality leads to 
the cancellation of the scalar product: 

0M(q)  
( M ( q ) - a t ,  Oq-----~. ) (8) 

which is the condition for a local minimum. This 
means that the set of vectors 0M(q) is in the Oql 
hyper-space orthogonal to ( M ( q ) -  at). 

At this point it should be noted that the pre- 
vious condition becomes harder to satisfy as the 
number of independent degrees of freedom in- 
creases. In our application, we assume that the 
system verifies: for all q there is at least i such 
that 

( O M ( q )  ~ 0 ) a n d  (OM(q)~ 
Oqi ~, Oqi ] 

is not orthogonal to ( M ( q ) - a t )  for any reachable 
target at. 

(ii) Moreover,  these steady states can be 
reached in an asymptotic way. The method of 
Lyapounov [5] is used to demonstrate this: it 
states that a system is asymptotically stable if 
one can exhibit a potential function with a de- 
fined sign whose temporal derivative exists and 
is of opposite sign. We consider the potential 
function defined as V(q) = E(q,  at). We have 
V _> 0 for each q. 

According to the difference equation extrap- 
olated from (1) (in which we neglect the noisy 
part r/(t)), we may write: 

qn+l = q,~ + N(q~, at) (9) 

An approximation of the first order gives: 

(ov  T 
V(qn+l) = V(qn) + \ 0q ] q '  N(qn, at) (10) 

Therefore, if we replace the derivative by: 

and the function N(t) by the expression given in 
(3) we obtain: 

[ 0 M 1 T  
u(qn+l) -- U(qn) + (M(qn) - a d  T. k--N-q J qo 

N 

• (M(qn) - a t ) )  (12) 

and thus: 

V(qn+l)- V(q~)= -g(t)" ll [ O-~q ]q n 

• ( M ( q ~ )  - at)ll 2 _< 0 (13)  

which shows that V is a positive potential func- 
tion, always decreasing with time. As a conse- 
quence, the arm endpoint is asymptotically ap- 
proaching the target at. 

It should be pointed out that: 

(i) If N(q, at) = R.  [-g(t) • gradE(q, a)] 
where R is a square matrix, definite and positive, 
then: 

AV~ = --g. u T R u  <_ 0 

with 

q~ 

and UTRU is a quadratic form both positive and 
definite. 
(ii) In the same way, if we introduce a filtering on 
the g function of the form: 

) N(q, a t ) = -  ~+a.g(t) .grad E 

with c~ > 0, g(t) >_ 0 and ~ > 0, 
we still have AV, < O. 
For instance g can be a "sigmoid" function of the 
form: go" ( ~ )  with go small• 
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Figure 3. Articulated arm with four degrees of freedom. 

3. Geometric  Model  of  the Arm and Planned 
Movements  

3.1. Description of  the Control Model 

We limit the problem to the task which consists of 
positioning a multi-joint arm to reach a sequence 
of static targets or a moving target. There are two 
ways of assigning a desired position to the arm: 

a) through the state coordinates given by the 
joints angles denoted by qi.The vector of state co- 
ordinates of a n-joints arm is q = (ql, q2,. . . ,  qn) T. 

b) through the observation coordinates of the 
arm with respect to the absolute coordinate 
frame: a = ( x ~ , x z , . . . , z ~ )  T. The correspon- 
dence between the state coordinates q and the 
observation vector a can be written: a = M(q). 

The function M expresses the transformation 
law between the joint angles and the position 
of the extremity of the arm. In our simulations 
we considered a ttiree-segment arm with four 
degrees-of-freedom (Fig. 3). 

conditions. The invariants thus reveal general 
laws underlying spatio-temporal organization of 
motricity. We essentially retained two types of 
invariants [6]: 

- a  temporal invariant, which constitutes the 
"isochrony" principle: this relates to the fact that 
the action of the different muscles and articula- 
tors involved in a synergy occurs synchronously 
through time; in other words, this means that 
the duration of the movement to be performed 
is independent of the amplitude of this move- 
ment. When no constraint is imposed on the 
average velocity of the gesture, there is a sponta- 
neous tendency to increase this velocity with the 
distance to perform. 

- a  spatial invariant characterized by the veloc- 
ity profile: studies of the kinematics of planned- 
arm movements have shown that the simultane- 
ous action of many skeleto-motor units produces 
velocity profiles whose global shape is approxi- 
mately bell-shaped for simple movements. More- 
over, this shape presents an asymmetry which 
depends on the speed of the movement. As the 
speed increases the curve becomes more sym- 
metrical until the direction of the asymmetry 
is reversed. 

Simulations of the geometrical arm which 
demonstrate these natural laws of movement 
have been carried out. This is illustrated by 
the velocity profiles (Fig. 4). 

Furthermore, the "isochrony" property is im- 
posed by adjusting parameters of the nonlinear 
gain function (Fig. 5): these parameters deter- 
mine the duration of the transition which consti- 
tutes a temporal invariant. The end-point trajec- 
tories (Fig. 6) show the influence of the "sigmo~d" 
function on the quality of the transition (more 
or less abrupt). 

3.2. Simulations: The Model Satisfies Natural 
Rules of  Movement 

Appropriate filters have been calculated, such 
that several general human rules involved in 
planned-arm movements are respected. These 
rules express invariant characteristics of the 
motor performance, "i.e." movement proper- 
ties which are independent of the execution 

3.3. Planning Gestures 

The organization of more complex motor se- 
quences requires the structural and parametric 
characterization of the system and the charac- 
terization of the coupling of the adaptive con- 
trol loop to a higher level symbolic command. 
In most human skilled motor tasks, in par- 
ticular those requiring phonetic code (spoken 
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language) or graphemic code (hand writing), 
this command necessitates learning and plan- 
ning strategies. 

In our current framework, the element relevant 
to the motor device is represented by the adaptive 
control loop. The link With the higher levels of 
planning is realized by opening the model to a 
reference command, which evolves more slowly 
through time than the physical signals in the 
control loop. 

Considering writing gestures, the quantitative 
features of the movement reveal two kinds of in- 
variants: a motor invariant characterized by the 
underlying mechanical system, and an invariant 
depending on the spatio-temporal properties of 
the command. The most immediate approach 
is to specify directly at the command level a se- 
quence of targets in the tri-dimensional Cartesian 
space. These targets can be pre-determined by 
a segmentation of the written trace [7].  The 
potential function is modified so that it be- 
comes a weighted sum of elementary costs, each 
cost being activated at each target occurrence in 
the sequence: 

E(a, at) = ~ Ai(t). I[a - a~l[ 2 (14) 
i : 1  

where li(t) is a bell-shaped function. 
This modified cost function allows the model 

to take into account the contextual effects in 
the time structure of the motor sequence. This 
means that the articulatory configuration may 
change according to the temporal context. In 
particular, an anticipatory behaviour is observed 
in real performances: some articulators are 
pre-positioned in order to reach their subse- 
quent target(s). 

By simulating a sequence of repetitive signs 
("Ill" or "nnn"), we verify the linear relation- 
ship between the instantaneous velocity of the 
endpoint movement and the radius of curvature 
(two-third law highlighted by Viviani [6]). 

4. Mechanical  Model  of  the Arm and Planned 
Movements  

4.1. Mechanical Model of the Arm 

The arm is modelled as a triple pendulum com- 
posed of three weightless links connected to each 
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Figure 7. M e c h a n i c a l  m o d e l  o f  t h e  a r m .  

other by inertial links (Fig. 7). The movement of 
the i-th joint is described by the corresponding 
internal joint coordinate qi which represents the 
angle between the two neighbouring links. The 
i-th joint movement is also described by joint ve- 
locity and acceleration. Each joint is submitted to 
driving forces as well as gravitational moments. 
The movement of each joint is strongly inter- 
connected with the movement of all the other 
joints and the driving forces affect all the joints 
in the mechanism. 

A convenient method to determine the mo- 
tion of this complex non-linear system with 
four degrees-of-freedom is derived from the 
Lagrangian multiplier method [8]. 

The Lagrangian equations of motion of the 
whole mechanical system follow from Hamilton's 
principle. The Lagrange factor L expresses the 
difference between the kinetic energy T and the 
potential energy V of the system. Qi is the torque 
exerted by gravity on the i-th articulated variable, 
and Fi is the torque exerted by the outside forces 
(drive control forces). {qi} represents a set of in- 
dependent variables (or generalized coordinates). 

The Lagrangian-multiplier method provides 
a means of avoiding the elimination of vari- 
ables. A new Lagrangian function is thus de- 
fined in terms of the Cartesian non-independent 
coordinates (xl ,x2, . . . ,x~),  including auxiliary 
constraints which can be put in the form: 
gi(xl, x2 , . . . ,  xn) = O. 

If we consider: 

P 

L ' =  L + ~ A i  'gi (15) 
i=1 

the equations of motion can be expressed as: 

d ( O L ~  OL ~-, _ _ P  Ogi 
= + Qi  + (16) 

i=1 

assuming that the (hi) satisfy the equations 
of constraints. 

In our implementation of the model we use 
an alternative formulation, the Legendre trans- 
formation, introducing the moments pi: 

OL 
Pi = Ogcl 

and thus changing the basis from the (x, 5, t) set 
to the (x,p,t)  set. 

The canonical equations of Hamilton follow 
from this transformation: they constitute a new 
set of first order differential equations: 

dxi 
H = E pi • --~- - n  with 

i 

d p i _  OH and dxi _ OH (17) 
dt Oxi dt Opi 

4.2. Force Control Adaptive Loop 

The adaptive loop in the case of the geometri- 
cal model of the arm is modified such that the 
small displacements of the arm result from the 
application of forces or torque's applied on each 
joint. The same error between the extremity 
of the arm and the target is used to calculate 
the forces (moments) which are applied on each 
joint to minimize the potential function. The 
drive forces are automatically computed by the 
retroactive adaptive loop, through the application 
of a non-linear function of the successive deriva- 
tives of the angle variables: F = ~(Sq, (t, q). 

This is shown on figure 8. 
To achieve more accurately targeted responses, 

and to ensure a stable behaviour of the loop, 
one has to apply rapid force impulses to each 
joint. The current driving forces depend at each 
step on the relative directions of the movement 
and on the gradient of the error signal. As 
the extremity of the hand approaches the tar- 
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get, both the angular increments and the angular 
velocities decrease, allowing the forces to reach 
asymptotically constant values which compensate 
for gravitational forces. The main advantages 
of this control structure lie in its ability to take 
into account the dynamics of the arm system, 
and its interaction with the environment. If the 
hand-arm system hits an obstacle for example, 
the dynamics of the impact can be described by 
an additional interaction force acting simultane- 
ously on the last inertia of the hand and on 
the obstacle. 

This interactive phenomenon is illustrated by 
an original application. A multi-joint dynamic 
arm is simulated, and hits a vibrating membrane 

[9]. We see in Fig. 9 the interaction force: 
it presents several peaks corresponding to the 
instants of the rebounds of the hand on the drum. 

It should be pointed out that: 

• The principles developed for the geometri- 
cal model are still a powerful way to solve this 
non-linear inverse problem. The difficulties are 
overcome by the gradient descent strategy and 
the introduction of a second fast feedback loop 
acting directly on the force variables. 

• The analysis of stability is difficult in such a 
force-based control, because of the non-linearities 
of the different elements of the system, and also 
because of the strong coupling between the forces 
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Figure 10. Identification principle. 

applied on the different joints. In order to ensure 
the stability of the whole system, it is necessary 
to adjust the frequency ratio of the feedback 
correction, while maintaining a quasi-constant 
loop gain. 

• Replacing the mechanical model of the arm 
by a robot commanded at each joint by a rapid 
regulation loop may avoid the above problems. 
We would then have an inverse problem ex- 
pressed in the geometrical space, the transfor- 
mation of the angular displacements into exter- 
nal torque's being directly achieved through the 
force-based adaptive loop. 

5. Identification by Supervised Learning 

Most of the time, the analytic equations of the 
dynamics of the system are difficult to derive, 
or hard to compute. In such cases we may use 
the external behaviour of the system, "i.e." the 
observations upon the inputs and outputs of the 
system to extract a mathematical model that could 
yield the observed data. This can be viewed as 
an identification problem [10] as illustrated in 
figure 10. 

We aim to generalize the previous control con- 
cepts to non-linear systems in which the relation- 
ship between state variables (motor coordinates) 
and output variables (sensory coordinates) is not 
known a priori. In such cases, a neuromimetic 
approach can be considered to learn the non- 

linear dynamics. More precisely, as some func- 
tions in our model are projective (gradient func- 
tion and forward model), they can be learned 
by simple "feedforward" neural networks. They 
achieve an internal mapping between the sensory 
data of the environment and the state variables 
of the system. 

We can consider a network to be composed of 
a set of connections that implement the transfor- 
mation of internal state units (articulatory vari- 
ables) into observable units. It includes interme- 
diate hidden units so that non-linear functions 
can be learned. 

The learning procedure is viewed as a straight- 
forward application of supervised learning tech- 
niques [11]. The algorithm is a steepest descent 
algorithm in the error measure expressed as the 
quadratic function of the difference between the 
actual output of the network a p and the desired 
output a v for one pair p: 

E p = ½. (a p - aV) r . (a p - a v) (18) 

The back-propagation algorithm is used to 
compute the incremental changes to the weights 
according to the gradient of the error measure 
E p. For n input-output pairs, the descent rule 
changes the parameter values ~ as follows: 

A w  = a .  \ Ow ] " (a f  - a v) (19) 
p=l 

where a is a learning rate. 
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The control procedure differs from classical 
approaches in the way that the gradient of the 
error function is found with respect to the inputs 
q and not with respect to the weights as during 
the learning procedure. This leads to an updated 
process that computes the appropriate changes 
to the internal state inputs q: 

(0_.)  T 
Aq = - ~ .  \ OqJ ' ( a t - a )  (20) 

where/3 represents a gain function. Thus, for a 
fixed set of weights, the back-propagation algo- 
rithm is able to propagate the error backwards 
from the observable units to the state units. 

Several approaches have already been consid- 
ered that use different kinds of networks [13- 
20] A survey "Neural Networks in Robotics" [21] 
provides an overview of the research tackled in 
neural networks applied to robotics and presents 
its limitations and current trends. Our approach 
differs from other classical control models in sev- 
eral ways: first of all, it does not require an a 
priori knowledge of a desired trajectory nor of 
the qualitative structure of the inverse dynamics. 
Moreover, it achieves an adaptive mapping be- 
tween sensory and motor coordinates through the 
learning of both the gradient and the non-linear 
mechanical model. 

6. Conclusion 

The work presented here puts forward a new 
approach to adaptive sensory-motor control. We 
have presented a control model of planned-arm 
movements which aims to solve the inverse prob- 
lem. From current sensory information measured 
in the observation space, it calculates the current 
state variables controlling the multi-effector sys- 
tem. We know that there are an infinite number 
of solutions to this problem, involving various 
combinations of values for the degrees of free- 
dom. However, we think that some solutions 
are better than others, in terms of the smooth- 
ness of the articulatory transition between the ac- 
tions. Our model is a biologically-inspired model 
which provides a functional understanding of the 
sensory-motor system involved in simple hand- 
arm movements, in the scope of control theories 
and dynamic process theories. 

This model is composed of an adaptive loop 
dedicated to the command of a muti-joint ar- 
ticulated system. It can automatically trans- 
late a visual target specification into a complete 
movement trajectory via a mechanism of contin- 
uous vector updating and integration. Therefore 
this autonomous and adaptive model provides a 
means of spontaneous trajectory formation, from 
targets specified in a perceptual representation 
space. This model has several interesting fea- 
tures, which might help us to understand quanti- 
tatively how the arm system achieves its flexibility 
and versatility: 

• It provides an economical control mode: the 
motions of the different articulators as well as the 
time-sequencing are not explicitly programmed. 
They are emergent properties of a dynamic sys- 
tem, constrained in space and time. 

• An important characteristic is the low infor- 
mation flow at the command level; this permits 
an interface with higher planning levels in which 
symbols are more relevant than physical signals. 

• The generated movements present some 
"natural" features, since properties characteriz- 
ing the kinematics of human gestures have been 
highlighted: this has been shown through the 
"isochrony" principle and the invariance of the 
velocity profiles. 

The same principles have been applied to two 
models of the articulated arm: 

- a geometric model in which the angular vari- 
ables characterizing each articulation are directly 
controlled by the adaptive loop, according to a 
gradient descent strategy. 
- a dynamic model in which the drive forces 
are calculated from a similar error signal and 
according to the same strategy. 

The relative independence of the control prin- 
ciples with respect to the application models 
shows the generality of the mechanisms consid- 
ered above. 

Moreover, this approach suggests how func- 
tional and mechanical devices could be involved 
in the neural systems governing arm movements. 
It can be extended to more complex non-linear 
systems for which the transformation from an in- 
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ternal configuration to an observable output is not 
known a priori. In such cases, it would be possi- 
ble to replace the forward system and the gradient 
function by "feedforward" neural networks. 
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